1
|
Markota Cagalj A, Glibo M, Karin-Kujundzic V, Serman A, Vranic S, Serman L, Skara Abramovic L, Bukvic Mokos Z. Hedgehog signalling pathway inhibitors in the treatment of basal cell carcinoma: an updated review. J Drug Target 2025:1-21. [PMID: 40262619 DOI: 10.1080/1061186x.2025.2496470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Basal cell carcinoma (BCC) is the most common type of skin cancer that usually appears in sun-exposed body regions such as the head, trunk, and extremities. There are four main clinicopathological subtypes of BCC: nodular, superficial, morpheaform, and fibroepithelial. BCC's molecular basis includes inherited genetic susceptibility and somatic mutations, often induced by exposure to UV radiation. The aberrant activation of the hedgehog (Hh) signalling pathway, caused by mutations in the Hh components, plays a central role in the molecular pathogenesis of this carcinoma. This led to the development of Hh signalling pathway inhibitors as a new treatment option for patients with advanced disease. In this review, we summarise BCC's clinical presentation and histopathology and present knowledge on the most studied Hh signalling inhibitors, vismodegib and sonidegib, and other inhibitors of this signalling, such as itraconazole, patidegib, taladegib, and arsenic trioxide, in the treatment of BCC. We also present the most common Hh signalling inhibitor adverse events and their management options, which could improve patients' quality of life during treatment.
Collapse
Affiliation(s)
- Adela Markota Cagalj
- Department of Dermatology and Venereology, University Hospital Centre Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Mislav Glibo
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinic of Obstetrics and Gynecology, Clinical Hospital 'Sveti Duh', Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Zrinka Bukvic Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Xu C, Wang B, Xu T, Lv Y, Pan X, Zhao X, Tan F, Sheng H, Yu L. EZH2 inhibitor and Vismodegib synergistically inhibit the growth and metastasis of medulloblastoma. Med Oncol 2025; 42:186. [PMID: 40299236 DOI: 10.1007/s12032-025-02734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Resistance frequently arises when treating medulloblastoma (MB) patients with Vismodegib, markedly shortening their survival time. Consequently, the urgent problem to be solved is the discovery of a drug that can synergize with Vismodegib to improve its resistance in patients and enhance its efficacy. To validate the feasibility and efficacy of combining EZH2 (Enhancer of zeste homolog 2) inhibitor (EZH2i) with Vismodegib. A comprehensive assessment of their individual and combined effects on MB cell proliferation, migration, and invasion capabilities was conducted. The promising potential of EZH2i in inhibiting MB cell growth, migration and invasion was exhibited when used alone. Furthermore, when combined with Vismodegib, the inhibitory effect on MB was significantly potentiated. This synergy was further confirmed by SynergyFinder analysis, which revealed a remarkable highest single-agent score of 14.85 for the GSK126 and Vismodegib combination. Importantly, the enhanced efficacy of the combined EZH2i and Vismodegib therapy in suppressing tumor growth was also verified by the xenograft experiments in vivo. In summary, the combined use of EZH2i and Vismodegib demonstrated a remarkable synergistic effect in suppressing MB growth, presenting a promising treatment option for MB patients who had become resistant to Vismodegib.
Collapse
Affiliation(s)
- Chao Xu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bohong Wang
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Xu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Lv
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiani Pan
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangmao Zhao
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hansong Sheng
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lisheng Yu
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Wireko AA, Ben-Jaafar A, Kong JSH, Mannan KM, Sanker V, Rosenke SL, Boye ANA, Nkrumah-Boateng PA, Poornaselvan J, Shah MH, Abdul-Rahman T, Atallah O. Sonic hedgehog signalling pathway in CNS tumours: its role and therapeutic implications. Mol Brain 2024; 17:83. [PMID: 39568072 PMCID: PMC11580395 DOI: 10.1186/s13041-024-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signalling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH pathway biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved the way for a better understanding of pathway dynamics and the development of more precise therapeutic interventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongoing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration of molecular insights with advanced technologies and clinical expertise holds great promise for developing more effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Vivek Sanker
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Prídavková Z, Plank L, Žiak P, Halička J, Benca-Kapitánová K, Vida R, Bartoš V. Association of the expression of Bcl-2 and Ki-67 prognostic markers and apoptotic index with biological behaviour in aggressive and non-aggressive non-melanoma eyelid skin cancer. Postepy Dermatol Alergol 2024; 41:456-462. [PMID: 39606595 PMCID: PMC11589630 DOI: 10.5114/ada.2024.144402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/15/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Prognostic biomarkers facilitate the identification of high-risk tumours. Aim To evaluate the association of Bcl-2 protein and Ki-67 antigen expression and the apoptotic index with biological behaviour of non-melanoma eyelid tumours. Material and methods Combined analysis of retrospective and prospective study of data from two centres over a period from 2008 to 2023 on histologically confirmed malignant non-melanoma eyelid tumours without any age limitation. Selected prognostic markers related to the aggressive or non-aggressive tumour types were evaluated. Results The study cohort included 68 patients with 70 non-melanoma eyelid tumours (n = 70). The basal cell carcinoma was the most frequently present type (97.1%). The median age was 68 years. A tumour size > 5 mm correlates to the aggressive type (p = 0.047). Resection margins < 2 mm were in 33.9%, without any connection to the recurrence rate (p = 0.076). The average value of Bcl-2 expression in non-aggressive types was 82.65% (p < 0.001). The value of Ki-67 expression in patients with non-aggressive tumours was 35.49% (p = 0.068). Non-aggressive tumours most frequently exhibited the apoptotic index of Grade I (p = 0.535). No Grade III case was observed in the aggressive types. In 2 cases, the orbital exenteration was carried out (0.03%). In 1 case biological therapy was administered. HDR brachytherapy was applied in 6 cases. A recurrence of the disease was observed in 4 (0.06%) cases. Conclusions New information on cancer biomarkers in non-melanoma eyelid skin carcinoma contributes to choosing a correct therapy with achieving good aesthetic results and a good survival rate.
Collapse
Affiliation(s)
- Zuzana Prídavková
- UVEA Eye Clinic s. r. o., Martin, Slovakia
- Department of Ophthalmology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Department of Ophthalmology, Central Military Hospital, Ružomberok, Slovakia
| | - Lukáš Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Slovakia
| | - Peter Žiak
- UVEA Eye Clinic s. r. o., Martin, Slovakia
- Eye Clinic, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Juraj Halička
- UVEA Eye Clinic s. r. o., Martin, Slovakia
- Eye Clinic, Jessenius Faculty of Medicine, Martin, Slovakia
| | | | | | | |
Collapse
|
5
|
Jung JH, Lee H, Jeon J, Lee YJ, Nada H, Kim M, Lee H, Bhattarai D, Lee K, Ko HW. A novel indole derivative, 2-{3-[1-(benzylsulfonyl)piperidin-4-yl]-2-methyl-1H-indol-1-yl}-1-(pyrrolidin-1-yl)ethenone, suppresses hedgehog signaling and drug-resistant tumor growth. Arch Pharm (Weinheim) 2024; 357:e2400218. [PMID: 38963677 DOI: 10.1002/ardp.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
The Hedgehog (Hh) signaling pathway plays important roles in various physiological functions. Several malignancies, such as basal cell carcinoma (BCC) and medulloblastoma (MB), have been linked to the aberrant activation of Hh signaling. Although therapeutic drugs have been developed to inhibit Hh pathway-dependent cancer growth, drug resistance remains a major obstacle in cancer treatment. Here, we show that the newly identified, 2-{3-[1-(benzylsulfonyl)-1,2,3,6-tetrahydropyridin-4-yl]-2-methyl-1H-indol-1-yl}-1-(pyrrolidin-1-yl)ethenone analog (LKD1214) exhibits comparable potency to vismodegib in suppressing the Hh pathway activation. LKD1214 represses Smoothened (SMO) activity by blocking its ciliary translocation. Interestingly, we also identified that it has a distinctive binding interface with SMO compared with other SMO-regulating chemicals. Notably, it maintains an inhibitory activity against the SmoD477H mutant, as observed in a patient with vismodegib-resistant BCC. Furthermore, LKD1214 inhibits tumor growth in the mouse model of MB. Collectively, these findings suggest that LKD1214 has the therapeutic potential to overcome drug-resistance in Hh-dependent cancers.
