1
|
Ara MG, Motalleb G, Velasco B, Rahdar A, Taboada P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq 2023; 384:122190. [DOI: 10.1016/j.molliq.2023.122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
2
|
Lv J, Meng S, Gu Q, Zheng R, Gao X, Kim JD, Chen M, Xia B, Zuo Y, Zhu S, Zhao D, Li Y, Wang G, Wang X, Meng Q, Cao Q, Cooke JP, Fang L, Chen K, Zhang L. Epigenetic landscape reveals MECOM as an endothelial lineage regulator. Nat Commun 2023; 14:2390. [PMID: 37185814 PMCID: PMC10130150 DOI: 10.1038/s41467-023-38002-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator. Single-cell RNA-Seq analysis verifies that MECOM-positive cells are exclusively enriched in the cell cluster of bona fide endothelial cells derived from induced pluripotent stem cells. Our experiments demonstrate that MECOM depletion impairs human endothelial cell differentiation, functions, and Zebrafish angiogenesis. Through integrative analysis of Hi-C, DNase-Seq, ChIP-Seq, and RNA-Seq data, we find MECOM binds enhancers that form chromatin loops to regulate endothelial cell identity genes. Further, we identify and verify the VEGF signaling pathway to be a key target of MECOM. Our work provides important insights into epigenetic regulation of cell identity and uncovered MECOM as an endothelial cell lineage regulator.
Collapse
Affiliation(s)
- Jie Lv
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinlei Gao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Min Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Xia
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Yihan Zuo
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sen Zhu
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanqiang Li
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Qingshu Meng
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Lili Zhang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Ma Y, Kang B, Li S, Xie G, Bi J, Li F, An G, Liu B, Li J, Shen Y, Xu X, Yang H, Yang Y, Gu Y, Wu N. CRISPR-mediated MECOM depletion retards tumor growth by reducing cancer stem cell properties in lung squamous cell carcinoma. Mol Ther 2022; 30:3341-3357. [PMID: 35733338 PMCID: PMC9637721 DOI: 10.1016/j.ymthe.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022] Open
Abstract
Targeted therapy for lung squamous cell carcinoma (LUSC) remains a challenge due to the lack of robust targets. Here, we identified MECOM as a candidate of therapeutic target for LUSC by screening 38 genes that were commonly amplified in three pairs of primary tumors and patient-derived xenografts (PDXs) using a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated approach. High MECOM expression levels were associated with poor prognosis. Forced expression of MECOM in LUSC cell lines promoted cancer stem cell (CSC) properties, and its knockout inhibited CSC phenotypes. Furthermore, systemic delivery of CRISPR-mediated MECOM depletion cassette using adenovirus with an adaptor, which is composed of a single-chain fragment variable (scFv) against epithelial cell adhesion molecules (EpCAM) fused to the ectodomain of coxsackievirus and adenovirus receptor, and a protector, which consists of the scFv connected to the hexon symmetry of the adenovirus, could specifically target subcutaneous and orthotopic LUSC and retard tumor growth. This study could provide a novel therapeutic strategy for LUSC with high efficacy and specificity.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bin Kang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guoyun Xie
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiwang Bi
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Fuqiang Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Guo An
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bing Liu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jing Li
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| |
Collapse
|
4
|
Yue C, Zhao T, Zhang S, Liu Y, Zheng G, Zhang Y. Comprehensive characterization of 11 prognostic alternative splicing events in ovarian cancer interacted with the immune microenvironment. Sci Rep 2022; 12:980. [PMID: 35046435 PMCID: PMC8770494 DOI: 10.1038/s41598-021-03836-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing (AS) events play a crucial role in the tumorigenesis and progression of cancer. Transcriptome data and Percent Spliced In (PSI) values of ovarian cancer patients were downloaded from TCGA database and TCGA SpliceSeq. Totally we identified 1472 AS events that were associated with survival of ovarian serous cystadenocarcinoma (OC) and exon skipping (ES) was the most important type. Univariate and multivariate Cox regression analysis were performed to identify survival-associated AS events and developed the prognostic model based on 11-AS events. The immune cells and different response to cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) blockers in low-risk and high-risk group of OC patients were analyzed. Ten kinds of immune cells were found up-regulated in low-risk group. Activated B cell, natural killer T cell, natural killer cell and regulatory T cell were associated with survival of OC. The patients in low-risk group had good response to CTLA-4 and PD-1 blockers treatment. Moreover, a regulatory network was established according to the correlation between AS events and splicing factors (SFs). The present study provided valuable insights into the underlying mechanisms of OC. AS events that were correlated with the immune system might be potential therapeutic targets.
Collapse
Affiliation(s)
- Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
5
|
Alternative splicing acts as an independent prognosticator in ovarian carcinoma. Sci Rep 2021; 11:10413. [PMID: 34001978 PMCID: PMC8129203 DOI: 10.1038/s41598-021-89778-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.
Collapse
|
6
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
7
|
Corona RI, Seo JH, Lin X, Hazelett DJ, Reddy J, Fonseca MAS, Abassi F, Lin YG, Mhawech-Fauceglia PY, Shah SP, Huntsman DG, Gusev A, Karlan BY, Berman BP, Freedman ML, Gayther SA, Lawrenson K. Non-coding somatic mutations converge on the PAX8 pathway in ovarian cancer. Nat Commun 2020; 11:2020. [PMID: 32332753 PMCID: PMC7181647 DOI: 10.1038/s41467-020-15951-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
The functional consequences of somatic non-coding mutations in ovarian cancer (OC) are unknown. To identify regulatory elements (RE) and genes perturbed by acquired non-coding variants, here we establish epigenomic and transcriptomic landscapes of primary OCs using H3K27ac ChIP-seq and RNA-seq, and then integrate these with whole genome sequencing data from 232 OCs. We identify 25 frequently mutated regulatory elements, including an enhancer at 6p22.1 which associates with differential expression of ZSCAN16 (P = 6.6 × 10-4) and ZSCAN12 (P = 0.02). CRISPR/Cas9 knockout of this enhancer induces downregulation of both genes. Globally, there is an enrichment of single nucleotide variants in active binding sites for TEAD4 (P = 6 × 10-11) and its binding partner PAX8 (P = 2×10-10), a known lineage-specific transcription factor in OC. In addition, the collection of cis REs associated with PAX8 comprise the most frequently mutated set of enhancers in OC (P = 0.003). These data indicate that non-coding somatic mutations disrupt the PAX8 transcriptional network during OC development.
Collapse
Affiliation(s)
- Rosario I Corona
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xianzhi Lin
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Dennis J Hazelett
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Marcos A S Fonseca
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Forough Abassi
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Yvonne G Lin
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Sohrab P Shah
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- McGraw/Patterson Center for Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beth Y Karlan
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
| | - Simon A Gayther
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA.
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Kate Lawrenson
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA.
