1
|
Akunevich AA, Khrustalev VV, Khrustaleva TA, Yermalovich MA. The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution. Protein Pept Lett 2024; 31:504-518. [PMID: 39041280 DOI: 10.2174/0109298665297321240708044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment. METHODS EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied. RESULTS The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days. CONCLUSION EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.
Collapse
Affiliation(s)
| | | | | | - Marina Anatolyevna Yermalovich
- Laboratory of Vaccine Controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonava 23, Minsk, 220114, Belarus
| |
Collapse
|
2
|
Fischer A, Masilamani AP, Schultze-Seemann S, Wolf I, Gratzke C, Fuchs H, Wolf P. Synergistic Cytotoxicity of a Toxin Targeting the Epidermal Growth Factor Receptor and the Glycosylated Triterpenoid SO1861 in Prostate Cancer. J Cancer 2023; 14:3039-3049. [PMID: 37859824 PMCID: PMC10583583 DOI: 10.7150/jca.85691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023] Open
Abstract
Treatment of advanced prostate cancer lacks specificity and curative intent. Therefore, the need for new targeted therapeutic approaches is high. In the present study, we generated the new targeted toxin EGF-PE24mutΔREDLK binding to the epidermal growth factor receptor (EGFR) on the surface of prostate cancer cells. It consists of the human epidermal growth factor (EGF) as binding domain and a de-immunized variant of Pseudomonas Exotoxin A (PE), called PE24mutΔREDLK, as toxin domain. The toxin domain contains a deletion of the C-terminal KDEL-like motif REDLK to prevent its transport from sorting endosomes via the KDEL receptor mediated pathway into the cytosol, where it can inhibit cellular protein biosynthesis and induce apoptosis. Indeed, REDLK deletion resulted in a strong decrease in cytotoxicity of the targeted toxin in prostate cancer cells compared to the parental targeted toxin EGF-PE24mut. However, addition of the plant glycosylated triterpenoid SO1861, which is known to mediate the release of biomolecules from endolysosomal compartments into the cytosol, resulted in an up to almost 7,000-fold enhanced synergistic cytotoxicity. Moreover, combination of PE24mutΔREDLK with SO1861 led to a cytotoxicity that was even 16- to 300-fold enhanced compared to that of EGF-PE24mut. Endolysosomal entrapment of the non-toxic targeted toxin EGF-PE24mutΔREDLK followed by activation through enhanced endosomal escape therefore represents a new promising approach for the future treatment of advanced prostate cancer with high efficacy and diminished side effects.
Collapse
Affiliation(s)
- Alexandra Fischer
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anie Priscilla Masilamani
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isis Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry; Berlin, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Masilamani AP, Huber N, Nagl C, Dettmer-Monaco V, Monaco G, Wolf I, Schultze-Seemann S, Taromi S, Gratzke C, Fuchs H, Wolf P. Enhanced cytotoxicity of a Pseudomonas Exotoxin A based immunotoxin against prostate cancer by addition of the endosomal escape enhancer SO1861. Front Pharmacol 2023; 14:1211824. [PMID: 37484018 PMCID: PMC10358361 DOI: 10.3389/fphar.2023.1211824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Pseudomonas Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol. There, it ADP-ribosylates the eukaryotic elongation factor 2, resulting in ribosome inhibition and finally apoptosis. One major problem of immunotoxins is their lysosomal degradation causing the need for much more immunotoxin molecules than finally required for induction of cell death. The resulting dose limitations and substantially increased side effects require new strategies to achieve improved cytosolic uptake. Here we generated an immunotoxin consisting of a humanized single chain variable fragment (scFv) targeting the prostate specific membrane antigen (PSMA) and the de-immunized PE variant PE24mut. This immunotoxin, hD7-1(VL-VH)-PE24mut, showed high and specific cytotoxicity in PSMA-expressing prostate cancer cells. We deleted the REDLK sequence to prevent transport to the ER and achieve endosomal entrapment. The cytotoxicity of this immunotoxin, hD7-1(VL-VH)-PE24mutΔREDLK, was greatly reduced. To restore activity, we added the endosomal escape enhancer SO1861 and observed an up to 190,000-fold enhanced cytotoxicity corresponding to a 57-fold enhancement compared to the initial immunotoxin with the REDLK sequence. A biodistribution study with different routes of administration clearly showed that the subcutaneous injection of hD7-1(VL-VH)-PE24mutΔREDLK in mice resulted in the highest tumor uptake. Treatment of mice bearing prostate tumors with a combination of hD7-1(VL-VH)-PE24mutΔREDLK plus SO1861 resulted in inhibition of tumor growth and enhanced overall survival compared to the monotherapies. The endosomal entrapment of non-toxic anti-PSMA immunotoxins followed by enhanced endosomal escape by SO1861 provides new therapeutic options in the future management of prostate cancer.
