1
|
Lin F, Hu S, Chen J, Li H, Li M, Li R, Xu M, Luo M. MiR-125b suppresses bladder Cancer cell growth and triggers apoptosis by regulating IL-6/IL-6R/STAT3 axis in vitro and in vivo. Cytokine 2025; 190:156926. [PMID: 40120148 DOI: 10.1016/j.cyto.2025.156926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Bladder cancer (BLCA) is an aggressive malignancy characterized by limited therapeutic options and a poor prognosis. Research has indicated that abnormally expressed miRNAs play a significant role in the pathogenesis of BLCA, although the specific mechanisms remain unclear. MiR-125b plays a tumor suppressor role in a variety of cancers and affects the biological processes of cancer cells such as proliferation, invasion, migration and apoptosis by regulating different signaling pathways. Elucidation of the molecular mechanisms underlying miR-125b may provide clinical therapeutic strategies for bladder cancer. Here, miR-125b was downregulated whereas its targets IL-6R and STAT3 were upregulated in BLCA, as evidenced by bioinformatics analysis. Kaplan-Meier analysis confirmed that miR-125b serves as an independent prognostic factor linked to overall survival (OS) in patients with bladder cancer. Furthermore, overexpression of miR-125b significantly inhibited BLCA cell proliferation, migration, and invasion, while promoting apoptosis, as evidenced by an increased Bax/Bcl-2 ratio and activated cleaved caspase-3. Further investigations demonstrated that miR-125b directly targets and downregulates both IL-6R and STAT3. In a xenograft model, miR-125b overexpression effectively inhibited tumor growth in bladder cancer by blocking IL-6/IL-6R and STAT3 signaling pathways. Collectively, these findings broaden our understanding of the mechanism by which miR-125b acting as a BLCA suppressor in apoptotic regulation by targeting the IL-6/IL-6R/STAT3 signaling pathway, providing novel insights regarding the design of novel miRNA based therapeutic strategies against BLCA.
Collapse
Affiliation(s)
- Fang Lin
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Haiyang Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Mengting Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin, Sichuan, China..
| |
Collapse
|
2
|
Yuan S, Bi X, Shayiti F, Niu Y, Chen P. Relationship between circulating miRNA-222-3p and miRNA-136-5p and the efficacy of docetaxel chemotherapy in metastatic castration-resistant prostate cancer patients. BMC Urol 2024; 24:275. [PMID: 39709424 DOI: 10.1186/s12894-024-01666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer is the most dangerous stage of prostate cancer, with a high mortality rate. Docetaxel chemotherapy is one of the most effective treatment methods currently, but some patients do not respond to chemotherapy. To avoid unnecessary toxicity in non-responders, this study explores the potential of circulating microRNAs as early biomarkers of docetaxel response in patients with metastatic castration-resistant prostate cancer. METHODS PC3 cells and DU145 cells were divided into the control, NC mimics, and miRNA-136-5p-mimics groups. Cell viability was measured using the CCK-8 assay. Cell apoptosis was determined by flow cytometry. Cell migration and invasion abilities were evaluated using the Transwell assay. Real-time quantitative PCR was used to measure the miRNA levels in cells and peripheral blood of patients. The miRNA-136-5p target genes were predicted by using the PITA, TargetScan, and miRanda databases. The target genes were analyzed with KEGG pathway analysis. RESULTS In both PC3 and DU145 cells, the miRNA-136-5p-mimics group exhibited significantly increased cell survival rates, migration and invasion numbers, and significantly decreased apoptosis rates than the control group (p < 0.05). The miRNA-222-3p and miRNA-136-5p levels were significantly increased in docetaxel-resistant PC3 and DU145 cells (p < 0.05). The levels of circulating miRNA-222-3p and miRNA-136-5p were significantly associated with docetaxel treatment (p < 0.05). Higher levels of miRNA-222-3p were observed in non-responsive patients (p < 0.05). The area under the curve for miRNA-222-3p was 0.76 (95%CI: 0.55-0.97), indicating its effectiveness as a predictive factor for non-responsive patients to docetaxel. Patients with high expression of miRNA-34c-5p after docetaxel chemotherapy had shorter overall survival times (P < 0.05). Bioinformatics analysis identified 110 potential target genes of miRNA-136-5p. KEGG revealed that these genes were mainly distributed in three pathways. Among them, the PI3K-AKT pathway was closely related to the metastasis of prostate cancer cells. CONCLUSION Our study demonstrates that miRNA-136-5p promotes the proliferation and invasion of PC3 and DU145 cells while inhibiting apoptosis. Circulating miRNA-222-3p may serve as a biomarker for early therapeutic response to docetaxel, and further clinical investigation is warranted. Additionally, miRNA-136-5p may have anti-cancer effects during docetaxel chemotherapy in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Urology, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi,Xinjiang, 830011, P.R. China
| | - Xing Bi
- Department of Urology, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi,Xinjiang, 830011, P.R. China
| | - Furhati Shayiti
- Department of Urology, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi,Xinjiang, 830011, P.R. China
| | - Yue Niu
- Department of Urology, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi,Xinjiang, 830011, P.R. China
| | - Peng Chen
- Department of Urology, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi,Xinjiang, 830011, P.R. China.