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
9
|
Idel C, Ribbat-Idel J, Kuppler P, Krupar R, Offermann A, Vogel W, Rades D, Kirfel J, Wollenberg B, Perner S. EVI1 as a Marker for Lymph Node Metastasis in HNSCC. Int J Mol Sci 2020; 21:ijms21030854. [PMID: 32013033 PMCID: PMC7038015 DOI: 10.3390/ijms21030854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HNSCC is the sixth most common cancer in humans and has still a very poor prognosis. The treatment methods so far are very often associated with mutilation and impairment in the quality of life. Except for p16 expression, there are no reliable prognostic markers in HNSCC so far. Ecotropic Viral Integration Site 1 (EVI1) is a well-described prognostic marker in leukemia and different types of solid cancers. In these, a high EVI1 expression is associated with a poor prognosis. In HNSCC, it is not known so far if EVI1 has any prognostic relevance. MATERIALS AND METHODS We used our representative tissue cohort of 389 primary HNSCCs, of which 57.2% had one or more lymph node metastases. Here EVI1 expression was analyzed via immunohistochemistry and correlated with the clinical characteristics of these patients. RESULTS Although in HNSCC EVI1 expression does not predict poor survival, a high EVI1 expression in the primary tumor correlates with a lymph node metastatic disease. CONCLUSION Consequently, EVI1 may serve as a biomarker to predict an occult lymph node metastasis in a clinical nodal negative (cN0) HNSCC.
Collapse
Affiliation(s)
- Christian Idel
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: ; Tel.: +49-451-500-42001
| | - Julika Ribbat-Idel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Patrick Kuppler
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Rosemarie Krupar
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany; (R.K.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Wenzel Vogel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Luebeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany; (R.K.)
| |
Collapse
|
10
|
Palomero L, Bodnar L, Mateo F, Herranz-Ors C, Espín R, García-Varelo M, Jesiotr M, Ruiz de Garibay G, Casanovas O, López JI, Pujana MA. EVI1 as a Prognostic and Predictive Biomarker of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E300. [PMID: 32012804 PMCID: PMC7072453 DOI: 10.3390/cancers12020300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/25/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor EVI1 plays an oncogenic role in several types of neoplasms by promoting aggressive cancer features. EVI1 contributes to epigenetic regulation and transcriptional control, and its overexpression has been associated with enhanced PI3K-AKT-mTOR signaling in some settings. These observations raise the possibility that EVI1 influences the prognosis and everolimus-based therapy outcome of clear cell renal cell carcinoma (ccRCC). Here, gene expression and protein immunohistochemical studies of ccRCC show that EVI1 overexpression is associated with advanced disease features and with poorer outcome-particularly in the CC-e.3 subtype defined by The Cancer Genome Atlas. Overexpression of an oncogenic EVI1 isoform in RCC cell lines confers substantial resistance to everolimus. The EVI1 rs1344555 genetic variant is associated with poorer survival and greater progression of metastatic ccRCC patients treated with everolimus. This study leads us to propose that evaluation of EVI1 protein or gene expression, and of EVI1 genetic variants may help improve estimates of prognosis and the benefit of everolimus-based therapy in ccRCC.
Collapse
Affiliation(s)
- Luis Palomero
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Lubomir Bodnar
- Department of Oncology and Immunooncology, Hospital Ministry of the Interior and Administration with Warmia and Mazury Oncology Center, Olsztyn 10-719, Poland
- Department of Oncology, University of Warmia and Masuria, Olsztyn 10-719, Poland
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Carmen Herranz-Ors
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Mar García-Varelo
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Marzena Jesiotr
- Department of Pathology, Military Institute of Medicine, Warsaw 04-141, Poland;
| | - Gorka Ruiz de Garibay
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - Oriol Casanovas
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces Institute, Barakaldo 48903, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Catalonia, Spain; (L.P.); (F.M.); (C.H.-O.); (R.E.); (M.G.-V.); (G.R.d.G.); (O.C.)
| |
Collapse
|
11
|
Zhang XM, Liu ZL, Qiu B, Xu YF, Pan C, Zhang ZL. Downregulation of EVI1 Expression Inhibits Cell Proliferation and Induces Apoptosis in Hilar Cholangiocarcinoma via the PTEN/AKT Signalling Pathway. J Cancer 2020; 11:1412-1423. [PMID: 32047548 PMCID: PMC6995371 DOI: 10.7150/jca.31903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Aims: Hilar cholangiocarcinoma (HCCA) is a tumour with high malignancy, low surgical resection potential, and a poor prognosis. Ecotropic Viral Integration site 1 (EVI1) is a transcriptional regulator that has been proven to be associated with tumourigenesis and progression in many human solid tumours. However, the expression of EVI1 and its role in HCCA progression remain unclear. The aim of this study was to clarify the association between EVI1 expression and clinical outcomes in patients with HCCA. Methods: The expression of EVI1 in HCCA tissue samples and cell lines was examined by quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry (IHC). Kaplan-Meier analysis was used for survival analysis. A log-rank test was performed for univariate analysis of survival, and a Cox regression model was utilized for multivariate analysis of survival. Cell proliferation was measured by cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. The cell cycle was evaluated by flow cytometry. Cell apoptosis was detected by flow cytometry and a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) assay. In vivo tumour growth was observed for xenografts in nude mice. Results: EVI1 expression was upregulated in HCCA tissue samples and correlated with a poor prognosis. In clinical specimens, the expression of EVI1 correlated with tumour histological grade and tumour size. Knocking down EVI1 expression reduced HCCA cell proliferation, blocked cell cycle progression, and promoted apoptosis in vitro and in vivo. Furthermore, we found that EVI1 could regulate the AKT signalling pathway by regulating PTEN levels in HCCA. Conclusion: Our data revealed that EVI1 played important roles in HCCA tumourigenesis and development. Our findings suggest that EVI1 may be a potentially useful therapeutic target in HCCA.
Collapse
Affiliation(s)
- Xiao-Ming Zhang
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China.,Department of general surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Zeng-Li Liu
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Bo Qiu
- Department of general surgery, Qilu Hospital of Shandong University (Qingdao), 266035, China
| | - Yun-Fei Xu
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Chang Pan
- Department of emergency, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Zong-Li Zhang
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| |
Collapse
|
12
|
Genome-wide somatic copy number alteration analysis and database construction for cervical cancer. Mol Genet Genomics 2020; 295:765-773. [PMID: 31901979 DOI: 10.1007/s00438-019-01636-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer is a common gynecological malignancy with high incidence and mortality. Somatic copy number alterations (CNAs) play an important role in identifying tumor suppressor genes and oncogenes and are a useful diagnostic indicator for many cancer types. However, the genomic landscape of CNAs in cervical cancer has not yet been comprehensively characterized. In the present study, we collected 974 cervical cancer samples from different data sources. All samples were analyzed by genomic arrays to obtain high-resolution CNAs. Focal genomic regions with CNA events and potential cancer driver genes were identified by GISTIC2.0. Meanwhile, we constructed a comprehensive cervical cancer database by PHP and self-written Perl and R scripts. In total, 54 recurrent regions of amplification and deletion were detected. Frequently altered tumor suppressor genes were found in these regions, including PIK3CA, ERBB2, EP300 and FBXW7. CNA hotspots and related enriched functional categories were also identified. The incidence of chromothripsis in cervical cancer was estimated to be 6.06%, and the chromosome pulverization hotspot regions were detected. Based on the curated data, we developed CNAdbCC (http://cailab.labshare.cn/CNAdbCC/), a comprehensive database for copy number alterations in cervical cancer. We provide a user-friendly Web interface for data mining and visualization. It is the most comprehensive public database devoted exclusively to genomic alterations in cervical cancer. These results extend our molecular understanding of cervical cancer. The database will enable researchers to explore specific CNA patterns in this lethal cancer and facilitate the discovery of therapeutic candidates.