Collapse
Affiliation(s)
- Anie P. Masilamani
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathalie Huber
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Nagl
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Isis Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanaz Taromi
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medical and Life Sciences, University Furtwangen, VS-Schwenningen, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
5
|
Raddeanin A synergistically enhances the anti-tumor effect of MAP30 in multiple ways, more than promoting endosomal escape. Toxicol Appl Pharmacol 2022; 449:116139. [PMID: 35750203 DOI: 10.1016/j.taap.2022.116139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
Biomacromolecules such as proteins and nucleic acids are very attractive due to their high efficiency and specificity as cancer therapeutics. In fact, the endocytosed macromolecules are often trapped in the endosomes and cannot exhibit pharmacological effects well. Many strategies have been used to address this bottleneck, and one promising approach is to exploit the endosomal escape-promoting effect of triterpenoid saponins to aid in the release of biomacromolecules. Here, Raddeanin A (RA, an oleanane-type triterpenoid saponin) was proved to significantly promote endosomal escape as it recruited Galectin-9, an endosomal escape event reporter. As expected, RA effectively enhanced the anti-tumor effect of MAP30 (a type I ribosome-inactivating protein derived from Momordica charantia). However, based on the results of fluorescent colocalization, RA did not significantly promote MAP30 release from endosomes, suggesting that RA enhances MAP30 activity not only by promoting endosomal escape. Furthermore, it was found that the inhibitors of micropinocytosis and caveolae could almost completely inhibit the cytotoxicity of MAP30 combined with RA without affecting the cytotoxicity of MAP30 alone, indicating that RA may regulate the endocytic pathway of MAP30. Meanwhile, the effect of RA is related to the intra vesicular pH and cholesterol content on cell membrane, and is also cell-type dependent. Therefore, RA enhanced the anti-tumor effect of MAP30 in multiple ways, not just by promoting endosomal escape. Our findings will help to further decipher the possible mechanisms by which triterpenoid saponins enhance drug activity, and provide a new perspective for improving the activity of endocytosed drugs.
Collapse
|
6
|
Zuppone S, Assalini C, Minici C, Botrugno OA, Curnis F, Degano M, Corti A, Montorsi F, Salonia A, Vago R. A Novel RGD-4C-Saporin Conjugate Inhibits Tumor Growth in Mouse Models of Bladder Cancer. Front Oncol 2022; 12:846958. [PMID: 35480108 PMCID: PMC9035931 DOI: 10.3389/fonc.2022.846958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Although toxin may have some advantages compared to chemotherapeutic drugs in cancer therapy, e.g. a potent cytotoxic activity and a reduced risk of resistance, their successful application in the treatments to solid tumors still remains to be fully demonstrated. In this study, we genetically modified the structure of the plant-derived single-chain ribosome inactivating protein saporin (SAP) by fusing its N-terminus to the ACDCRGDCFCG peptide (RGD-4C), an αv-integrin ligand, and explored the anti-tumor activity of the resulting protein (called RGD-SAP) in vitro and in vivo, using a model of muscle invasive bladder cancer. We found that the RGD-4C targeting domain enhances the cytotoxic activity of SAP against various tumor cell lines, in a manner dependent on αv-integrin expression levels. In a subcutaneous syngeneic model of bladder cancer, RGD-SAP significantly reduced tumor growth in a dose-dependent manner. Furthermore, systemic administration of RGD-SAP in combination with mitomycin C, a chemotherapeutic drug currently used to treat patients with bladder cancer, increased the survival of mice bearing orthotopic bladder cancer with no evidence of systemic toxicity. Overall, the results suggest that RGD-SAP represents an efficient drug that could be exploited, either alone or in combination with the state-of-the-art therapies, for the treatment of bladder cancer and, potentially, of other solid tumors.