Collapse
Affiliation(s)
- Joo Hyun Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Hwayoung Lee
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Jiyeon Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yoon Ji Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Hankyu Lee
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Deepak Bhattarai
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyangsi, Gyeonggido, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
6
|
Lessans S, O'Connell KA, Choe J. Systemic Therapy for Non-Melanoma Skin Cancers: Latest Advances. Curr Oncol Rep 2024; 26:1120-1133. [PMID: 38954315 PMCID: PMC11416419 DOI: 10.1007/s11912-024-01570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW This review provides an update on approved and emerging systemic therapies in the treatment of locally advanced or metastatic non-melanoma skin cancers (squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma). RECENT FINDINGS Many studies demonstrate the effectiveness of immunotherapy for all types of non-melanoma skin cancer. For basal cell carcinoma (BCC), hedgehog inhibitors (HHI) remain first-line but with poor tolerability. Numerous clinical trials studying both neoadjuvant and adjuvant use of anti-PD-1 and anti-PD-L1 therapies in advanced NMSC are under investigation. There is a growing number of systemic therapies available to treat non-melanoma skin cancers. The advent of immunotherapy has revolutionized the field and greatly improved survival compared to historical survival rates with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Spencer Lessans
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katie A O'Connell
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Choe
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Preston Research Building 790, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
8
|
Liu M, Wang X, Zhu J. PDLIM3 knockdown promotes ferroptosis in endometriosis progression via inducing Gli1 degradation and blocking Hedgehog signaling pathway. J Assist Reprod Genet 2024; 41:2117-2128. [PMID: 38771390 PMCID: PMC11339231 DOI: 10.1007/s10815-024-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
AIMS Current evidence suggests that there is no completely effective method for endometriosis (EMS) without trauma due to diverse adverse effects. Reliable evidence illustrates that inhibiting ferroptosis is a potential strategy for EMS. We sufficiently verified that the expression of endogenous protein PDZ and LIM domain 3 (PDLIM3) was significantly increased in EMS. METHODS PDLIM3 knockdown reduced primary ectopic endometrial stromal cells' (EESCs) viability and migration, and elevated ferroptosis signaling indicators including Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) in EESCs. RESULTS Mechanistic studies revealed that inhibition of PDLIM3 accelerated glioma-associated oncogene-1 (Gli1) degradation and further deactivated Hedgehog signaling. Gli1 inhibitor, GANT61, abrogated the impact of PDLIM3 deletion on EESC growth, migration, and ferroptosis. In vivo experiments suggested that PDLIM3 reduction repressed the growth of endometrial lesions. Likewise, repression of PDLIM3 promoted ferroptosis and attenuated Hedgehog signaling in endometrial lesions. CONCLUSIONS Collectively, silencing of PDLIM3 facilitates ferroptosis in EMS by inducing Gli1 degradation and blocking Hedgehog signaling. It may provide an alternative strategy for developing therapeutic agents of EMS in the future.
Collapse
Affiliation(s)
- Mingwei Liu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China.
| | - Xianxian Wang
- Gynecology Treatment Area I, Songyuan City Central Hospital, Songyuan, Jilin, China
| | - Jiannan Zhu
- Gynecology Treatment Area II, Songyuan City Central Hospital, No.1188, Wenhua Road, Ningjiang District, Songyuan, 138000, Jilin, China
| |
Collapse
|
9
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
10
|
Osborne MJ, Sulekha A, Culjkovic-Kraljacic B, Gasiorek J, Ruediger E, Jolicouer E, Marinier A, Assouline S, Borden KLB. Medicinal Chemistry and NMR Driven Discovery of Novel UDP-glucuronosyltransferase 1A Inhibitors That Overcome Therapeutic Resistance in Cells. J Mol Biol 2024; 436:168378. [PMID: 38043731 PMCID: PMC10841659 DOI: 10.1016/j.jmb.2023.168378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd ∼ 600 μM vs ∼30 μM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Anamika Sulekha
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Edward Ruediger
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Eric Jolicouer
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Anne Marinier
- Drug Discovery Unit, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Sarit Assouline
- Jewish General Hospital and McGill University, 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Assouline S, Gasiorek J, Bergeron J, Lambert C, Culjkovic-Kraljacic B, Cocolakis E, Zakaria C, Szlachtycz D, Yee K, Borden KLB. Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine. Haematologica 2023; 108:2946-2958. [PMID: 36951168 PMCID: PMC10620574 DOI: 10.3324/haematol.2023.282791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.
Collapse
Affiliation(s)
- Sarit Assouline
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2.
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Julie Bergeron
- CEMTL installation Maisonneuve Rosemont, 5415 boul. de l'Assomption, Montreal H1T 2M4
| | - Caroline Lambert
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Eftihia Cocolakis
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Chadi Zakaria
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - David Szlachtycz
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Karen Yee
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Toronto, Ontario
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec.
| |
Collapse
|
12
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Lear JT, Morris LM, Ness DB, Lewis LD. Pharmacokinetics and pharmacodynamics of Hedgehog pathway inhibitors used in the treatment of advanced or treatment-refractory basal cell carcinoma. Expert Rev Clin Pharmacol 2023; 16:1211-1220. [PMID: 37975712 DOI: 10.1080/17512433.2023.2285849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Sonidegib and vismodegib are currently the only US Food and Drug Administration and European Medicines Agency-approved small-molecule Hedgehog pathway inhibitors (HHIs)for treating adults with advanced or refractory basal cell carcinoma (BCC) that is not amenable to conventional surgery or radiotherapy. At this time, there are no head-to-head clinical trials comparing these two HHIs for efficacy and safety to assist clinicians with determining which HHI may be best suited for their patients. AREAS COVERED This review briefly describes the pathogenesis of BCC, provides a detailed overview of the key pharmacokinetic profile differences between sonidegib and vismodegib, explains their pharmacodynamics, and highlights the therapeutic considerations when either HHI is used to treat special patient populations. EXPERT OPINION Although both HHIs act at the same molecular target in the Hedgehog pathway, there are significant differences in their pharmacokinetic profiles that may play a potential role in their efficacy and safety. Evidence-based recommendations serve to inform clinicians until direct comparative clinical trials of sonidegib versus vismodegib are conducted to determine the clinical relevance of the reported differences in their pharmacokinetic properties.
Collapse
Affiliation(s)
- John T Lear
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Dermatology Center, Salford Royal NHS Foundation Trust, Salford, UK
| | - Linda M Morris
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Dylan B Ness
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Lionel D Lewis
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
14
|
Ruiz-Salas V, Podlipnik S, Sandoval-Clavijo A, Sanmartin-Jiménez O, Bernia-Petit E, Bonfill-Ortí M, Bassas-Freixas P, Yebenes-Marsal M, Flórez-Menéndez Á, Solá-Ortigosa J, Just-Sarobé M, Aguayo-Ortiz R, Masferrer I Niubó E, Quintana-Codina M, Deza G, Jaka A, Fuentes MJ, Cañueto J, Toll A. Real-World Experience with Vismodegib on Advanced and Multiple BCCs: Data from the RELIVIS Study. Dermatology 2023; 239:685-693. [PMID: 37257423 DOI: 10.1159/000530813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Vismodegib is approved for advanced cases of basal cell carcinomas not amenable to surgery or radiotherapy. Large studies on the use of vismodegib in clinical practice are scarce. OBJECTIVES The main objective of the study was to analyse the evolution and therapeutic management of relapses and lack of response in patients who had received vismodegib for locally advanced and/or multiple basal cell carcinomas in a real-life multicentre setting. METHODS This nationwide retrospective study collected data on patients treated with vismodegib in 15 specialized centres. We included patients who first received vismodegib until intolerable toxicity, maximum response, or progressive disease. Exploratory research variables referred to patient and tumour characteristics, vismodegib effectiveness and safety, relapse rate and management, and mortality. A multivariable logistic regression model was used to identify predictors of complete clinical response. RESULTS 133 patients with advanced BCC were included in the registry. The objective response rate (ORR) was 77.5% and nearly half of the patients (45.9%) achieved complete remission. Long-term information and detailed information of subsequent treatments after a regime of vismodegib was available for 115 patients. Only 34% of the patients in this group were subsequently treated with other therapies or vismodegib rechallenge. Sixty-nine percent of the patients who had shown a complete remission with vismodegib remained free of recurrence while 30.7% relapsed. Almost half of the patients who received additional therapies after the first course of vismodegib achieved complete tumour remission. Three and 2 out of 9 patients who were rechallenged with vismodegib achieved complete and partial responses, respectively, with an ORR of 55.5%. CONCLUSION Our study confirms efficacy of vismodegib in routine clinical practice. The risk of recurrence after achieving complete response with vismodegib was lower than previous reports. Rechallenge with vismodegib is feasible and most patients responded to re-treatment.