Collapse
|
13
|
Chronic iron exposure and c-Myc/H-ras-mediated transformation in fallopian tube cells alter the expression of EVI1, amplified at 3q26.2 in ovarian cancer. Oncogenesis 2019; 8:46. [PMID: 31434871 PMCID: PMC6704182 DOI: 10.1038/s41389-019-0154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underlying the pathogenesis of high-grade serous epithelial ovarian cancers (HGSOC) are not yet well defined although key precursor cells have been identified (including fimbriated fallopian tube epithelium, FTSECs). Since iron is elevated in endometriotic cysts and the pelvic cavity, it is suggested that this source of redox-active iron may contribute to ovarian cancer pathogenesis. Specifically, sources of nontransferrin-bound iron (NTBI) within the pelvic cavity could arise from ovulation, retrograde menstruation, follicular fluid, or iron overload conditions (i.e., hemochromatosis). Herein, we investigated the cellular response of p53-inactivated and telomerase-expressing (immortalized) FTSECs (Pax8+/FoxJ1−) to NTBI (presented as ferric ammonium citrate (FAC), supplemented in media for >2 months) in order to assess its ability to promote the transition to a tumor-like phenotype; this cellular response was compared with immortalized FTSECs transformed with H-RasV12A and c-MycT58A. Both approaches resulted in increased cell numbers and expression of the oncogenic transcriptional regulator, ecotropic virus integration site 1 (EVI1, a gene most frequently amplified at 3q26.2 in HGSOC, represented by multiple variants), along with other oncogenic gene products. In contrast to the transformed cells, FAC-exposed FTSECs elicited elevated migratory capacity (and epithelial–mesenchymal transition mRNA profile) along with increased expression of DNA damage response proteins (i.e., FANCD2) and hTERT mRNA relative to controls. Interestingly, in FAC-exposed FTSECs, EVI1 siRNA attenuated hTERT mRNA expression, whereas siRNAs targeting β-catenin and BMI1 (both elevated with chronic iron exposure) reduced Myc and Cyclin D1 proteins. Collectively, our novel findings provide strong foundational evidence for potential iron-induced initiation events, including EVI1 alterations, in the pathogenesis of HGSOC, warranting further in depth investigations. Thus, these findings will substantially advance our understanding of the contribution of iron enriched within the pelvic cavity, which may identify patients at risk of developing this deadly disease.
Collapse
|
14
|
Lu Y, Liang Y, Zheng X, Deng X, Huang W, Zhang G. EVI1 promotes epithelial-to-mesenchymal transition, cancer stem cell features and chemo-/radioresistance in nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:82. [PMID: 30770775 PMCID: PMC6377731 DOI: 10.1186/s13046-019-1077-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aberrant EVI1 expression is frequently reported in cancer studies; however, its role in nasopharyngeal carcinoma (NPC) has not been examined in detail. The aim of the present study is to investigate the involvement of EVI1 in progression and prognosis of NPC. METHODS RT-PCR, immunohistochemistry and western blot assays were used to examine the expression of EVI1 in NPC tissues and cell lines. Fluorescence in situ hybridization assay was used to examine the amplification of EVI1 in NPC tissues. The biological effect of EVI1 was determined by both in vitro and in vivo studies. The dual-luciferase reporter assay was performed to confirm that EVI1 bind at E-cadherin andβ-catenin promoters. The ChIP, EMSA, and coimmunoprecipitation combined with mass spectrometry assays were used to analyze the EVI1 regulated proteins. RESULTS EVI1 expression level was up-regulated in NPC tissues and cell lines. EVI1 was amplificated in NPC tissues. We observed that EVI1 down-regulation decreased the cell proliferation and invasive capacity of NPC cells in vitro and in vivo. EVI1, snail, and HDAC1 formed a co-repressor complex to repress E-cadherin expression and ultimately contributed to epithelial mesenchymal transition (EMT) phenotype in NPC cells. In another way, EVI1 directly bound at β-catenin promoter and activated its expression. β-catenin mediated EVI1's function on cancer stem cells (CSCs) properties. EVI1 up-regulation predicted unfavorable prognosis and contributed to chemo/radio-resistance in NPC cells. Finally, we constructed arsenic trioxide-loaded nanoparticles (ALNPs) and revealed that ALNPs exerted anti-tumor effect in NPC cells. CONCLUSIONS Our data indicated that EVI1 played an oncogenic role in NPC growth and metastasis and that EVI1 might serve as a novel molecular target for the treatment of NPC.
Collapse
Affiliation(s)
- Yaoyong Lu
- Department of Oncology (Section 3), Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Yingying Liang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Yanling Hospital of Southern Medical University, Guangzhou, China
| | - Xubin Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Wendong Huang
- Department of Pharmacy, Maoming People's Hospital, Maoming, Guangdong, China.
| | - Gong Zhang
- Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, China.
| |
Collapse
|
15
|
Rubio K, Dobersch S, Barreto G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer. FASEB J 2019; 33:5814-5822. [PMID: 30742773 DOI: 10.1096/fj.201802715r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eukaryotic cell nucleus consists of functionally specialized subcompartments. These nuclear subcompartments are biomolecular aggregates built of proteins, transcripts, and specific genome loci. The structure and function of each nuclear subcompartment are defined by the composition and dynamic interaction between these 3 components. The spatio-temporal localization of biochemical reactions into membraneless nuclear subcompartments can be achieved through liquid-liquid phase separation. Based on this organizing principle, nuclear subcompartments are droplet-like structures that adopt spherical shapes, flow, and fuse like liquids or gels. In the present review, we bring into the spotlight seminal works elucidating the functional interactions between scaffold proteins, noncoding RNAs, and genomic loci, thereby inducing liquid-liquid phase separation as an organizing principle for 3-dimensional nuclear architecture. We also discuss the implications in different cancer types as well as the potential use of this knowledge to develop novel therapeutic strategies against cancer.-Rubio, K., Dobersch, S., Barreto, G. Functional interactions between scaffold proteins, noncoding RNAs, and genome loci induce liquid-liquid phase separation as organizing principle for 3-dimensional nuclear architecture: implications in cancer.