Collapse
Affiliation(s)
- Stefania Zuppone
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Assalini
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Claudia Minici
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Montorsi
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy
- *Correspondence: Riccardo Vago,
| |
Collapse
|
7
|
Yang H, Luo Y, Hu H, Yang S, Li Y, Jin H, Chen S, He Q, Hong C, Wu J, Wan Y, Li M, Li Z, Yang X, Su Y, Zhou Y, Hu B. pH-Sensitive, Cerebral Vasculature-Targeting Hydroxyethyl Starch Functionalized Nanoparticles for Improved Angiogenesis and Neurological Function Recovery in Ischemic Stroke. Adv Healthc Mater 2021; 10:e2100028. [PMID: 34028998 DOI: 10.1002/adhm.202100028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Indexed: 01/17/2023]
Abstract
Angiogenesis, an essential restorative process following ischemia, is a promising therapeutic approach to improve neurological deficits. However, overcoming the blood-brain barrier (BBB) and effective drug enrichment are challenges for conventional drug delivery methods, which has limited the development of treatment strategies. Herein, a dual-targeted therapeutic strategy is reported to enable pH-sensitive drug release and allow cerebral ischemia targeting to improve stroke therapeutic efficacy. Targeted delivery is achieved by surface conjugation of Pro-His-Ser-Arg-Asn (PHSRN) peptides, which binds to integrin α5 β1 enriched in the cerebral vasculature of ischemic tissue. Subsequently, smoothened agonist (SAG), an activator of sonic hedgehog (Shh) signaling, is coupled to PHSRN-HES by pH-dependent electrostatic adsorption. SAG@PHSRN-HES nanoparticles can sensitively release more SAG in the acidic environment of ischemic brain tissue. More importantly, SAG@PHSRN-HES exerts the synergistic mechanisms of PHSRN and SAG to promote angiogenesis and BBB integrity, thus improving neuroplasticity and neurological function recovery. This study proposes a new approach to improve the delivery of medications in the ischemic brain. Dual-targeted therapeutic strategies have excellent potential to treat patients suffering from cerebral infarction.
Collapse
Affiliation(s)
- Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Sibo Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Candong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
9
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
10
|
Sama S, Woith E, Walther W, Jerz G, Chen W, Hart S, Melzig MF, Weng A. Targeted suicide gene transfections reveal promising results in nu/nu mice with aggressive neuroblastoma. J Control Release 2018; 275:208-216. [PMID: 29481823 DOI: 10.1016/j.jconrel.2018.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Neuroblastoma represents the third most common malign neoplasm occurring in children and the most common in newborn. Although mortality in childhood cancer declined in the last decade, high-risk patients have poor prospects, due to the aggressiveness of the cancer. In the recent past, we underlined the potential of sapofectosid as novel and efficient transfection enhancer, demonstrating non-toxic gene delivery, but its value in tumor therapies has yet to be elucidated. A suicide gene, coding for saporin, a ribosome-inactivating protein type I, was incorporated into targeted, peptide-based nanoplexes. The nanoplexes were characterized for their size, zeta potential and appearance by electron microscopy. Gene delivery was observed via confocal imaging. In vitro transfections were conducted to monitor the real-time cell viability. After initial tolerability studies, NMRI nu/nu-mice bearing tumors from Neuro-2A-Luc-cells (murine neuroblastoma cells, transduced with a luciferase gene), were treated with targeted nanoplexes (30 μg saporin-DNA i.v./treatment) and sapofectosid (30 μg s.c. treatment). The treatment was compared to a vehicle (PBS) control and treatment without sapofectosid in terms of body weight, tumor growth and integrated density of tumor luminescence. The study revealed an anti-tumoral effect of the sapofectosid mediated gene therapy in the Neuro-2A-tumor model. The treatments were well tolerated by the animals indicating the applicability of this approach. With these results, we were able to proof the efficacy of a therapy, consisting of targeted suicide gene nanoplexes and sapofectosid, a novel and potent transfection enhancer. This study points out the enormous value for future targeted cancer and gene therapies.
Collapse
Affiliation(s)
- Simko Sama
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Eric Woith
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Wolfgang Walther
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Robert-Rössle-Str.10, 13125 Berlin, Buch, Germany
| | - Gerold Jerz
- Institut für Lebensmittelchemie, Technische Universität Braunschweig, Schleinitz-Str. 20, 38106 Braunschweig, Germany
| | - Wei Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Stephen Hart
- Experimental and Personalized Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, UK
| | - Matthias F Melzig
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Giansanti F, Flavell DJ, Angelucci F, Fabbrini MS, Ippoliti R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins (Basel) 2018; 10:toxins10020082. [PMID: 29438358 PMCID: PMC5848183 DOI: 10.3390/toxins10020082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory (Leukaemia Busters), Southampton General Hospital, Southampton, SO16 8AT, UK.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| |
Collapse
|
12
|