Collapse
Affiliation(s)
- Verónica Ruiz-Salas
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Sebastian Podlipnik
- Hospital Clinic of Barcelona, Dermatology Department, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra Sandoval-Clavijo
- Hospital Clinic of Barcelona, Dermatology Department, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Eduardo Bernia-Petit
- Dermatology Department, Instituto Valenciano de Oncología (IVO), Valencia, Spain
| | - Montserrat Bonfill-Ortí
- Dermatology Department, Hospital Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Patricia Bassas-Freixas
- Dermatology Department, Hospital Universitari Vall d´Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Mireia Yebenes-Marsal
- Dermatology Department, Hospital Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - Ángeles Flórez-Menéndez
- Dermatology Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | | | - Miquel Just-Sarobé
- Dermatology Department, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Rafael Aguayo-Ortiz
- Dermatology Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | | | | | - Gustavo Deza
- Dermatology Department, Hospital del Mar, Barcelona, Spain
| | - Ane Jaka
- Dermatology Department, Hospital Universitari Germans Trias I Pujol, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria José Fuentes
- Dermatology Department, Hospital Universitari Germans Trias I Pujol, Autonomous University of Barcelona, Barcelona, Spain
| | - Javier Cañueto
- Dermatology Department, Hospital Universitario de Salamanca, Barcelona, Spain
| | - Agustí Toll
- Hospital Clinic of Barcelona, Dermatology Department, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
15
|
Nataren N, Yamada M, Prow T. Molecular Skin Cancer Diagnosis: Promise and Limitations. J Mol Diagn 2023; 25:17-35. [PMID: 36243291 DOI: 10.1016/j.jmoldx.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Skin cancer is a significant and increasing global health burden. Although the current diagnostic workflow is robust and able to provide clinically actionable results, it is subject to notable limitations. The training and expertise required for accurate diagnoses using conventional skin cancer diagnostics are significant, and patient access to this workflow can be limited by geographic location or unforeseen events, such as coronavirus disease 2019 (COVID-19). Molecular biomarkers have transformed diagnostics and treatment delivery in oncology. With rapid advancements in molecular biology techniques, understanding of the underlying molecular mechanism of cancer pathologies has deepened, yielding biomarkers that can be used to monitor the course of malignant diseases. Herein, commercially available, clinically validated, and emerging skin cancer molecular biomarkers are reviewed. The qualities of an ideal molecular biomarker are defined. The potential benefits and limitations of applying molecular biomarker testing over the course of skin cancer from susceptibility to treatment are explored, with a view to outlining a future model of molecular biomarker skin cancer diagnostics.
Collapse
Affiliation(s)
- Nathalie Nataren
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom.
| |
Collapse
|
16
|
Lin L, Zhu S, Huang H, Wu LP, Huang J. Chemically modified small interfering RNA targeting Hedgehog signaling pathway for rheumatoid arthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:88-104. [PMID: 36618268 PMCID: PMC9813581 DOI: 10.1016/j.omtn.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that leads to disability; however, existing therapies are still unsatisfactory. Activated fibroblast-like synoviocytes (FLSs) play an essential role in synovitis formation and joint destruction in RA. The Hedgehog signaling pathway is aberrantly activated and contributes to the aggressive phenotype of RA-FLSs. However, it remains uncertain whether inhibiting Smoothened (SMO), a critical component of the Hedgehog signaling pathway, is an effective treatment for RA. Here, we design a series of small interfering RNAs (siRNAs) that specifically target the SMO gene. With precise chemical modifications, siRNAs' efficacy and stability are significantly improved, and the off-target effects are minimized. The optimized chemically modified siRNA (si-S1A3-Chol) decreases RA-FLS proliferation and invasiveness without the transfection reagent. Furthermore, si-S1A3-Chol injected intra-articularly effectively alleviates joint destruction and improves motor function in collagen-induced arthritis mouse models. Consequently, our results demonstrate that chemically modified siRNA targeting the Hedgehog signaling pathway may be a potential therapy for RA.
Collapse
Affiliation(s)
- Lang Lin
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Hongyu Huang
- Division of Clinical Public Health and Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China,Corresponding author: Lin-Ping Wu, Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China.
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China,Corresponding author: Jianlin Huang, Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China.
| |
Collapse
|
17
|
Molecular Mechanisms and Targeted Therapies of Advanced Basal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231911968. [PMID: 36233269 PMCID: PMC9570397 DOI: 10.3390/ijms231911968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Among human cutaneous malignancies, basal cell carcinoma is the most common. Solid advances in unveiling the molecular mechanisms of basal cell carcinoma have emerged in recent years. In Gorlin syndrome, which shows basal cell carcinoma predisposition, identification of the patched 1 gene (PTCH1) mutation was a dramatic breakthrough in understanding the carcinogenesis of basal cell carcinoma. PTCH1 plays a role in the hedgehog pathway, and dysregulations of this pathway are known to be crucial for the carcinogenesis of many types of cancers including sporadic as well as hereditary basal cell carcinoma. In this review, we summarize the clinical features, pathological features and hedgehog pathway as applied in basal cell carcinoma. Other crucial molecules, such as p53 and melanocortin-1 receptor are also discussed. Due to recent advances, therapeutic strategies based on the precise molecular mechanisms of basal cell carcinoma are emerging. Target therapies and biomarkers are also discussed.
Collapse
|
18
|
Nicheperovich A, Townsend-Nicholson A. Towards Precision Oncology: The Role of Smoothened and Its Variants in Cancer. J Pers Med 2022; 12:jpm12101648. [PMID: 36294790 PMCID: PMC9605185 DOI: 10.3390/jpm12101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
The G protein-coupled receptor Smoothened (Smo) is a central signal transducer of the Hedgehog (Hh) pathway which has been linked to diverse forms of tumours. Stimulated by advancements in structural and functional characterisation, the Smo receptor has been recognised as an important therapeutic target in Hh-driven cancers, and several Smo inhibitors have now been approved for cancer therapy. This receptor is also known to be an oncoprotein itself and its gain-of-function variants have been associated with skin, brain, and liver cancers. According to the COSMIC database, oncogenic mutations of Smo have been identified in various other tumours, although their oncogenic effect remains unknown in these tissues. Drug resistance is a common challenge in cancer therapies targeting Smo, and data analysis shows that healthy individuals also harbour resistance mutations. Based on the importance of Smo in cancer progression and the high incidence of resistance towards Smo inhibitors, this review suggests that detection of Smo variants through tumour profiling could lead to increased precision and improved outcomes of anti-cancer treatments.
Collapse
|
19
|
Aboul-Fettouh N, Kubicki SL, Chen L, Silapunt S, Migden MR. Targeted Therapy and Immunotherapy in Nonmelanoma Skin Cancer. Dermatol Clin 2022; 41:23-37. [DOI: 10.1016/j.det.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Heppt MV, Gebhardt C, Hassel JC, Alter M, Gutzmer R, Leiter U, Berking C. Long-Term Management of Advanced Basal Cell Carcinoma: Current Challenges and Future Perspectives. Cancers (Basel) 2022; 14:cancers14194547. [PMID: 36230474 PMCID: PMC9559463 DOI: 10.3390/cancers14194547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Local therapies are no longer an option for locally advanced basal cell carcinoma. Abnormal activation of the hedgehog signaling pathway leads to uncontrolled tumor growth. Hedgehog pathway inhibitors are an effective treatment option for this kind of tumor. However, treatment-related toxicity under long-term treatment may lead to limitations in quality of life, and thus to therapy interruption or even discontinuation. This review summarizes pertinent treatment adjustments and novel therapeutic strategies for effective treatment of locally advanced basal cell carcinoma. Abstract The first-line therapy for locally advanced basal cell carcinoma (laBCC) is Hedgehog pathway inhibitors (HHIs), as they achieve good efficacy and duration of response. However, toxicity in the course of long-term treatment may lead to a decrease in the quality of life, and consequently to interruption or even discontinuation of therapy. As HHI therapy is a balancing act between effectiveness, adverse events, quality of life, and adherence, numerous successful treatment strategies have evolved, such as dose reduction and dose interruptions with on-off treatment schedules or interruptions with re-challenge after progression. As a small percentage of patients show primary or acquired resistance to HHIs, the inhibition of programmed cell death protein 1 (PD-1) has been approved as a second-line therapy, which may also be accompanied by immune-related toxicities and non-response. Thus, optimization of current treatment schedules, novel agents, and combination strategies are urgently needed for laBCC. Here, we narratively model the treatment sequence for patients with laBCC and summarize the current state of approved treatment regimens and therapeutic strategies to optimize the long-term management of laBCC.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Erlangen, Germany
| | - Mareike Alter
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, 32423 Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, 32423 Minden, Germany
| | - Ulrike Leiter
- Department of Dermatology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
21
|
Hassanin F, Al Hussain H, Maktabi A, Adly N, Alsuabeyl M, Abedalthagafi M, Edward DP, Strianese D. Periocular Pigmented Basal Cell Carcinomas: Clinicopathologic Features and Mutational Profile. Ophthalmic Plast Reconstr Surg 2022; 38:475-482. [PMID: 35699213 DOI: 10.1097/iop.0000000000002173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Pigmented basal cell carcinomas (PBCC) is an uncommon variant of basal cell carcinoma of the periocular region with limited information in the literature. We highlight the clinicopathological profile and somatic mutations in periocular PBCC. METHODS The clinicopathological features and somatic mutations in patients with periocular PBCC were examined and compared with periocular non-PBCC reported in the literature. Next-generation sequencing panel analysis for the excised tumors identified somatic mutations. RESULTS In a total of 31 patients, PBCC was common in females (54%; p = 0.03); as a unilateral lower eyelid (n = 22; 71%), solitary mass (n = 30; 98%). Pathologic subtypes were variable. Most were nodular or mixed variants (n = 23; 74%). During the follow up (2.5-4.5 years), 1 patient (3.5%) had a recurrence. The clinical and pathologic features of PBCC were similar to those reported in nonperiocular locations. Somatic mutations detected in 25/31 tumors. Variants in 50/161 genes in the panel were noted. PTCH1 (14/31), TERT (12/31), and SMO (7/31) variants were common. Fifteen patients had novel drivers, including POLE, FANCD2, and CREBBP. SMO mutations were significantly more common in females (7/7), lower eyelid (5/7), and TERT mutations were more common in nodular subtype (10/12). CONCLUSIONS In this large cohort of a relatively uncommon variant of BCC, the clinicopathological features and tumor behavior of PBCC was similar to periocular non-PBCC. The somatic mutation spectrum of PBCC resembles that reported in nonperiocular cutaneous BCC with novel drivers identified. We identified several potential actionable mutations that could be targeted with molecular therapy.