Collapse
Affiliation(s)
- Karla Rubio
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephanie Dobersch
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratoire Croissance, Réparation, et Régénération Tissulaires (CRRET), Centre National de la Recherche Scientifique (CNRS) Équipe de Recherche Labellisée (ERL) 9215, Université Paris Est Créteil, Créteil, France.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.,Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen-Marburg Lung Center (UGMLC), Giessen, Germany.,German Center of Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Rockfield S, Guergues J, Rehman N, Smith A, Bauckman KA, Stevens SM, Nanjundan M. Proteomic Profiling of Iron-Treated Ovarian Cells Identifies AKT Activation that Modulates the CLEAR Network. Proteomics 2018; 18:e1800244. [PMID: 30267477 DOI: 10.1002/pmic.201800244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/05/2018] [Indexed: 01/05/2023]
Abstract
Although iron is essential for cell survival, dysregulated levels can contribute to cancer development or even cell death. The underlying mechanisms mediating these events remain unclear. Herein, proteomic alterations are assessed in iron-treated ovarian cell lines using reverse phase protein array (RPPA) technology and potential functional responses via ingenuity pathway analysis (IPA). Using these approaches, upregulation of pathways modulating organismal death with alterations in mTOR, MAPK, and AKT signaling in HEY ovarian cancer cells in contrast to T80 non-malignant ovarian cells is noted. Since modulation of cell death is mediated in part via microphthalmia-associated transcription factor (MiTF) family, which regulates lysosomal biogenesis and autophagosome formation by upregulating expression of coordinated lysosomal expression and regulation (CLEAR) network, expression changes in these factors in response to iron are investigated. Increased transcription factor EB (TFEB) in T80 (relative to HEY), accompanied by its nuclear translocation and increased CLEAR network gene expression with iron, is identified. Inhibition of AKT alters these responses in contrast to mTOR inhibition, which has little effect. Collectively, these findings support use of RPPA/IPA technology to predict functional responses to iron and further implicate AKT pathway and MiTF members in iron-induced cellular responses in ovarian cells.
Collapse
Affiliation(s)
- Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Nabila Rehman
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Aaron Smith
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Kyle A Bauckman
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Stanley M Stevens
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| |
Collapse
|
17
|
Paredes R, Schneider M, Stevens A, White DJ, Williamson AJK, Muter J, Pearson S, Kelly JR, Connors K, Wiseman DH, Chadwick JA, Löffler H, Teng HY, Lovell S, Unwin R, van de Vrugt HJ, Smith H, Kustikova O, Schambach A, Somervaille TCP, Pierce A, Whetton AD, Meyer S. EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association. Nucleic Acids Res 2018; 46:7662-7674. [PMID: 29939287 PMCID: PMC6125627 DOI: 10.1093/nar/gky536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
Abstract
The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health M13 9WL, University of Manchester, UK
| | - Daniel J White
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Harald Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hsiang Ying Teng
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Lovell
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Henri J van de Vrugt
- Oncogenetics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Helen Smith
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester M20 4XB, UK
| |
Collapse
|
18
|
Kjeldsen E, Veigaard C, Aggerholm A, Hasle H. Congenital hypoplastic bone marrow failure associated with a de novo partial deletion of the MECOM gene at 3q26.2. Gene 2018; 656:86-94. [DOI: 10.1016/j.gene.2018.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 01/23/2023]
|
19
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
20
|
Nayak KB, Sajitha IS, Kumar TRS, Chakraborty S. Ecotropic viral integration site 1 promotes metastasis independent of epithelial mesenchymal transition in colon cancer cells. Cell Death Dis 2018; 9:18. [PMID: 29339729 PMCID: PMC5833819 DOI: 10.1038/s41419-017-0036-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
The most indecipherable component of solid cancer is the development of metastasis which accounts for more than 90% of cancer-related mortalities. A developmental program termed epithelial-mesenchymal transition (EMT) has also been shown to play a critical role in promoting metastasis in epithelium-derived solid tumors. By analyzing publicly available microarray datasets, we observed that ecotropic viral integration site 1 (EVI1) correlates negatively with SLUG, a master regulator of EMT. This correlation was found to be relevant as we demonstrated that EVI1 binds to SLUG promoter element directly through the distal set of zinc fingers and downregulates its expression. Many studies have shown that the primary role of SLUG during EMT and EMT-like processes is the regulation of cell motility in most of the cancer cells. Knockdown of EVI1 in metastatic colon cancer cell and subsequent passage through matrigel not only increased the invading capacity but also induced an EMT-like morphological feature of the cells, such as spindle-shaped appearance and led to a significant reduction in the expression of the epithelial marker, E-CADHERIN and increase in the expression of the mesenchymal marker, N-CADHERIN. The cells, when injected into immunocompromised mice, failed to show any metastatic foci in distant organs however the ones with EVI1, metastasized in the intraperitoneal layer and also showed multiple micro metastatic foci in the lungs and spleen. These findings suggest that in colon cancer EVI1 is dispensable for epithelial-mesenchymal transition, however, is required for metastasis.
Collapse
Affiliation(s)
- Kasturi Bala Nayak
- Department of Gene Function and Regulation, Institute of Life Sciences Nalco Square, Bhubaneswar, Odisha, India
| | - I S Sajitha
- Department of Veterinary Pathology, College of Veterinary & Animal Sciences, Wayanad, Kerala, India
| | - T R Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Soumen Chakraborty
- Department of Gene Function and Regulation, Institute of Life Sciences Nalco Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
21
|
Yuan F, Lu W. Prediction of potential drivers connecting different dysfunctional levels in lung adenocarcinoma via a protein-protein interaction network. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2284-2293. [PMID: 29197663 DOI: 10.1016/j.bbadis.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is a serious disease that threatens an affected individual's life. Its pathogenesis has not yet to be fully described, thereby impeding the development of effective treatments and preventive measures. "Cancer driver" theory considers that tumor initiation can be associated with a number of specific mutations in genes called cancer driver genes. Four omics levels, namely, (1) methylation, (2) microRNA, (3) mutation, and (4) mRNA levels, are utilized to cluster cancer driver genes. In this study, the known dysfunctional genes of these four levels were used to identify novel driver genes of lung adenocarcinoma, a subtype of lung cancer. These genes could contribute to the initiation and progression of lung adenocarcinoma in at least two levels. First, random walk with restart algorithm was performed on a protein-protein interaction (PPI) network constructed with PPI information in STRING by using known dysfunctional genes as seed nodes for each level, thereby yielding four groups of possible genes. Second, these genes were further evaluated in a test strategy to exclude false positives and select the most important ones. Finally, after conducting an intersection operation in any two groups of genes, we obtained several inferred driver genes that contributed to the initiation of lung adenocarcinoma in at least two omics levels. Several genes from these groups could be confirmed according to recently published studies. The inferred genes reported in this study were also different from those described in a previous study, suggesting that they can be used as essential supplementary data for investigations on the initiation of lung adenocarcinoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| | - WenCong Lu
- Department of Chemistry, Shanghai University, Shanghai 200072, China.
| |
Collapse
|
22
|
Zhu J, Chen Z, Yong L. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecol Oncol 2017; 148:368-374. [PMID: 29191436 DOI: 10.1016/j.ygyno.2017.11.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. METHODS We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. RESULTS Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. CONCLUSIONS In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms.