Lacaille-Dubois MA, Wagner H. New perspectives for natural triterpene glycosides as potential adjuvants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:S0944-7113(17)30158-7. [PMID: 29239784 DOI: 10.1016/j.phymed.2017.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Triterpene glycosides are a vast group of secondary metabolites widely distributed in plants including a high number of biologically active compounds. The pharmacological potential is evaluated by using many bioassays particularly in the field of cancerology, immunology, and microbiology. The adjuvant concept is well known for these molecules in vaccines, but there is little preclinical evidence to support this concept in the management of cancer, infections and inflammation. PURPOSE We aim to review some examples of triterpene glycosides from natural sources which exhibit adjuvant activity when they are co-adminitered with anticancer drugs, targeted toxins, antimicrobial, anti-inflammatory drugs and with antigens in vaccines. METHODS The scientific literature on the adjuvant potential of triterpene glycosides covering mainly the last two decades has been identified by using relevant key words in the databases, using the online service such as Medline/PubMed, Scopus, Web of Science, Google Scholar. RESULTS We divided these findings in four kind of examples, the combination of triterpene glycosides (1) with chemotherapeutic agents in conventional tumor therapies and with targeted toxins, (2) with antimicrobial drugs, (3) with antiinflammatory drugs, and (4) with an antigen in prophylactic and therapeutic vaccines. Pharmacological studies have revealed that some triterpene glycosides co-administered with anticancer drugs such as cisplatin, paclitaxel, cyclophosphamide, etoposide, 5-fluorouracyl, mitoxantrone exhibited increased cytotoxicity in tumor cells better than when the drugs were administered alone. However in vivo toxicological and pharmacokinetic studies are required before the combination strategy can be applied into clinical practice. Other studies showed that combined application of triterpene glycosides with targeted toxins resulted in the increased efficacy of the toxin, simultaneously reducing the dosage, and side effects. It was also shown that the co-administration of the triterpenoids with corticosteroids synergistically inhibited the inflammatory response induced by carrageenan in rats. The search for new alternative adjuvants in vaccines in comparison with the aluminium salts inducing only a Th2-type immune response resulted in the discovery of the promising purified fraction QS-21 from Quillaja saponaria, which has been used in the development of a variety of prophylactic and therapeutic vaccines. Over 120 clinical trials for around 20 vaccine indications in infectious diseases, cancer, degenerative disorders have been reported involving more than 50,000 patients. CONCLUSION This review summarized the successfull in vitro and in vivo studies showing that this combination approach of triterpene glycosides co-adminitered with anticancer, antimicrobial and anti-inflammatory drug may provide an exciting road for further developments in the treatment of some cancers, parasitic and inflammatory diseases and in the rational design of vaccines against infectious diseases and cancer. From a clinical point of view, the potential benefit of QS-21, a promising triterpene glycoside from Quillaja saponaria has been highlighted in several vaccine clinical trials with a favorable ratio efficacy/toxicity.
Collapse
Affiliation(s)
- Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon cedex, France.
| | - Hildebert Wagner
- Department of Pharmacy, Center for Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
13
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|
14
|
Gilabert-Oriol R, Furness SGB, Stringer BW, Weng A, Fuchs H, Day BW, Kourakis A, Boyd AW, Hare DL, Thakur M, Johns TG, Wookey PJ. Dianthin-30 or gelonin versus monomethyl auristatin E, each configured with an anti-calcitonin receptor antibody, are differentially potent in vitro in high-grade glioma cell lines derived from glioblastoma. Cancer Immunol Immunother 2017; 66:1217-1228. [PMID: 28501939 PMCID: PMC11029669 DOI: 10.1007/s00262-017-2013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/06/2017] [Indexed: 11/27/2022]
Abstract
We have reported that calcitonin receptor (CTR) is widely expressed in biopsies from the lethal brain tumour glioblastoma by malignant glioma and brain tumour-initiating cells (glioma stem cells) using anti-human CTR antibodies. A monoclonal antibody against an epitope within the extracellular domain of CTR was raised (mAb2C4) and chemically conjugated to either plant ribosome-inactivating proteins (RIPs) dianthin-30 or gelonin, or the drug monomethyl auristatin E (MMAE), and purified. In the high-grade glioma cell line (HGG, representing glioma stem cells) SB2b, in the presence of the triterpene glycoside SO1861, the EC50 for mAb2C4:dianthin was 10.0 pM and for mAb2C4:MMAE [antibody drug conjugate (ADC)] 2.5 nM, 250-fold less potent. With the cell line U87MG, in the presence of SO1861, the EC50 for mAb2C4:dianthin was 20 pM, mAb2C4:gelonin, 20 pM, compared to the ADC (6.3 nM), which is >300 less potent. Several other HGG cell lines that express CTR were tested and the efficacies of mAb2C4:RIP (dianthin or gelonin) were similar. Co-administration of the enhancer SO1861 purified from plants enhances lysosomal escape. Enhancement with SO1861 increased potency of the immunotoxin (>3 log values) compared to the ADC (1 log). The uptake of antibody was demonstrated with the fluorescent conjugate mAb2C4:Alexa Fluor 568, and the release of dianthin-30:Alexa Fluor488 into the cytosol following addition of SO1861 supports our model. These data demonstrate that the immunotoxins are highly potent and that CTR is an effective target expressed by a large proportion of HGG cell lines representative of glioma stem cells and isolated from individual patients.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Experimental Therapeutics, BC Cancer Research Centre, 675 W 10th Ave, Vancouver, BC, V5Z IL3, Canada
| | - Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University (Parkville), Parkville, VIC, Australia
| | - Brett W Stringer
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Weng
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bryan W Day
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Angela Kourakis
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Andrew W Boyd
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David L Hare
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Terrance G Johns
- Hudson Institute of Medical Research, Monash University (Clayton), Clayton, VIC, Australia
| | - Peter J Wookey
- Department of Medicine/Cardiology (Austin Health, Heidelberg), University of Melbourne, Lance Townsend Building, Level 10, Austin Campus, Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
15
|
Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies. Biomedicines 2017; 5:biomedicines5020014. [PMID: 28536357 PMCID: PMC5489800 DOI: 10.3390/biomedicines5020014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed.