Collapse
Affiliation(s)
- Fadi Hassanin
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
- Department of Ophthalmology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Azza Maktabi
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
| | - Nouran Adly
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Alsuabeyl
- Life Science and Environmental Institute, King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz, City for Science and Technology, Riyadh, Saudi Arabia
| | - Deepak P Edward
- King Khaled Eye Specialty Hospital, Riyadh, Saudi Arabia
- Department of Ophthalmology and Visual Sciences and Pathology, University of Illinois College of Medicine, Chicago, Illinois, U.S.A
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | | |
Collapse
|
22
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Mir-326 potentiates radiosensitivity of cervical squamous cell carcinoma through downregulating SMO expression in the Hedgehog signaling pathway. Genes Genomics 2022; 44:981-991. [PMID: 35751784 DOI: 10.1007/s13258-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiotherapy resistance affects the therapeutic effect of cervical squamous cell carcinoma (CSCC). Smoothened (Smo) is an anticancer target of the Hedgehog (Hh) pathway and its mutation is related to drug resistance. OBJECTIVE To explore the roles of miR-326 and Smoothened (SMO) on radiation resistance in patients with cervical carcinoma. METHODS Expression of miR-326 and SMO in cervical cancer tissue and radioresistant cell lines were analyzed. The radiation response with the expression of miR-326 was evaluated in tissue and cells. Bioinformatics analysis and literature review were performed to explore the target of miR-326. The regulation of miR-326 to SMO mRNA was verified through the dual-luciferase reporter assay. RESULTS Patients with poor radiation response have lower miR-326 and higher SMO expression. Upregulation of miR-326 decreased SMO expression and its downstream proteins but does not affect the proliferation of CSCC cells. The upregulation of miR-326 increased radiation sensitivity of the CSCC cell through downregulating SMO and its downstream proteins in the Hedgehog (Hh) signaling pathway. CONCLUSIONS miR-326 may predict the treatment response to radiation, and upregulating miR-326 may improve the treatment response to radiation.
Collapse
|
24
|
In GK, Nallagangula A, Choi JS, Tachiki L, Blackburn MJ, Capone S, Bollin KB, Reuben DY, Shirai K, Zhang-Nunes S, Ragab O, Terando A, Hu JC, Lee H, Bhatia S, Chandra S, Lutzky J, Gibney GT. Clinical activity of PD-1 inhibition in the treatment of locally advanced or metastatic basal cell carcinoma. J Immunother Cancer 2022; 10:jitc-2022-004839. [PMID: 35545318 PMCID: PMC9096532 DOI: 10.1136/jitc-2022-004839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Basal cell carcinoma (BCC) is the most common malignancy worldwide, yet the management of patients with advanced or metastatic disease is challenging, with limited treatment options. Recently, programmed death receptor 1 (PD-1) inhibition has demonstrated activity in BCC after prior Hedgehog inhibitor treatment. Methods We conducted a multicenter, retrospective analysis of BCC patients treated with PD-1 inhibitor therapy. We examined the efficacy and safety of PD-1 therapy, as well as clinical and pathological variables in association with outcomes. Progression-free survival (PFS), overall survival (OS) and duration of response (DOR) were calculated using Kaplan-Meier methodology. Toxicity was graded per Common Terminology Criteria for Adverse Events V.5.0. Results A total of 29 patients with BCC who were treated with PD-1 inhibition were included for analysis, including 20 (69.0%) with locally advanced and 9 (31.0%) with metastatic disease. The objective response rate was 31.0%, with five partial responses (17.2%), and four complete responses (13.8%). Nine patients had stable disease (31.0%), with a disease control rate of 62.1%. The median DOR was not reached. Median PFS was 12.2 months (95% CI 0.0 to 27.4). Median OS was 32.4 months (95% CI 18.1 to 46.7). Two patients (6.9%) developed grade 3 or higher toxicity, while four patients (13.8%) discontinued PD-1 inhibition because of toxicity. Higher platelets (p=0.022) and any grade toxicity (p=0.024) were significantly associated with disease control rate. Conclusions The clinical efficacy of PD-1 inhibition among patients with advanced or metastatic BCC in this real-world cohort were comparable to published trial data. Further investigation of PD-1 inhibition is needed to define its optimal role for patients with this disease.
Collapse
Affiliation(s)
- Gino Kim In
- Division of Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Aparna Nallagangula
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Jacob Seung Choi
- Division of Hematology and Oncology, Northwestern University, Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Lisa Tachiki
- Division of Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matthew J Blackburn
- Division of Hematology and Oncology, Georgetown University, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Stephen Capone
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathryn B Bollin
- Division of Hematology/Oncology, Scripps Clinic, Scripps MD Anderson Cancer Center, San Diego, California, USA
| | - Daniel Y Reuben
- Division of Hematology & Oncology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, USA
| | - Keisuke Shirai
- Section of Hematology/Oncology, Dartmouth University, Norris Cotton Cancer Center, Lebanon, New Hampshire, USA
| | - Sandy Zhang-Nunes
- Department of Ophthalmology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Omar Ragab
- Department of Radiation Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Alicia Terando
- Section of Surgical Oncology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jenny C Hu
- Department of Dermatology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Han Lee
- Department of Dermatology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Shailender Bhatia
- Division of Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sunandana Chandra
- Division of Hematology and Oncology, Northwestern University, Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Jose Lutzky
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Geoffrey Thomas Gibney
- Division of Hematology and Oncology, Georgetown University, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| |
Collapse
|
25
|
Krausert S, Brabetz S, Mack NL, Schmitt-Hoffner F, Schwalm B, Peterziel H, Mangang A, Holland-Letz T, Sieber L, Korshunov A, Oehme I, Jäger N, Witt O, Pfister SM, Kool M. Predictive modeling of resistance to SMO-inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. Neurooncol Adv 2022; 4:vdac026. [PMID: 35475274 PMCID: PMC9034118 DOI: 10.1093/noajnl/vdac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Inhibition of the sonic hedgehog (SHH) pathway with Smoothened (SMO) inhibitors is a promising treatment strategy in SHH-activated medulloblastoma, especially in adult patients. However, the problem is that tumors frequently acquire resistance to the treatment. To understand the underlying resistance mechanisms and to find ways to overcome the resistance, preclinical models that became resistant to SMO inhibition are needed. Methods To induce SMO inhibitor resistant tumors, we have treated a patient-derived xenograft (PDX) model of SHH medulloblastoma, sensitive to SMO inhibition, with 20 mg/kg Sonidegib using an intermitted treatment schedule. Vehicle-treated and resistant models were subjected to whole-genome and RNA sequencing for molecular characterization and target engagement. In vitro drug screens (76 drugs) were performed using Sonidegib-sensitive and -resistant lines to find other drugs to target the resistant lines. One of the top hits was then validated in vivo. Results Nine independent Sonidegib-resistant PDX lines were generated. Molecular characterization of the resistant models showed that eight models developed missense mutations in SMO and one gained an inactivating point mutation in MEGF8, which acts downstream of SMO as a repressor in the SHH pathway. The in vitro drug screen with Sonidegib-sensitive and -resistant lines identified good efficacy for Selinexor in the resistant line. Indeed, in vivo treatment with Selinexor revealed that it is more effective in resistant than in sensitive models. Conclusions We report the first human SMO inhibitor resistant medulloblastoma PDX models, which can be used for further preclinical experiments to develop the best strategies to overcome the resistance to SMO inhibitors in patients.