Collapse
Affiliation(s)
- Junyong Zhu
- School of Medicine, Wuhan University, Wuhan, China.
| | - Zuhua Chen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Gov E, Kori M, Arga KY. Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:603-615. [PMID: 28937943 DOI: 10.1089/omi.2017.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a common and, yet, one of the most deadly human cancers due to its insidious onset and the current lack of robust early diagnostic tests. Tumors are complex tissues comprised of not only malignant cells but also genetically stable stromal cells. Understanding the molecular mechanisms behind epithelial-stromal crosstalk in ovarian cancer is a great challenge in particular. In the present study, we performed comparative analyses of transcriptome data from laser microdissected epithelial, stromal, and ovarian tumor tissues, and identified common and tissue-specific reporter biomolecules-genes, receptors, membrane proteins, transcription factors (TFs), microRNAs (miRNAs), and metabolites-by integration of transcriptome data with genome-scale biomolecular networks. Tissue-specific response maps included common differentially expressed genes (DEGs) and reporter biomolecules were reconstructed and topological analyses were performed. We found that CDK2, EP300, and SRC as receptor-related functions or membrane proteins; Ets1, Ar, Gata2, and Foxp3 as TFs; and miR-16-5p and miR-124-3p as putative biomarkers and warrant further validation research. In addition, we report in this study that Gata2 and miR-124-3p are potential novel reporter biomolecules for ovarian cancer. The study of tissue-specific reporter biomolecules in epithelial cells, stroma, and tumor tissues as exemplified in the present study offers promise in biomarker discovery and diagnostics innovation for common complex human diseases such as ovarian cancer.
Collapse
Affiliation(s)
- Esra Gov
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
- 2 Department of Bioengineering, Faculty of Engineering and Natural Science, Adana Science and Technology University , Adana, Turkey
| | - Medi Kori
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| | - Kazim Yalcin Arga
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| |
Collapse
|
24
|
Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer. PLoS One 2017; 12:e0180616. [PMID: 28749961 PMCID: PMC5531462 DOI: 10.1371/journal.pone.0180616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023] Open
Abstract
Background Acquired drug resistance to the chemotherapeutic drug irinotecan (the active metabolite of which is SN-38) is one of the significant obstacles in the treatment of advanced colorectal cancer (CRC). The molecular mechanism or targets mediating irinotecan resistance are still unclear. It is urgent to find the irinotecan response biomarkers to improve CRC patients’ therapy. Methods Genetic Omnibus Database GSE42387 which contained the gene expression profiles of parental and irinotecan-resistant HCT-116 cell lines was used. Differentially expressed genes (DEGs) between parental and irinotecan-resistant cells, protein-protein interactions (PPIs), gene ontologies (GOs) and pathway analysis were performed to identify the overall biological changes. The most common DEGs in the PPIs, GOs and pathways were identified and were validated clinically by their ability to predict overall survival and disease free survival. The gene-gene expression correlation and gene-resistance correlation was also evaluated in CRC patients using The Cancer Genomic Atlas data (TCGA). Results The 135 DEGs were identified of which 36 were upregulated and 99 were down regulated. After mapping the PPI networks, the GOs and the pathways, nine genes (GNAS, PRKACB, MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9) were found to be commonly enriched. Signal transduction was the most significant GO and MAPK pathway was the most significant pathway. The five genes (FGF2, FGF9, PRKACB, MECOM and PLA2G4C) in the MAPK pathway were all contained in the signal transduction and the levels of those genes were upregulated. The FGF2, FGF9 and MECOM expression were highly associated with CRC patients’ survival rate but not PRKACB and PLA2G4C. In addition, FGF9 was also associated with irinotecan resistance and poor disease free survival. FGF2, FGF9 and PRKACB were positively correlated with each other while MECOM correlated positively with FGF9 and PLA2G4C, and correlated negatively with FGF2 and PRKACB after doing gene-gene expression correlation. Conclusion Targeting the MAPK signal transduction pathway through the targeting of the FGF2, FGF9, MECOM, PLA2G4C and PRKACB might increase tumor responsiveness to irinotecan treatment.
Collapse
|
25
|
Mateo F, Arenas EJ, Aguilar H, Serra-Musach J, de Garibay GR, Boni J, Maicas M, Du S, Iorio F, Herranz-Ors C, Islam A, Prado X, Llorente A, Petit A, Vidal A, Català I, Soler T, Venturas G, Rojo-Sebastian A, Serra H, Cuadras D, Blanco I, Lozano J, Canals F, Sieuwerts AM, de Weerd V, Look MP, Puertas S, García N, Perkins AS, Bonifaci N, Skowron M, Gómez-Baldó L, Hernández V, Martínez-Aranda A, Martínez-Iniesta M, Serrat X, Cerón J, Brunet J, Barretina MP, Gil M, Falo C, Fernández A, Morilla I, Pernas S, Plà MJ, Andreu X, Seguí MA, Ballester R, Castellà E, Nellist M, Morales S, Valls J, Velasco A, Matias-Guiu X, Figueras A, Sánchez-Mut JV, Sánchez-Céspedes M, Cordero A, Gómez-Miragaya J, Palomero L, Gómez A, Gajewski TF, Cohen EEW, Jesiotr M, Bodnar L, Quintela-Fandino M, López-Bigas N, Valdés-Mas R, Puente XS, Viñals F, Casanovas O, Graupera M, Hernández-Losa J, Ramón y Cajal S, García-Alonso L, Saez-Rodriguez J, Esteller M, Sierra A, Martín-Martín N, Matheu A, Carracedo A, González-Suárez E, Nanjundan M, Cortés J, Lázaro C, Odero MD, Martens JWM, Moreno-Bueno G, Barcellos-Hoff MH, Villanueva A, Gomis RR, Pujana MA. Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene 2017; 36:2737-2749. [PMID: 27991928 PMCID: PMC5442428 DOI: 10.1038/onc.2016.427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/31/2016] [Accepted: 10/10/2016] [Indexed: 01/16/2023]
Abstract
Inhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure.