Collapse
|
16
|
Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers. Toxins (Basel) 2016; 8:toxins8070200. [PMID: 27376327 PMCID: PMC4963833 DOI: 10.3390/toxins8070200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.
Collapse
|
17
|
Ye W, Chen Y, Li H, Zhang W, Liu H, Sun Z, Liu T, Li S. Two Trichothecene Mycotoxins from Myrothecium roridum Induce Apoptosis of HepG-2 Cells via Caspase Activation and Disruption of Mitochondrial Membrane Potential. Molecules 2016; 21:molecules21060781. [PMID: 27322225 PMCID: PMC6274335 DOI: 10.3390/molecules21060781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
Trichothecene mycotoxins are a type of sesquiterpenoid produced by various kinds of plantpathogenic fungi. In this study, two trichothecene toxins, namely, a novel cytotoxic epiroridin acid and a known trichothecene, mytoxin B, were isolated from the endophytic fungus Myrothecium roridum derived from the medicinal plant Pogostemon cablin. The two trichothecene mytoxins were confirmed to induce the apoptosis of HepG-2 cells by cytomorphology inspection, DNA fragmentation detection, and flow cytometry assay. The cytotoxic mechanisms of the two mycotoxins were investigated by quantitative real time polymerase chain reaction, western blot, and detection of mitochondrial membrane potential. The results showed that the two trichothecene mycotoxins induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-3, up-regulation of bax gene expression, down-regulation of bcl-2 gene expression, and disruption of the mitochondrial membrane potential of the HepG-2 cell. This study is the first to report on the cytotoxic mechanism of trichothecene mycotoxins from M. roridum. This study provides new clues for the development of attenuated trichothecene toxins in future treatment of liver cancer.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Zhanghua Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
18
|
Moniuszko-Szajwaj B, Masullo M, Kowalczyk M, Pecio Ł, Szumacher-Strabel M, Cieślak A, Piacente S, Oleszek W, Stochmal A. Highly Polar Triterpenoid Saponins from the Roots ofSaponaria officinalisL. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Milena Masullo
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II, n. 132 IT-84084 Fisciano
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition and Feed Management; RUMEN PULS; Poznan University of Life Sciences; Wołyńska 33 PL-60-637 Poznań
| | - Adam Cieślak
- Department of Animal Nutrition and Feed Management; RUMEN PULS; Poznan University of Life Sciences; Wołyńska 33 PL-60-637 Poznań
| | - Sonia Piacente
- Department of Pharmacy; University of Salerno; Via Giovanni Paolo II, n. 132 IT-84084 Fisciano
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality; Institute of Soil Science and Plant Cultivation; State Research Institute; Czartoryskich 8 PL-24-100 Puławy
| |
Collapse
|
19
|
Simon N, FitzGerald D. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers. Toxins (Basel) 2016; 8:toxins8050137. [PMID: 27153091 PMCID: PMC4885052 DOI: 10.3390/toxins8050137] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers.