Collapse
Affiliation(s)
- Sonja Krausert
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Sebastian Brabetz
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Norman L Mack
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Felix Schmitt-Hoffner
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Benjamin Schwalm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Aileen Mangang
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Sieber
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg and Clinical Cooperation Unit Neuropathology, German Cancer Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
26
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
27
|
Qiu P, Liu J, Zhao L, Zhang P, Wang W, Shou D, Ji J, Li C, Chai K, Dong Y. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153852. [PMID: 35026508 DOI: 10.1016/j.phymed.2021.153852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sanghuangporus vaninii, a large precious medicinal fungus called Sanghuang in China, has significant antitumor activity. We previously reported that a Sanghuangporus vaninii extract could lead to apoptosis in HT-29 cells through the intrinsic apoptotic pathway. We further found that Inoscavin A exhibited anti-colon cancer activity, but its specific mechanisms have not been fully elucidated. METHODS Inoscavin A was obtained from Sanghuangporus vaninii by the classic phytochemical separation technology. The male BALB/c nude mice were injected with HT-29 colon cancer cells as animal model. In order to observe the pathological changes of tumor section, the hematoxylin-eosin(H&E) staining was applied in the histological analysis. Metabolomics was utilized for the investigation of the overall changes of serum metabolites in animal model, and the potential targets of Inoscavin A were analyzed by Ingenuity Pathway Analysis (IPA). We further employed a molecular docking approach to predict the degree of combination of Inoscavin A and Smo. Then we further performed Western blotting and immunofluorescence analysis to investigate the expression of proteins involved in Hh-related pathways in tumor tissues. In addition, the colony formation assay, scratch-wound assay and transwell migration and invasion assay were conducted to evaluate the anti-colon-cancer activity of Inoscavin A. Concurrently, the mitochondrial membrane potential assay and TUNEL apoptosis assay were detected to demonstrate the effect of Inoscavin A on promoting HT-29 cells apoptosis. Western blot experiments verified the anti-tumor effects of Inoscavin A were modulated the protein expression of Shh, Ptch1, Smo and Gli1 in HT-29 cells. RESULTS We showed that Inoscavin A, a pyrone compound isolated from the Sanghuangporus vaninii extract, exerted its antitumor activity in an HT-29 colon cancer cell xenograft mouse model. Subsequently, we first time prove that the antitumor effects of Inoscavin A were related to the hedgehog (Hh) signaling pathway. Furthermore, we demonstrated that Smo, the core receptor of the Hh pathway, was critical for the induction of apoptosis of Inoscavin A and that overexpression of this target could significantly rescue cell apoptosis induced by Inoscavin A treatment. CONCLUSION Thus, our studies first propose that the natural outgrowth Inoscavin A exerted its anti-cancer effects by inhibiting Smo to suppress the activity of the Hh pathway though inhibiting cell proliferation and promoting apoptosis. These findings further indicate that Inoscavin A will be expected to be a prospective remedical compound for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ping Qiu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Jingqun Liu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China
| | - Pinghu Zhang
- Medical College, Yangzhou University, Yang zhou, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hang zhou, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China
| | - Jinjun Ji
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Changyu Li
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hang zhou, China
| | - Kequn Chai
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China.
| | - Yu Dong
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hang zhou 310007, China.
| |
Collapse
|
28
|
Ramelyte E, Restivo G, Mannino M, Levesque MP, Dummer R. Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 2022; 23:573-582. [PMID: 35081851 DOI: 10.1080/14656566.2022.2032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common skin cancer in humans. Recently, BCCs were suggested to be classified into 'easy to treat' and 'difficult to treat,' and different therapeutic options are suggested for their management. AREAS COVERED In this review, the authors discuss treatment options that are approved, recommended for, or are still in development for treatment of BCC. The review covers approved local therapies, such as imiquimod and 5-fluorouracil, and systemic therapies, such as hedgehog inhibitors. New medical agents, investigated in clinical trials, are reviewed. These include: targeted therapies, such as GLI antagonists or anti-VEGFR agents, immunotherapies, such as checkpoint inhibitors, recombinant cytokines or silencing RNA, as well as intralesional virotherapies with modified adeno- or herpes viruses. EXPERT OPINION The progress made in recent years has improved the management of patients with advanced BCC; however, neither tumor targeting nor immune system engaging agents provide a cure. New treatment approaches directed not only to known targets but also the tumor microenvironment are in development and are anticipated to improve the management of difficult to treat BCC.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Maria Mannino
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Gupta N, Ruiz ES. Current Perspectives in the Treatment of Locally Advanced Basal Cell Carcinoma. Drug Des Devel Ther 2022; 16:183-190. [PMID: 35058688 PMCID: PMC8765439 DOI: 10.2147/dddt.s325852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common cancer in Caucasians, and its incidence continues to rise. Generally, BCCs have good outcomes when diagnosed and treated early. However, 1-10% of patients will develop advanced disease due to either delays in accessing treatment or aggressive tumors that may be refractory to treatment. Locally advanced basal cell carcinomas (laBCCs) are large, aggressive, or recurrent tumors that have the potential to invade surrounding tissues including bone, cartilage, nerve, and muscle. Treatment requires a multi-disciplinary approach where different modalities including surgery, radiation therapy, Hedgehog Pathway Inhibitors, and immunotherapy can be considered.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Jamaica Plain, MA, USA
| | - Emily S Ruiz
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Jamaica Plain, MA, USA
| |
Collapse
|
30
|
Zhu X, Leboeuf M, Liu F, Grachtchouk M, Seykora JT, Morrisey EE, Dlugosz AA, Millar SE. HDAC1/2 Control Proliferation and Survival in Adult Epidermis and Pre‒Basal Cell Carcinoma through p16 and p53. J Invest Dermatol 2022; 142:77-87.e10. [PMID: 34284046 PMCID: PMC8688286 DOI: 10.1016/j.jid.2021.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
HDAC inhibitors show therapeutic promise for skin malignancies; however, the roles of specific HDACs in adult epidermal homeostasis and in disease are poorly understood. We find that homozygous epidermal codeletion of Hdac1 and Hdac2 in adult mouse epidermis causes reduced basal cell proliferation, apoptosis, inappropriate differentiation, and eventual loss of Hdac1/2-null keratinocytes. Hdac1/2-deficient epidermis displays elevated acetylated p53 and increased expression of the senescence gene p16. Loss of p53 partially restores basal proliferation, whereas p16 deletion promotes long-term survival of Hdac1/2-null keratinocytes. In activated GLI2-driven pre-basal cell carcinoma, Hdac1/2 deletion dramatically reduces proliferation and increases apoptosis, and knockout of either p53 or p16 partially rescues both proliferation and basal cell viability. Topical application of the HDAC inhibitor romidepsin to the normal epidermis or to GLI2ΔN-driven lesions produces similar defects to those caused by genetic Hdac1/2 deletion, and these are partially rescued by loss of p16. These data reveal essential roles for HDAC1/2 in maintaining proliferation and survival of adult epidermal and basal cell carcinoma progenitors and suggest that the efficacy of therapeutic HDAC1/2 inhibition will depend in part on the mutational status of p53 and p16.
Collapse
Affiliation(s)
- Xuming Zhu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Leboeuf
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fang Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah E. Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Corresponding author:
| |
Collapse
|
31
|
Zverev NP, Lyakhovets AA, Plaksa IL, Khmelkova DN, Isaev AA. [Metastatic basal cell carcinoma with a SMO gene mutation. A case report]. Arkh Patol 2021; 83:35-38. [PMID: 34859984 DOI: 10.17116/patol20218306135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors describe a clinical case of a patient with metastatic basal cell carcinoma and secondary resistance to vismodegib. A SMO G416E mutation of unknown clinical significance was found in the gene encoding the transmembrane receptor protein Smoothened (SMO) protein, which suggests a defect in the Sonic Hedgehog (SH) pathway and may cause tumor resistance to the prescribed drug. Comprehensive genomic profiling and in silico analysis have been used to diagnose the tumor.