Collapse
Affiliation(s)
- F Mateo
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - E J Arenas
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - H Aguilar
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Serra-Musach
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - G Ruiz de Garibay
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Boni
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Maicas
- Centre for Applied Medical Research (CIMA) and Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - S Du
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - F Iorio
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - C Herranz-Ors
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - X Prado
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Llorente
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Petit
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Vidal
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - I Català
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - T Soler
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - G Venturas
- Department of Pathology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Rojo-Sebastian
- Department of Pathology, MD Anderson Cancer Center, Madrid, Spain
| | - H Serra
- Angiogenesis Research Group, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - D Cuadras
- Statistics Unit, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - I Blanco
- Hereditary Cancer Programme, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Lozano
- Department of Molecular Biology and Biochemistry, Málaga University, and Molecular Oncology Laboratory, Mediterranean Institute for the Advance of Biotechnology and Health Research (IBIMA), University Hospital Virgen de la Victoria, Málaga, Spain
| | - F Canals
- ProteoRed-Instituto de Salud Carlos III, Proteomic Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - A M Sieuwerts
- Department of Medical Oncology, Erasmus University Medical Center, Daniel den Hoed Cancer Center, Cancer Genomics Centre, Rotterdam, The Netherlands
| | - V de Weerd
- Department of Medical Oncology, Erasmus University Medical Center, Daniel den Hoed Cancer Center, Cancer Genomics Centre, Rotterdam, The Netherlands
| | - M P Look
- Department of Medical Oncology, Erasmus University Medical Center, Daniel den Hoed Cancer Center, Cancer Genomics Centre, Rotterdam, The Netherlands
| | - S Puertas
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - N García
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A S Perkins
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | - N Bonifaci
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Skowron
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - L Gómez-Baldó
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - V Hernández
- Biological Clues of the Invasive and Metastatic Phenotype Laboratory, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Martínez-Aranda
- Biological Clues of the Invasive and Metastatic Phenotype Laboratory, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Martínez-Iniesta
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - X Serrat
- Cancer and Human Molecular Genetics, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - J Cerón
- Cancer and Human Molecular Genetics, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - J Brunet
- Hereditary Cancer Programme, ICO, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - M P Barretina
- Department of Medical Oncology, ICO, IDIBGI, Girona, Spain
| | - M Gil
- Department of Medical Oncology, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - C Falo
- Department of Medical Oncology, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Fernández
- Department of Medical Oncology, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - I Morilla
- Department of Medical Oncology, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - S Pernas
- Department of Medical Oncology, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M J Plà
- Department of Gynecology, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - X Andreu
- Department of Pathology, Parc Taulí Hospital Consortium, Sabadell, Barcelona, Spain
| | - M A Seguí
- Medical Oncology Service, Parc Taulí Hospital Consortium, Sabadell, Barcelona, Spain
| | - R Ballester
- Department of Radiation Oncology, University Hospital Germans Trias i Pujol, ICO, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - E Castellà
- Department of Pathology, University Hospital Germans Trias i Pujol, ICO, IGTP, Badalona, Barcelona, Spain
| | - M Nellist
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - S Morales
- Hospital Arnau de Vilanova, University of Lleida, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - J Valls
- Hospital Arnau de Vilanova, University of Lleida, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - A Velasco
- Hospital Arnau de Vilanova, University of Lleida, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - X Matias-Guiu
- Hospital Arnau de Vilanova, University of Lleida, Biomedical Research Institute of Lleida (IRB Lleida), Lleida, Spain
| | - A Figueras
- Angiogenesis Research Group, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - J V Sánchez-Mut
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Sánchez-Céspedes
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Cordero
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Gómez-Miragaya
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - L Palomero
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Gómez
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - T F Gajewski
- Departments of Pathology and Medicine, University of Chicago, Chicago, IL, USA
| | - E E W Cohen
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - M Jesiotr
- Department of Pathology, Military Institute of Medicine, Warsaw, Poland
| | - L Bodnar
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - M Quintela-Fandino
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - N López-Bigas
- Department of Experimental and Health Sciences, Barcelona Biomedical Research Park, Pompeu Fabra University (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - R Valdés-Mas
- Department of Biochemistry and Molecular Biology, University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain
| | - X S Puente
- Department of Biochemistry and Molecular Biology, University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain
| | - F Viñals
- Angiogenesis Research Group, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - O Casanovas
- Angiogenesis Research Group, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Graupera
- Angiogenesis Research Group, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Hernández-Losa
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - S Ramón y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - L García-Alonso
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - J Saez-Rodriguez
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - M Esteller
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
| | - A Sierra
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC, Biomedical Research Institute ‘August Pi i Sunyer' (IDIBAPS), and Systems Biology Department, Faculty of Science and Technology, University of Vic, Central University of Catalonia, Barcelona, Spain
| | - N Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - A Matheu
- Neuro-Oncology Section, Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - A Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - E González-Suárez
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - J Cortés
- Department of Medical Oncology, VHIO, Vall d'Hebron University Hospital, Barcelona, Spain
| | - C Lázaro
- Hereditary Cancer Programme, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - M D Odero
- Centre for Applied Medical Research (CIMA) and Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - J W M Martens
- Department of Medical Oncology, Erasmus University Medical Center, Daniel den Hoed Cancer Center, Cancer Genomics Centre, Rotterdam, The Netherlands
| | - G Moreno-Bueno
- Department of Biochemistry, Autonomous University of Madrid (UAM), Biomedical Research Institute ‘Alberto Sols' (Spanish National Research Council (CSIC)-UAM), Translational Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), and MD Anderson International Foundation, Madrid, Spain
| | - M H Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - A Villanueva
- Chemoresistance and Predictive Factors Laboratory, ProCURE, ICO, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - R R Gomis
- Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M A Pujana
- Breast Cancer and Systems Biology Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| |
Collapse
|
26
|
Maicas M, Vázquez I, Alis R, Marcotegui N, Urquiza L, Cortés-Lavaud X, Cristóbal I, García-Sánchez MA, Odero MD. The MDS and EVI1 complex locus (MECOM) isoforms regulate their own transcription and have different roles in the transformation of hematopoietic stem and progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:721-729. [PMID: 28391050 DOI: 10.1016/j.bbagrm.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Transcriptional activation of the EVI1 oncogene (3q26) leads to aggressive forms of human acute myeloid leukemia (AML). However, the mechanism of EVI1-mediated leukemogenesis has not been fully elucidated. Previously, by characterizing the EVI1 promoter, we have shown that RUNX1 and ELK1 directly regulate EVI1 transcription. Intriguingly, bioinformatic analysis of the EVI1 promoter region identified the presence of several EVI1 potential binding sites. Thus, we hypothesized that EVI1 could bind to these sites regulating its own transcription. In this study, we show that there is a functional interaction between EVI1 and its promoter, and that the different EVI1 isoforms (EVI1-145kDa, EVI1-Δ324 and MDS1-EVI1) regulate the transcription of EVI1 transcripts through distinct promoter regions. Moreover, we determine that the EVI1-145kDa isoform activates EVI1 transcription, whereas EVI1-Δ324 and MDS1-EVI1 act as repressors. Finally, we demonstrate that these EVI1 isoforms are involved in cell transformation; functional experiments show that EVI1-145kDa prolongs the maintenance of hematopoietic stem and progenitor cells; conversely, MDS1-EVI1 repressed hematopoietic stem and progenitor colony replating capacity. We demonstrate for the first time that EVI1 acts as a regulator of its own expression, highlighting the complex regulation of EVI1, and open new directions to better understand the mechanisms of EVI1 overexpressing leukemias.