Collapse
Affiliation(s)
- Nathan Simon
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| | - David FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Liang AL, Qian HL, Zhang TT, Zhou N, Wang HJ, Men XT, Qi W, Zhang PP, Fu M, Liang X, Lin C, Liu YJ. Bifunctional fused polypeptide inhibits the growth and metastasis of breast cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5671-86. [PMID: 26527862 PMCID: PMC4621185 DOI: 10.2147/dddt.s90082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related death among women worldwide, with urgent need to develop new therapeutics. Targeted therapy is a promising strategy for breast cancer therapy. Stromal-derived factor-1/CXC chemokine receptor 4 (CXCR4) has been implicated in the metastasis of breast cancer, which renders it to be therapeutic target. This study aimed to evaluate the anticancer effect of fused TAT- DV1-BH3 polypeptide, an antagonist of CXCR4, and investigate the underlying mechanism for the cancer cell-killing effect in the treatment of breast cancer in vitro and in vivo. This results in a potent inhibitory effect of fused TAT-DV1-BH3 polypeptide on tumor growth and metastasis in nude mice bearing established MDA-MB-231 tumors. Fused TAT-DV1-BH3 polypeptide inhibited the proliferation of MDA-MB-231 and MCF-7 cells but did not affect that of HEK-293 cells. The fused TAT-DV1-BH3 polypeptide colocalized with mitochondria and exhibited a proapoptotic effect through the regulation of caspase-9 and -3. Furthermore, the fused TAT-DV1-BH3 polypeptide suppressed the migration and invasion of the highly metastatic breast cancer cell line MDA-MB-231 in a concentration-dependent manner. Notably, the DV1-mediated inhibition of the stromal-derived factor-1/CXCR4 pathway contributed to the antimetastasis effect, evident from the reduction in the level of phosphoinositide 3 kinase and matrix metalloproteinase 9 in MDA-MB-231 cells. Collectively, these results indicate that the apoptosis-inducing effect and migration- and invasion-suppressing effect explain the tumor regression and metastasis inhibition in vivo, with the involvement of caspase- and CXCR4-mediated signaling pathway. The data suggest that the fused TAT-DV1-BH3 polypeptide is a promising agent for the treatment of breast cancer, and more studies are warranted to fully elucidate the therapeutic targets and molecular mechanism.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ting-Ting Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ning Zhou
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Juan Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi-Ting Men
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Qi
- Electroencephalogram Room, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ping-Ping Zhang
- Department of Orthopedics, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiao Liang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Gilabert-Oriol R, Weng A, Trautner A, Weise C, Schmid D, Bhargava C, Niesler N, Wookey PJ, Fuchs H, Thakur M. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochem Pharmacol 2015; 97:247-55. [PMID: 26253687 DOI: 10.1016/j.bcp.2015.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
The therapeutic relevance of immunotoxins is based on the conjugation of monoclonal antibodies to toxins. In cancer therapies, the conjugated antibodies not only direct the binding of immunotoxins to cancer-specific receptors and mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. In the present study, the therapeutic antibodies Cetuximab (anti-EGFR, Erbitux(®)), Panitumumab (anti-EGFR, Vectibix(®)) and Trastuzumab (anti-HER2, Herceptin(®)) were chemically conjugated to the toxin dianthin. In the first instance, recombinant dianthin was characterized by mass spectrometry and its stability was analyzed by circular dichroism. Dianthin showed increased cytotoxicity on MCF-7 cells when tested in combination with a glycosylated triterpenoid (SO1861) in a real-time impedance-based cytotoxicity assay. In data obtained by live cell imaging, SO1861 specifically mediated the endo/lysosomal escape of dianthin without disrupting the plasma membrane. The purity of immunotoxins was confirmed by SDS-PAGE and Western blot. Their cytotoxicity was evaluated in the presence of SO1861 and dianthin-Cetuximab presented a GI50 (50% growth inhibition) of 5.3pM, dianthin-Panitumumab of 1.5pM, and dianthin-Trastuzumab of 23pM. Finally, the specificity of these immunotoxins was validated in a fluorescence-based real-time assay, where their binding to target cells was prevented by preincubation with an excess of label-free unconjugated antibody. Based on these data, we propose the use of dianthin and SO1861 as a new platform technology to enhance the efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany; Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Alexander Weng
- Institut für Pharmazie-Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany
| | - Alexandra Trautner
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Daniel Schmid
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Cheenu Bhargava
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nicole Niesler
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
22
|
Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter. Int J Mol Sci 2015; 16:12601-15. [PMID: 26053394 PMCID: PMC4490463 DOI: 10.3390/ijms160612601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA) to direct E gene expression (pCEA-E) towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.