Collapse
Affiliation(s)
- N P Zverev
- I.P. Pavlov Ryazan State Medical University of the Ministry of Health of Russia, Ryazan, Russia
| | - A A Lyakhovets
- I.P. Pavlov Ryazan State Medical University of the Ministry of Health of Russia, Ryazan, Russia
| | - I L Plaksa
- OOO «GENETICO» Center of Genetics and Reproductive Medicine, Moscow, Russia.,Leningrad Regional Clinical Oncology Dispensary, St. Petersburg, Russia
| | - D N Khmelkova
- OOO «GENETICO» Center of Genetics and Reproductive Medicine, Moscow, Russia
| | - A A Isaev
- OOO «GENETICO» Center of Genetics and Reproductive Medicine, Moscow, Russia
| |
Collapse
|
32
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
33
|
Frappaz D, Barritault M, Montané L, Laigle-Donadey F, Chinot O, Le Rhun E, Bonneville-Levard A, Hottinger AF, Meyronnet D, Bidaux AS, Garin G, Pérol D. MEVITEM-a phase I/II trial of vismodegib + temozolomide vs temozolomide in patients with recurrent/refractory medulloblastoma with Sonic Hedgehog pathway activation. Neuro Oncol 2021; 23:1949-1960. [PMID: 33825892 PMCID: PMC8563312 DOI: 10.1093/neuonc/noab087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vismodegib specifically inhibits Sonic Hedgehog (SHH). We report results of a phase I/II evaluating vismodegib + temozolomide (TMZ) in immunohistochemically defined SHH recurrent/refractory adult medulloblastoma. METHODS TMZ-naïve patients were randomized 2:1 to receive vismodegib + TMZ (arm A) or TMZ (arm B). Patients previously treated with TMZ were enrolled in an exploratory cohort of vismodegib (arm C). If the safety run showed no excessive toxicity, a Simon's 2-stage phase II design was planned to explore the 6-month progression-free survival (PFS-6). Stage II was to proceed if arm A PFS-6 was ≥3/9 at the end of stage I. RESULTS A total of 24 patients were included: arm A (10), arm B (5), and arm C (9). Safety analysis showed no excessive toxicity. At the end of stage I, the PFS-6 of arm A was 20% (2/10 patients, 95% unilateral lower confidence limit: 3.7%) and the study was prematurely terminated. The overall response rates (ORR) were 40% (95% CI, 12.2-73.8) and 20% (95% CI, 0.5-71.6) in arm A and B, respectively. In arm C, PFS-6 was 37.5% (95% CI, 8.8-75.5) and ORR was 22.2% (95% CI, 2.8-60.0). Among 11 patients with an expected sensitivity according to new generation sequencing (NGS), 3 had partial response (PR), 4 remained stable disease (SD) while out of 7 potentially resistant patients, 1 had PR and 1 SD. CONCLUSION The addition of vismodegib to TMZ did not add toxicity but failed to improve PFS-6 in SHH recurrent/refractory medulloblastoma. Prediction of sensitivity to vismodegib needs further refinements.
Collapse
Affiliation(s)
| | | | - Laure Montané
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | | | - Olivier Chinot
- Neuro-Oncology Unit, La Timone Marseille, Marseille, France
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, Lille, France
- Inserm, U-1192, F-59000 Lille, Lille, France
- General and Stereotaxic Neurosurgery Service, CHU Lille, Lille, France
- Oscar Lambret Center, Lille, France
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Andreas F Hottinger
- Brain and Spine Tumor Center, Departments of Clinical Neurosciences & Oncology, CHUV Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Gwenaële Garin
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| |
Collapse
|
34
|
Patidegib in Dermatology: A Current Review. Int J Mol Sci 2021; 22:ijms221910725. [PMID: 34639065 PMCID: PMC8509734 DOI: 10.3390/ijms221910725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Basal cell carcinoma is one of the most common types of non-melanoma skin cancers, which can be locally destructive despite low-rate metastasis. Surgery is the treatment of choice, but it lacks of efficacy on advanced cases. Hedgehog pathway inhibitors are a class of drugs providing a new therapeutic option for patients affected by advanced disease. Besides systemic therapy, such as vismodegib and sonidegib, also topical inhibitors have been developed. Patidegib is able to decrease tumor burden, reducing the adverse effects induced by systemic targeted therapies. Methods: We performed comprehensive research to summarize the use of patidegib in advanced and recurrent aggressive basal cell carcinomas. Only English language human studies were included in the search. Results: Seven trials reported the application of patidegib. Both topical and systemic patidegib demonstrated safety, tolerability, and efficacy in naïve patients with stage II and III basal cell carcinomas, while stage IV disease and not-naïve patients did not show any benefit. Conclusion: Unlike systemic Hedgehog pathway inhibitors, patidegib 2% gel is not associated with systemic adverse effects and allows a better patient management. Considering the multidisciplinary management of neoplasia, in the era of precision medicine, it is mandatory to confide in pharmacogenomics to obtain personalized combined or sequential therapies.
Collapse
|
35
|
Doan HQ, Chen L, Nawas Z, Lee HH, Silapunt S, Migden M. Switching Hedgehog inhibitors and other strategies to address resistance when treating advanced basal cell carcinoma. Oncotarget 2021; 12:2089-2100. [PMID: 34611482 PMCID: PMC8487719 DOI: 10.18632/oncotarget.28080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/28/2021] [Indexed: 11/25/2022] Open
Abstract
Although basal cell carcinoma (BCC) is often managed successfully with surgery, patients with locally advanced BCC (laBCC) or metastatic BCC (mBCC) who are not candidates for surgery or radiotherapy have limited treatment options. Most BCCs result from aberrant Hedgehog pathway activation in keratinocyte tumor cells, caused by sporadic or inherited mutations. Mutations in the patched homologue 1 gene that remove its inhibitory regulation of Smoothened homologue (SMO) or mutations in SMO that make it constitutively active, lead to Hedgehog pathway dysregulation and downstream activation of GLI1/2 transcription factors, promoting cell differentiation and proliferation. Hedgehog inhibitors (HHIs) block overactive signaling of this pathway by inhibiting SMO and are currently the only approved treatments for advanced BCC. Two small-molecule SMO inhibitors, vismodegib and sonidegib, have shown efficacy and safety in clinical trials of advanced BCC patients. Although these agents are effective and tolerable for many patients, HHI resistance occurs in some patients. Mechanisms of resistance include mutations in SMO, noncanonical cell identity switching leading to tumor cell resistance, and non-canonical pathway crosstalk causing Hedgehog pathway activation. Approaches to managing HHI resistance include switching HHIs, HHI and radiotherapy combination therapy, photodynamic therapy, and targeting Hedgehog pathway downstream effectors. Increasing understanding of the control of downstream effectors has identified new therapy targets and potential agents for evaluation in BCC. Identification of biomarkers of resistance or response is needed to optimize HHI use in patients with advanced BCC. This review examines HHI resistance, its underlying mechanisms, and methods of management for patients with advanced BCC.
Collapse
Affiliation(s)
- Hung Q Doan
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Leon Chen
- US Dermatology Partners, Houston, TX, USA
| | - Zeena Nawas
- Department of Dermatology, Baylor College of Medicine, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sirunya Silapunt
- Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Michael Migden
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA.,Departments of Dermatology and Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
37
|
Weissman JP, Samlowski W, Meoz R. Hedgehog Inhibitor Induction with Addition of Concurrent Superficial Radiotherapy in Patients with Locally Advanced Basal Cell Carcinoma: A Case Series. Oncologist 2021; 26:e2247-e2253. [PMID: 34472658 DOI: 10.1002/onco.13959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/19/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Locally advanced basal cell cancer is a rare and challenging clinical problem. Historically, these patients were treated with aggressive surgery or radiotherapy. Most sporadic basal cell carcinomas have somatic mutations in the hedgehog pathway. Oral hedgehog inhibitors induce rapid and often complete clinical responses in locally advanced basal cell tumors. Unfortunately, these responses are usually transient. We hypothesized that treatment failure represents persistence of drug resistant cells that could be eradicated by addition of localized radiotherapy. MATERIALS AND METHODS We performed a retrospective review of our patients with locally advanced basal cell cancer treated with sonidegib or vismodegib induction therapy who were treated with added superficial radiotherapy at the time of maximal response. RESULTS Twelve patients met inclusion criteria. All patients achieved a complete response following hedgehog inhibitor therapy with addition of radiotherapy. Progression-free survival at 40 months was 89%, with a median follow-up of 40 months. Relapses occurred in only 2 of 12 patients (16.6%). Nine patients experienced grade I-II toxicity from hedgehog inhibitor induction therapy (taste changes [3], weight loss [3], muscle cramps [3]). Eight patients experienced mild radiotherapy-induced skin toxicity during concurrent therapy. No patients had to discontinue treatment. CONCLUSION Induction therapy with hedgehog inhibitors followed by addition of concurrent radiation therapy resulted in an extremely high clinical response rate with relatively minor and reversible toxicity. This gave a high rate of progression-free survival and a low disease-specific progression rate. Further prospective evaluation of this treatment approach is needed to confirm the apparent clinical activity. IMPLICATIONS FOR PRACTICE Locally advanced basal cell cancers are challenging to treat. Previously, aggressive surgical resection or radiotherapy represented the best treatment options. Most basal cell cancers have somatic mutations in the hedgehog pathway. Oral inhibitors of this pathway produce rapid but transient clinical responses. This study reports 12 patients treated with hedgehog inhibitor induction therapy to near-maximal response. Addition of concurrent involved field radiotherapy resulted in a very high complete response rate with minimal toxicity. There was prolonged progression-free survival in 90% of patients. This study identified a novel treatment approach for patients with advanced basal cell carcinoma.