Collapse
Affiliation(s)
- Miren Maicas
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.
| | - Iria Vázquez
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Rafael Alis
- School of Medicine and Research Institute "Dr. Viña Giner", Molecular and Mitochondrial Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Nerea Marcotegui
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Leire Urquiza
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain
| | - Xabier Cortés-Lavaud
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Ion Cristóbal
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain
| | | | - María D Odero
- Program of Hematology-Oncology, CIMA, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Spain
| |
Collapse
|
27
|
Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, Reich S, Jacob F, Perner S, Moch H, Fehm TN, Kanz L, Schulze-Osthoff K, Lengerke C. Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer Res 2017; 77:2148-2160. [DOI: 10.1158/0008-5472.can-16-0593] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
|
28
|
Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, Deng M, Vogel W, von Mässenhausen A, Kristiansen G, Duensing S, Kirfel J, Lengerke C, Perner S. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene 2016; 36:1573-1584. [PMID: 27617580 DOI: 10.1038/onc.2016.325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/08/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men in the western world. Mutations in tumor suppressor genes and in oncogenes are important for PCa progression, whereas the role of stem cell proteins in prostate carcinogenesis is insufficiently examined. This study investigates the role of the transcriptional regulator Ecotropic Viral Integration site 1 (EVI1), known as an essential modulator of hematopoietic and leukemic stem cell biology, in prostate carcinogenesis. We show that in healthy prostatic tissue, EVI1 expression is confined to the prostate stem cell compartment located at the basal layer, as identified by the stem cell marker CD44. Instead, in a PCa progression cohort comprising 219 samples from patients with primary PCa, lymph node and distant metastases, EVI1 protein was heterogeneously distributed within samples and high expression is associated with tumor progression (P<0.001), suggesting EVI1 induction as a driver event. Functionally, short hairpin RNA-mediated knockdown of EVI1 inhibited proliferation, cell cycle progression, migratory capacity and anchorage-independent growth of human PCa cells, while enhancing their apoptosis sensitivity. Interestingly, modulation of EVI1 expression also strongly regulated stem cell properties (including expression of the stem cell marker SOX2) and in vivo tumor initiation capacity. Further emphasizing a functional correlation between EVI1 induction and tumor progression, upregulation of EVI1 expression was noted in experimentally derived docetaxel-resistant PCa cells. Importantly, knockdown of EVI1 in these cells restored sensitivity to docetaxel, in part by downregulating anti-apoptotic BCL2. Together, these data indicate EVI1 as a novel molecular regulator of PCa progression and therapy resistance that may control prostate carcinogenesis at the stem cell level.
Collapse
Affiliation(s)
- A Queisser
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - S Hagedorn
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - H Wang
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - T Schaefer
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - M Konantz
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - S Alavi
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - M Deng
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| | - W Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| | - A von Mässenhausen
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - G Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - S Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - J Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - C Lengerke
- Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - S Perner
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel, Borstel, Germany
| |
Collapse
|
29
|
Hou A, Zhao L, Zhao F, Wang W, Niu J, Li B, Zhou Z, Zhu D. Expression of MECOM is associated with unfavorable prognosis in glioblastoma multiforme. Onco Targets Ther 2016; 9:315-20. [PMID: 26834490 PMCID: PMC4716764 DOI: 10.2147/ott.s95831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background MDS1 and EVI1 complex locus protein EVI1 (MECOM) is an oncogenic transcription factor in several kinds of cancers. However, the clinical significance of MECOM in glioblastoma multiforme (GBM) has not been well elucidated. Patients and methods Our study enrolled 86 resected samples of GBM in three medical centers. We detected the expression of MECOM in all the 86 samples by immunohistochemistry and compared the difference of MECOM mRNA between tumor tissues and adjacent tissues with real-time polymerase chain reaction. With immunoblotting, we detected the MECOM expression in different GBM cell lines. Moreover, we analyzed the correlation between MECOM expression and clinicopathologic factors with chi-square test, and evaluated the prognostic value of MECOM with univariate and multivariate analysis. Results In GBM tissue, the percentage of MECOM high expression is 41.9% (36/86). The mRNA of MECOM in tumor tissues is remarkably higher than that in adjacent tissues, indicating the oncogenic role of MECOM in GBM. MECOM exists in all the detected cell lines with different abundance. Moreover, MECOM is correlated with poorer overall survival rate (P=0.033) and can be identified as an independent prognostic factor in GBM (P=0.042). Conclusion MECOM could be considered as an independent prognostic factor in GBM, predicting it as a potential and promising molecular drug target.
Collapse
Affiliation(s)
- Aiwu Hou
- Department of Neurology, Yidu Central Hospital of Weifang City
| | - Lizhen Zhao
- Department of Neurology, Yidu Central Hospital of Weifang City
| | - Fuzhen Zhao
- Department of Orthopedics, People's Hospital of Qingzhou City
| | - Weiliang Wang
- Department of Psychiatrics, People's Third Hospital of Weifang City, Weifang
| | - Jianyi Niu
- Department of Neurology, Yidu Central Hospital of Weifang City
| | - Bingxuan Li
- Department of Neurology, Yidu Central Hospital of Weifang City
| | - Zhongjin Zhou
- Department of Neurology, Yidu Central Hospital of Weifang City
| | - Dongyuan Zhu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences
| |
Collapse
|
30
|
Mutations in MECOM, Encoding Oncoprotein EVI1, Cause Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia. Am J Hum Genet 2015; 97:848-54. [PMID: 26581901 DOI: 10.1016/j.ajhg.2015.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/14/2015] [Indexed: 02/05/2023] Open
Abstract
Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome, characterized by thrombocytopenia and congenital fusion of the radius and ulna. A heterozygous HOXA11 mutation has been identified in two unrelated families as a cause of RUSAT. However, HOXA11 mutations are absent in a number of individuals with RUSAT, which suggests that other genetic loci contribute to RUSAT. In the current study, we performed whole exome sequencing in an individual with RUSAT and her healthy parents and identified a de novo missense mutation in MECOM, encoding EVI1, in the individual with RUSAT. Subsequent analysis of MECOM in two other individuals with RUSAT revealed two additional missense mutations. These three mutations were clustered within the 8(th) zinc finger motif of the C-terminal zinc finger domain of EVI1. Chromatin immunoprecipitation and qPCR assays of the regions harboring the ETS-like motif that is known as an EVI1 binding site showed a reduction in immunoprecipitated DNA for two EVI1 mutants compared with wild-type EVI1. Furthermore, reporter assays showed that MECOM mutations led to alterations in both AP-1- and TGF-β-mediated transcriptional responses. These functional assays suggest that transcriptional dysregulation by mutant EVI1 could be associated with the development of RUSAT. We report missense mutations in MECOM resulting in a Mendelian disorder that provide compelling evidence for the critical role of EVI1 in normal hematopoiesis and in the development of forelimbs and fingers in humans.