Collapse
|
23
|
Mallinckrodt BV, Thakur M, Weng A, Gilabert-Oriol R, Dürkop H, Brenner W, Lukas M, Beindorff N, Melzig MF, Fuchs H. Dianthin-EGF is an effective tumor targeted toxin in combination with saponins in a xenograft model for colon carcinoma. Future Oncol 2014; 10:2161-75. [DOI: 10.2217/fon.14.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT Aims: The intention of this work was to lift saponin supported tumor targeted therapies onto the next level by using targeted toxins in nude mice xenotransplant models. Materials & methods: Combined application of dianthin coupled to EGF and saponin SO-1861 was tested in a xenograft model of colon carcinoma. In vitro cytotoxicity was tested in real-time in NIH3T3 cells (no human EGF receptor expression), HER14 and human colon carcinoma HCT116 (both EGF receptor overexpressing) cells. A xenograft model was established using HCT116 cells and tumor-bearing animals were treated with SO-1861 (30 µg/treatment) and dianthin coupled to EGF (0.35 µg/treatment). Tumor progression was monitored, using 18F-2-fluor-2-desoxy-d-glucose, by small animal PET and by x-ray computed tomography. Results: In vitro results demonstrated a high-receptor specificity and the in vivo experiment showed a progressive reduction of the tumor volume and glycolytic activity in the treated group (>95% reduction; p < 0.05). Conclusion: This therapy has great advantage because of high specificity, low side effects and great effectiveness for future development in the treatment of colon cancer.
Collapse
Affiliation(s)
- Benedicta von Mallinckrodt
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mayank Thakur
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Weng
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Roger Gilabert-Oriol
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Horst Dürkop
- Pathodiagnostik Berlin, Referenzzentrum für Lymphom-und Hämatopathologie, Komturstraße 58, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Mathias Lukas
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany
| | - Nicola Beindorff
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Matthias F Melzig
- Institute of Pharmacy, Free University Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Hendrik Fuchs
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
24
|
Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Bhargava C, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Reporter assay for endo/lysosomal escape of toxin-based therapeutics. Toxins (Basel) 2014; 6:1644-66. [PMID: 24859158 PMCID: PMC4052257 DOI: 10.3390/toxins6051644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/16/2022] Open
Abstract
Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Mayank Thakur
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Benedicta von Mallinckrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Cheenu Bhargava
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Burkhard Wiesner
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Jenny Eichhorst
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, Berlin D-14195, Germany.
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Alexander Weng
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| |
Collapse
|
25
|
High-speed countercurrent chromatographic recovery and off-line electrospray ionization mass spectrometry profiling of bisdesmodic saponins from Saponaria officinalis possessing synergistic toxicity enhancing properties on targeted antitumor toxins. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:1-9. [DOI: 10.1016/j.jchromb.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 11/18/2022]
|
26
|
Gilabert-Oriol R, Weng A, Mallinckrodt BV, Melzig MF, Fuchs H, Thakur M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des 2014; 20:6584-643. [PMID: 25341935 PMCID: PMC4296666 DOI: 10.2174/1381612820666140826153913] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
Abstract
The term ribosome-inactivating protein (RIP) is used to denominate proteins mostly of plant origin, which have N-glycosidase enzymatic activity leading to a complete destruction of the ribosomal function. The discovery of the RIPs was almost a century ago, but their usage has seen transition only in the last four decades. With the advent of antibody therapy, the RIPs have been a subject of extensive research especially in targeted tumor therapies, which is the primary focus of this review. In the present work we enumerate 250 RIPs, which have been identified so far. An attempt has been made to identify all the RIPs that have been used for the construction of immunotoxins, which are conjugates or fusion proteins of an antibody or ligand with a toxin. The data from 1960 onwards is reviewed in this paper and an extensive list of more than 450 immunotoxins is reported. The clinical reach of tumor-targeted toxins has been identified and detailed in the work as well. While there is a lot of potential that RIPs embrace for targeted tumor therapies, the success in preclinical and clinical evaluations has been limited mainly because of their inability to escape the endo/lysosomal degradation. Various strategies that can increase the efficacy and lower the required dose for targeted toxins have been compiled in this article. It is plausible that with the advancements in platform technologies or improved endosomal escape the usage of tumor targeted RIPs would see the daylight of clinical success.
Collapse
Affiliation(s)
| | | | | | | | | | - Mayank Thakur
- Institut fur Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charite - Universitatsmedizin Berlin, Campus Virchow-Klinikum (Forum 4), Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
27
|
Saporin-S6: a useful tool in cancer therapy. Toxins (Basel) 2013; 5:1698-722. [PMID: 24105401 PMCID: PMC3813907 DOI: 10.3390/toxins5101698] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 01/24/2023] Open
Abstract
Thirty years ago, the type 1 ribosome-inactivating protein (RIP) saporin-S6 (also known as saporin) was isolated from Saponaria officinalis L. seeds. Since then, the properties and mechanisms of action of saporin-S6 have been well characterized, and it has been widely employed in the construction of conjugates and immunotoxins for different purposes. These immunotoxins have shown many interesting results when used in cancer therapy, particularly in hematological tumors. The high enzymatic activity, stability and resistance to conjugation procedures and blood proteases make saporin-S6 a very useful tool in cancer therapy. High efficacy has been reported in clinical trials with saporin-S6-containing immunotoxins, at dosages that induced only mild and transient side effects, which were mainly fever, myalgias, hepatotoxicity, thrombocytopenia and vascular leak syndrome. Moreover, saporin-S6 triggers multiple cell death pathways, rendering impossible the selection of RIP-resistant mutants. In this review, some aspects of saporin-S6, such as the chemico-physical characteristics, the structural properties, its endocytosis, its intracellular routing and the pathogenetic mechanisms of the cell damage, are reported. In addition, the recent progress and developments of saporin-S6-containing immunotoxins in cancer immunotherapy are summarized, including in vitro and in vivo pre-clinical studies and clinical trials.