Collapse
Affiliation(s)
- Joshua P Weissman
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois, USA.,Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA
| | - Wolfram Samlowski
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA.,School of Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA.,University of Nevada School of Medicine, Reno, Nevada, USA
| | - Raul Meoz
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA.,School of Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA.,University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
38
|
Zárate AM, Espinosa-Bustos C, Guerrero S, Fierro A, Oyarzún-Ampuero F, Quest AFG, Di Marcotullio L, Loricchio E, Caimano M, Calcaterra A, González-Quiroz M, Aguirre A, Meléndez J, Salas CO. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:8372. [PMID: 34445078 PMCID: PMC8395040 DOI: 10.3390/ijms22168372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.
Collapse
Affiliation(s)
- Ana María Zárate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad SEK (I3CBSEK), Fernando Manterola 0789, Providencia, Santiago 7520317, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Felipe Oyarzún-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Program of Cellular and Molecular Biology, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Lucia Di Marcotullio
- Laboratory Affiliated to Insituto Pasteur Italia, Fondazione Cenci Bognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Elena Loricchio
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Matías González-Quiroz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Adam Aguirre
- Laboratorio de Medicina Traslacional, Fundación Arturo López Pérez, Rancagua 878, Lower Fifth Floor, Providencia, Santiago 8320000, Chile;
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| |
Collapse
|
39
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
40
|
Acute Myeloid Leukemia Mutations and Future Mechanistic Target to Overcome Resistance. Curr Treat Options Oncol 2021; 22:76. [PMID: 34213682 DOI: 10.1007/s11864-021-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT Cytogenetics and mutation identification in acute myeloid leukemia have allowed for more targeted therapy. Many therapies have been approved by the FDA in the last 3 years including gilteritinib and azacitidine but the overall survival has remained stagnant at 25%. The inability to achieve complete remission was related to the residual leukemic stem cells (LSCs). Thus, the relationship between bone marrow niche and LSCs must be further explored to prevent treatment relapse/resistance. The development of immunotherapy and nanotechnology may play a role in future therapy to achieve the complete remission. Nano-encapsulation of drugs can improve drugs' bioavailability, help drugs evade resistance, and provide combination therapy directly to the cancer cells. Studies indicate targeting surface antigens such as CLL1 and CD123 using chimeric antibody receptor T cells can improve survival outcomes. Finally, new discoveries indicate that inhibiting integrin αvβ3 and acid ceramidase may prove to be efficacious.
Collapse
|
41
|
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence. ACS NANO 2021; 15:6929-6948. [PMID: 33733740 PMCID: PMC8009103 DOI: 10.1021/acsnano.0c10833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started in China during late 2019 and swiftly spread worldwide. Since COVID-19 emergence, many therapeutic regimens have been relentlessly explored, and although two vaccines have just received emergency use authorization by different governmental agencies, antiviral therapeutics based neutralizing antibodies and small-drug inhibitors can still be vital viable options to prevent and treat SARS-CoV-2 infections. The viral spike glycoprotein (S-protein) is the key molecular player that promotes human host cellular invasion via recognition of and binding to the angiotensin-converting enzyme 2 gene (ACE2). In this work, we report the results obtained by mutating in silico the 18 ACE2 residues and the 14 S-protein receptor binding domain (S-RBDCoV-2) residues that contribute to the receptor/viral protein binding interface. Specifically, each wild-type protein-protein interface residue was replaced by a hydrophobic (isoleucine), polar (serine and threonine), charged (aspartic acid/glutamic acid and lysine/arginine), and bulky (tryptophan) residue, respectively, in order to study the different effects exerted by nature, shape, and dimensions of the mutant amino acids on the structure and strength of the resulting binding interface. The computational results were next validated a posteriori against the corresponding experimental data, yielding an overall agreement of 92%. Interestingly, a non-negligible number of mis-sense variations were predicted to enhance ACE2/S-RBDCoV-2 binding, including the variants Q24T, T27D/K/W, D30E, H34S7T/K, E35D, Q42K, L79I/W, R357K, and R393K on ACE2 and L455D/W, F456K/W, Q493K, N501T, and Y505W on S-RBDCoV-2, respectively.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Suzana Aulic
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Alice Fermeglia
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
- . Phone: +39
040 558 3750
| |
Collapse
|
42
|
Habashy S, Jafri A, Osman HO, Thomas NE, Udekwe S, Heindl SE. Hedgehog Pathway Inhibitors: Clinical Implications and Resistance in the Treatment of Basal Cell Carcinoma. Cureus 2021; 13:e13859. [PMID: 33754119 PMCID: PMC7971714 DOI: 10.7759/cureus.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common non-melanoma skin cancer and is on the rise. Most BCCs are benign; however, a very small percentage are locally advanced and metastatic. The pathway that normally regulates cell growth and proliferation is directed by the hedgehog pathway (HP). In BCC, it becomes over-stimulated due to genetic abnormalities. Treatments for BCC include local treatment by cryotherapy (liquid nitrogen), topical immunosuppression, surgery, or radiotherapy. Systemic treatment may be required in locally advanced lesions, metastatic BCC, or individuals who are inoperable. The systemic treatments of BCC act to inhibit the HP and are called hedgehog pathway inhibitors. The first one being vismodegib and the second sonidegib. Although these treatments have shown promising results, they have prominent side effects in almost all patients, with few patients having to discontinue the treatment. About 50% of patients did not respond to treatment from the beginning, some had partial responses, others had recurrence after discontinuing the drugs, and few had worsening of the disease. In this paper, we will explore the most common side effects, resistance, and different methods to overcome resistance to ensure the highest rate of cure for BCC.
Collapse
Affiliation(s)
- Suzanne Habashy
- Family Medicine/Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aliya Jafri
- Biochemistry and Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Biochemistry, Jinnah Sindh Medical University, Karachi, PAK
| | - Hiba O Osman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Neena E Thomas
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Somtochi Udekwe
- Internal Medicine, Endocrinology, Pediatrics, Gynecology, Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Stacey E Heindl
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Avalon University School of Medicine, Willemstad, CUW
| |
Collapse
|
43
|
Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215:113268. [PMID: 33636537 DOI: 10.1016/j.ejmech.2021.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Current treatment for MB includes surgical resection, radiotherapy and chemotherapy. Despite significant progress in its management, a portion of children relapse and tumor recurrence carries a poor prognosis. Based on their molecular and clinical characteristics, MB patients are clinically classified into four groups: Wnt, Hh, Group 3, and Group 4. With our increased understanding of relevant molecular pathways disrupted in MB, the development of targeted therapies for MB has also increased. Targeted drugs have shown unique privileges over traditional cytotoxic therapies in balancing efficacy and toxicity, with many of them approved and widely used clinically. The aim of this review is to present the recent progress on targeted chemotherapies for the treatment of all classes of MB.
Collapse
|
44
|
Laurini E, Marson D, Aulic S, Fermeglia M, Pricl S. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex. ACS NANO 2020; 14:11821-11830. [PMID: 32833435 PMCID: PMC7448377 DOI: 10.1021/acsnano.0c04674] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable in silico structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition. In particular, residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor-binding domain are determined as true hot spots, contributing to shaping and determining the stability of the relevant protein-protein interface. Overall, these results could be used to estimate the binding affinity of the viral protein to different allelic variants of ACE2 receptors discovered in COVID-19 patients and for the effective structure-based design and development of neutralizing antibodies, vaccines, and protein/protein inhibitors against this terrible new coronavirus.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology
and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Molecular Biology
and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Suzana Aulic
- Molecular Biology
and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology
and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology
and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental
Protection, University of Lodz, 90-136 Lodz, Poland
- Phone: +39 040 558 3750.
| |
Collapse
|
45
|
Sun C, Zhang Y, Wang H, Yin Z, Wu L, Huang Y, Zhang W, Wang Y, Hu Q. Design and biological evaluation of phenyl imidazole analogs as hedgehog signaling pathway inhibitors. Chem Biol Drug Des 2020; 97:546-552. [PMID: 32946174 DOI: 10.1111/cbdd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
The hedgehog (Hh) signaling pathway is involved in diverse aspects of cellular events. Aberrant activation of Hh signaling pathway drives oncogenic transformation for a wide range of cancers, and it is therefore a promising target in cancer therapy. In the principle of association and ring-opening, we designed and synthesized a series of Hh signaling pathway inhibitors with phenyl imidazole scaffold, which were biologically evaluated in Gli-Luc reporter assay. Compound 25 was identified to possess high potency with nanomolar IC50 , and moreover, it preserved the inhibition against wild-type and drug-resistant Smo-overexpressing cells. A molecular modeling study of compound 25 expounded its binding mode to Smo receptor, providing a basis for the further structural modification of phenyl imidazole analogs.