Collapse
|
31
|
Abstract
The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).
Collapse
Affiliation(s)
- Lara Perryman
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark.
| |
Collapse
|
32
|
Müller C, Holtschmidt J, Auer M, Heitzer E, Lamszus K, Schulte A, Matschke J, Langer-Freitag S, Gasch C, Stoupiec M, Mauermann O, Peine S, Glatzel M, Speicher MR, Geigl JB, Westphal M, Pantel K, Riethdorf S. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 2015; 6:247ra101. [PMID: 25080476 DOI: 10.1126/scitranslmed.3009095] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive brain tumor in adults. The dogma that GBM spread is restricted to the brain was challenged by reports on extracranial metastases after organ transplantation from GBM donors. We identified circulating tumor cells (CTCs) in peripheral blood (PB) from 29 of 141 (20.6%) GBM patients by immunostaining of enriched mononuclear cells with antibodies directed against glial fibrillary acidic protein (GFAP). Tumor cell spread was not significantly enhanced by surgical intervention. The tumor nature of GFAP-positive cells was supported by the absence of those cells in healthy volunteers and the presence of tumor-specific aberrations such as EGFR gene amplification and gains and losses in genomic regions of chromosomes 7 and 10. Release of CTCs was associated with EGFR gene amplification, suggesting a growth potential of these cells. We demonstrate that hematogenous GBM spread is an intrinsic feature of GBM biology.
Collapse
Affiliation(s)
- Carolin Müller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Johannes Holtschmidt
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany. Klinik für Senologie, Kliniken Essen-Mitte, D-45136 Essen, Germany
| | - Martina Auer
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sabine Langer-Freitag
- Institute of Human Genetics, Technical University of Munich, D-81675 Munich, Germany
| | - Christin Gasch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Malgorzata Stoupiec
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Oliver Mauermann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Jochen B Geigl
- Institute of Human Genetics, Medical University of Graz, A-8010 Graz, Austria
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany.
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, D-201246 Hamburg, Germany
| |
Collapse
|
33
|
Sayadi A, Jeyakani J, Seet SH, Wei CL, Bourque G, Bard FA, Jenkins NA, Copeland NG, Bard-Chapeau EA. Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity. Oncogene 2015; 35:2311-21. [DOI: 10.1038/onc.2015.286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 11/09/2022]
|
34
|
Syed J, Pandian GN, Sato S, Taniguchi J, Chandran A, Hashiya K, Bando T, Sugiyama H. Targeted suppression of EVI1 oncogene expression by sequence-specific pyrrole-imidazole polyamide. ACTA ACUST UNITED AC 2014; 21:1370-1380. [PMID: 25219965 DOI: 10.1016/j.chembiol.2014.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
Abstract
Human ectopic viral integration site 1 (EVI1) is an oncogenic transcription factor known to play a critical role in many aggressive forms of cancer. Its selective modulation is thought to alter the cancer-specific gene regulatory networks. Pyrrole-imidazole polyamides (PIPs) are a class of small DNA binders that can be designed to target any destined DNA sequence. Herein, we report a sequence-specific pyrrole-imidazole polyamide, PIP1, which can target specific base pairs of the REL/ELK1 binding site in the EVI1 minimal promoter. The designed PIP1 significantly inhibited EVI1 in MDA-MB-231 cells. Whole-transcriptome analysis confirmed that PIP1 affected a fraction of EVI1-mediated gene regulation. In vitro assays suggested that this polyamide can also effectively inhibit breast cancer cell migration. Taken together, these results suggest that EVI1-targeted PIP1 is an effective transcriptional regulator in cancer cells.
Collapse
Affiliation(s)
- Junetha Syed
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
35
|
Cukras S, Morffy N, Ohn T, Kee Y. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases. PLoS One 2014; 9:e101844. [PMID: 25025768 PMCID: PMC4099125 DOI: 10.1371/journal.pone.0101844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/12/2014] [Indexed: 12/28/2022] Open
Abstract
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Collapse
Affiliation(s)
- Scott Cukras
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Nicholas Morffy
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dutta P, Bui T, Bauckman KA, Keyomarsi K, Mills GB, Nanjundan M. EVI1 splice variants modulate functional responses in ovarian cancer cells. Mol Oncol 2013; 7:647-68. [PMID: 23517670 DOI: 10.1016/j.molonc.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/18/2013] [Accepted: 02/12/2013] [Indexed: 01/06/2023] Open
Abstract
Amplification of 3q26.2, found in many cancer lineages, is a frequent and early event in ovarian cancer. We previously defined the most frequent region of copy number increase at 3q26.2 to EVI1 (ecotropic viral integration site-1) and MDS1 (myelodysplastic syndrome 1) (aka MECOM), an observation recently confirmed by the cancer genome atlas (TCGA). MECOM is increased at the DNA, RNA, and protein level and likely contributes to patient outcome. Herein, we report that EVI1 is aberrantly spliced, generating multiple variants including a Del(190-515) variant (equivalent to previously reported) expressed in >90% of advanced stage serous epithelial ovarian cancers. Although EVI1(Del190-515) lacks ∼70% of exon 7, it binds CtBP1 as well as SMAD3, important mediators of TGFβ signaling, similar to wild type EVI1. This contrasts with EVI1 1-268 which failed to interact with CtBP1. Interestingly, the EVI1(Del190-515) splice variant preferentially localizes to PML nuclear bodies compared to wild type and EVI1(Del427-515). While wild type EVI1 efficiently repressed TGFβ-mediated AP-1 (activator protein-1) and plasminogen activator inhibitor-1 (PAI-1) promoters, EVI1(Del190-515) elicited a slight increase in both promoter activities. Expression of EVI1 and EVI1(Del427-515) (but not EVI1(Del190-515)) in OVCAR8 ovarian cancer cells increased cyclin E1 LMW expression and cell cycle progression. Furthermore, knockdown of specific EVI1 splice variants (both MDS1/EVI1 and EVI1(Del190-515)) markedly increased claudin-1 mRNA and protein expression in HEY ovarian and MDA-MB-231 breast cancer cells. Changes in claudin-1 were associated with alterations in specific epithelial-mesenchymal transition markers concurrent with reduced migratory potential. Collectively, EVI1 is frequently aberrantly spliced in ovarian cancer with specific forms eliciting altered functions which could potentially contribute to ovarian cancer pathophysiology.
Collapse
Affiliation(s)
- Punashi Dutta
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | |
Collapse
|