Collapse
|
28
|
Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Hug T, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Modified Trastuzumab and Cetuximab Mediate Efficient Toxin Delivery While Retaining Antibody-Dependent Cell-Mediated Cytotoxicity in Target Cells. Mol Pharm 2013; 10:4347-57. [DOI: 10.1021/mp400444q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger Gilabert-Oriol
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Mayank Thakur
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Benedicta von Mallinckrodt
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Thomas Hug
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Burkhard Wiesner
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jenny Eichhorst
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Matthias F. Melzig
- Institut
für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße
2+4, D-14195 Berlin, Germany
| | - Hendrik Fuchs
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| | - Alexander Weng
- Institut
für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm
30, D-12200 Berlin, Germany
| |
Collapse
|
29
|
Gilabert-Oriol R, Thakur M, Weise C, Dernedde J, von Mallinckrodt B, Fuchs H, Weng A. Small structural differences of targeted anti-tumor toxins result in strong variation of protein expression. Protein Expr Purif 2013; 91:54-60. [PMID: 23867360 DOI: 10.1016/j.pep.2013.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Targeted anti-tumor toxins consist of a toxic functional moiety that is chemically linked or recombinantly fused to a cell-directing ligand. Ribosome-inactivating proteins (RIPs), especially type I RIPs such as saporin or dianthin, are commonly used as toxin components. Although expression of type I RIP-based fusion proteins is well reported, the achievement of higher protein yields in heterologous expression systems through innovative strategies is of major interest. In the present study, the targeted toxins (his)saporin-EGF (SE) and (his)dianthin-EGF (DE) were expressed as fusion proteins under identical expression conditions. However, the total amount of DE was nearly two-times higher than SE. The identity of the heterologously expressed targeted toxins was confirmed by mass spectrometric studies. Their biological specific activity, monitored in real time, was almost equal. Sequence alignment shows 84% identity and a structural comparison revealed five major differences, two of which affect the secondary structure resulting in a loop (SE) to β-strand (DE) conversion and one introduces a gap in SE (after position 57). In conclusion, these structural variations resulted in different protein expression levels while codon usage and toxicity to bacteria were excluded as a cause. Minor structural differences identified in this study may be considered responsible for the protection of DE from bacterial proteases and therefore may serve as a lead to modify certain domains in type I RIP-based targeted toxins.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut Für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Thakur M, Mergel K, Weng A, von Mallinckrodt B, Gilabert-Oriol R, Dürkop H, Melzig MF, Fuchs H. Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: an evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice. Mol Oncol 2012; 7:475-83. [PMID: 23298730 DOI: 10.1016/j.molonc.2012.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022] Open
Abstract
Targeted toxin-based therapeutics are hindered by poor intracellular uptake, limited stability and non-specific immune stimulation. To address these problems, ligand-targeted toxins in combination with low dose saponin mixtures have been adapted and tested in vivo in the past, however, undefined saponin raw mixtures are not suitable for use in clinical development. In the present work we therefore used a targeted toxin (Sap3-EGF, i.e. saporin fused to epidermal growth factor) in combination with a structurally defined isolated saponin m/z 1861 (SO-1861). In vitro evaluation confirmed a 6900-fold enhancement in the cytotoxic efficacy of Sap3-EGF against TSA-EGFR target cells. The required dose of the targeted toxin was appreciably reduced and there was a highly synergistic effect observed. An ex vivo hemolysis assay showed no or very less hemolysis up to 10 μg/mL of SO-1861. In the acute toxicity studies SO-1861 was found to be non-toxic up to a dose of 100 μg/treatment. The enzymes aspartate aminotransferase, alanine aminotransferase, and glutamate dehydrogenase did not show any statistically significant liver damage, which was further confirmed by histological examination. Additionally, creatinine was also similar to the control group thus ruling out damage to kidney. In vivo studies in a syngeneic BALB/c tumor model characterized by EGFR overexpression were done by applying 30 μg SO-1861 and 0.1 μg Sap3-EGF per treatment. A more than 90% reduction (p < 0.05) in the average tumor volume was observed by this combined therapy.
Collapse
Affiliation(s)
- Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|