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Ying Zhang
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Han Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Zhengxu Yin
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lingqiong Wu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Yanmiao Huang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Wenhu Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Youbing Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Qibo Hu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
46
|
Booker BE, Steg AD, Kovac S, Landen CN, Amm HM. The use of hedgehog antagonists in cancer therapy: a comparison of clinical outcomes and gene expression analyses. Cancer Biol Ther 2020; 21:873-883. [PMID: 32914706 DOI: 10.1080/15384047.2020.1806640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hedgehog (HH) signaling, a critical developmental pathway, has been implicated in cancer initiation and progression. With vismodegib and sonidegib having been approved for clinical use, increasing numbers of HH inhibitors alone and in combination with chemotherapies are in clinical trials. Here we highlight the clinical research on HH antagonists and the genetics of response to these compounds in human cancers. Selectivity of HH inhibitors, determined by decreased pathway transcriptional activity, has been demonstrated in many clinical trials. Patients with advanced/metastatic basal cell carcinoma have benefited the most, whereas HH antagonists did little to improve survival rates in other cancers. Correlation between clinical response and HH gene expression vary among different cancer types. Predicting response and resistance to HH inhibitors presents a challenge and continues to remain an important area of research. New approaches combine standard of care chemotherapies and molecularly targeted therapies to increase the clinical utility of HH inhibitors.
Collapse
Affiliation(s)
- Burthia E Booker
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Adam D Steg
- McWhorter School of Pharmacy, Samford University , Birmingham, AL, USA
| | - Stefan Kovac
- McWhorter School of Pharmacy, Samford University , Birmingham, AL, USA
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia , Charlottesville, VA, USA
| | - Hope M Amm
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
47
|
Metastatic Basal Cell Carcinoma of the Skin: A Comprehensive Literature Review, Including Advances in Molecular Therapeutics. Adv Anat Pathol 2020; 27:331-353. [PMID: 32618586 DOI: 10.1097/pap.0000000000000267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basal cell carcinoma (BCC) of the skin is the most common type of malignant human tumor. In Europe, the incidence of BCC ranges from 44.6 to 128 cases per 100,000 inhabitants annually, whereas in the United States, the yearly incidence rate ranges between 500 and 1500. The global incidence has been calculated to be as high as 10 million cases of BCC per year. There are 2 main clinical patterns of BCC-the familial BCC in basal cell nevus syndrome and sporadic BCC. The etiology of cutaneous BCC is usually the result of the interaction between solar ultraviolet radiation and genetic factors. Somatic or germline mutations in the effector components of the hedgehog signaling pathway (ie, PTCH1, PTCH2, SMO or SUFU genes) are responsible for ∼90% of the cases of both sporadic and familial BCC, all causing a constitutive activation of the hedgehog pathway. Cutaneous BCC very rarely metastasizes, and diagnosis in metastatic sites can be very difficult. Metastatic BCC has weakly effective therapeutic options with a poor prognosis until few years ago. In 2012, small-molecule therapies, involving inactivation of the hedgehog signaling pathway, and capable of reducing tumor growth and progression have been introduced into clinical practice for advanced (locally advanced or metastatic) BCC. We performed a comprehensive literature review on metastatic BCC and found at least 915 cases reported to date. In addition, we extensively discussed the differential diagnosis of metastatic BCC, and outlined the advances in clinical therapeutics involving these small molecules.
Collapse
|
48
|
Alvarez-Trotta A, Wang Z, Shersher E, Li B, Long J, Lohse I, Wahlestedt C, El-Rifai W, Robbins DJ, Capobianco AJ. The bromodomain inhibitor IBET-151 attenuates vismodegib-resistant esophageal adenocarcinoma growth through reduction of GLI signaling. Oncotarget 2020; 11:3174-3187. [PMID: 32913560 PMCID: PMC7443367 DOI: 10.18632/oncotarget.27699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog/GLI (HH/GLI) signaling pathway plays a critical role in human oncogenesis. Unfortunately, the clinical use of HH inhibitor(s) has been associated with serious adverse effects and mutation-related drug resistance. Since the efficacy of SMO (Smoothened) and GLI inhibitors is limited in clinical trials, there remains a critical need for the HH/GLI pathway inhibitors with different mechanisms of action. Here, we show that esophageal adenocarcinoma (EAC) cell lines are insensitive to vismodegib (SMO inhibitor) but respond to GANT61 (GLI1 inhibitor). Furthermore, we examine the role of GLI1 in tumorigenicity of EAC and how a selective bromodomain inhibitor IBET-151 downregulates transcriptional activity of the GLI1 transcription factor in EAC. Our study demonstrates that GLI1 plays an important role in tumorigenicity of EAC and that elevated GLI1 expression in patients’ ultrasound-assisted endoscopic biopsy may predict the response to neoadjuvant chemotherapy (NAC) FOLFOX. Importantly, IBET-151 abrogates the growth of vismodegib-resistant EAC cells and downregulates HH/GLI by reducing the occupancy of BRD4 at the GLI1 locus. IBET-151 also attenuates tumor growth of EAC-PDXs and does so in an on-target manner as it reduces the expression of GLI1. We identify HH/GLI signaling as a novel druggable pathway in EAC as well as validate an ability of clinically relevant GLI inhibitor to attenuate the viability of vismodegib-resistant EAC cells. Therefore, we propose that selective bromodomain inhibitors, such as IBET-151, could be used as novel therapeutic agents for EAC patients harboring GLI-dependent tumors.
Collapse
Affiliation(s)
- Annamil Alvarez-Trotta
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zhiqiang Wang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elena Shersher
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jun Long
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wael El-Rifai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Co-senior authors
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Co-senior authors
| |
Collapse
|
49
|
Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov 2020; 1:134-145. [DOI: 10.1158/2643-3230.bcd-20-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
|
50
|
Campione E, Di Prete M, Lozzi F, Lanna C, Spallone G, Mazzeo M, Cosio T, Rapanotti C, Dika E, Gaziano R, Orlandi A, Bianchi L. High-Risk Recurrence Basal Cell Carcinoma: Focus on Hedgehog Pathway Inhibitors and Review of the Literature. Chemotherapy 2020; 65:2-10. [PMID: 32777789 DOI: 10.1159/000509156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022]
Abstract
Basal cell carcinoma is the most common skin tumour, with the majority of the cases occurring on the head and neck district, where cosmetic and functional results are crucial. It can be locally destructive if not diagnosed early and treated appropriately. Surgery is the treatment of choice for most lesions, but aggressive, recurrent, or unresectable tumours can be challenging to manage. Advanced basal cell carcinoma includes high recurrence risk subtypes, in which standard therapies demonstrate lack of efficacy. This led to a need for investigating more deeply the pathogenesis of the disease and to the discovery of the implication of the hedgehog pathway. The development of systemic inhibitors of this pathway provides new treatment options for patients with advanced disease, resulting in survival improvement. Food and Drug Administration, before, and European Medicines Agency later approved 2 Hedgehog pathway inhibitors for the treatment of advanced basal cell carcinomas, vismodegib and sonidegib. Here, we present a review of the current English language literature trying to analyze differences in the 2 drugs as a head-to-head comparison between them has not already been documented in a randomized controlled clinical trial. Although vismodegib and sonidegib showed similar efficacy and safety profiles, in an indirect comparison scenario, sonidegib has shown slightly better outcomes in locally advanced basal cell carcinoma than vismodegib. They present different molecular structures, as they bind different residues on their targets and develop resistance for different mutations. In a future scenario, clinical trials comparing the 2 drugs are needed, as well as expanding data on discontinuation of therapy and/or consequential administration of them, with the aim to improve our clinical practise.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,
| | - Monia Di Prete
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Lozzi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Spallone
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Mazzeo
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Rapanotti
- Department of Laboratory Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emi Dika
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|