| |
Collapse
|
3
|
Ghani A, Singh H, Kumar H, Vaiphei K. MicroRNA expression signature in gastrointestinal stromal tumour & their molecular & histological features. Indian J Med Res 2024; 160:118-127. [PMID: 39382501 PMCID: PMC11463855 DOI: 10.25259/ijmr_2567_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives In gastrointestinal stromal tumour (GIST), not only genetic abnormalities are responsible for adverse clinical events, but epigenetic modifications also play a crucial role. MicroRNA (miRNA) dysregulation plays a significant role in carcinogenesis as miRNAs serve as natural silencer for their targets. Our study aimed to explore the miRNAs expression and its association with molecular and histopathological characteristics of GIST. Methods Fifty GIST samples, including 45 formalin fixed paraffin embedded (FFPE) and fresh tissues were included. Peripheral non-tumour tissues were used as controls. All the cases were confirmed using immunohistochemistry. RNA was extracted using miRNA-specific kit, and the expression was performed using RT-qPCR. The data were evaluated using AriaMx software version 1.5 (Agilent, US). MiRNAs expression was analyzed by using the relative quantification method (ΔΔCT). Results miR-221, miR-222, miR-494 and miR-34a showed significant down-regulation in tumours relative to non-tumour tissues. The expression levels of these miRNAs were significantly down-regulated in c-KIT (proto-oncogene encoding the tyrosine kinase transmembrane receptor)-positive tumours compared to c-KIT-negative. Further analysis revealed that reduced expression was associated with spindle subtypes and gastric localization. However, there was no significant correlation with other histological features. Additionally, miR-221/222, and miR-494 were down-regulated in most of the KIT exon 11 mutant subtypes, while miRNA-34a was associated with platelet derived growth factor receptor alpha (PDGFRA) mutations. Interpretation & conclusions The present study showed that the down-regulation of these miRNAs may help better molecular classification and characterization of GISTs. Our results offer new insight into the association between miRNAs and histological features, enabling a more thorough understanding of GISTs at the molecular level.
Collapse
Affiliation(s)
- Abdul Ghani
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hemanth Kumar
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kim Vaiphei
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
5
|
Di Vito A, Ravegnini G, Gorini F, Aasen T, Serrano C, Benuzzi E, Coschina E, Monesmith S, Morroni F, Angelini S, Hrelia P. The multifaceted landscape behind imatinib resistance in gastrointestinal stromal tumors (GISTs): A lesson from ripretinib. Pharmacol Ther 2023:108475. [PMID: 37302758 DOI: 10.1016/j.pharmthera.2023.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal sarcomas and the gold-standard treatment is represented by tyrosine kinase inhibitors (TKIs). Unfortunately, first-line treatment with the TKI imatinib usually promotes partial response or stable disease rather than a complete response, and resistance appears in most patients. Adaptive mechanisms are immediately relevant at the beginning of imatinib therapy, and they may represent the reason behind the low complete response rates observed in GISTs. Concurrently, resistant subclones can silently continue to grow or emerge de novo, becoming the most representative populations. Therefore, a slow evolution of the primary tumor gradually occurs during imatinib treatment, enriching heterogeneous imatinib resistant clonal subpopulations. The identification of secondary KIT/PDGFRA mutations in resistant GISTs prompted the development of novel multi-targeted TKIs, leading to the approval of sunitinib, regorafenib, and ripretinib. Although ripretinib has broad anti-KIT and -PDGFRA activity, it failed to overcome sunitinib as second-line treatment, suggesting that imatinib resistance is more multifaceted than initially thought. The present review summarizes several biological aspects suggesting that heterogeneous adaptive and resistance mechanisms can also be driven by KIT or PDGFRA downstream mediators, alternative kinases, as well as ncRNAs, which are not targeted by any TKI, including ripretinib. This may explain the modest effect observed with ripretinib and all anti-GIST agents in patients.
Collapse
Affiliation(s)
- Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Cesar Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Italy; Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
6
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
7
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Is the microRNA-221/222 Cluster Ushering in a New Age of Cardiovascular Diseases? COR ET VASA 2023. [DOI: 10.33678/cor.2022.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
10
|
Simultaneous Visualization of MiRNA-221 and Caspase-3 in Cancer Cells for Investigating the Feasibility of MiRNA-Targeted Therapy with a Dual-Color Fluorescent Nanosensor. BIOSENSORS 2022; 12:bios12070444. [PMID: 35884247 PMCID: PMC9312853 DOI: 10.3390/bios12070444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
MiRNA-targeted therapy holds great promise for precision cancer therapy. It is important to investigate the effect of changes in miRNA expression on apoptosis in order to evaluate miRNA-targeted therapy and achieve personalized therapy. In this study, we designed a dual-color fluorescent nanosensor consisting of grapheme oxide modified with a molecular beacon and peptide. The nanosensor can simultaneously detect and image miRNA-221 and apoptotic protein caspase-3 in living cells. Intracellular experiments showed that the nanosensor could be successfully applied for in situ monitoring of the effect of miRNA-221 expression changes on apoptosis by dual-color imaging. The current strategy could provide new avenues for investigating the feasibility of miRNA-targeted therapy, screening new anti-cancer drugs targeting miRNA and developing personalized treatment plans.
Collapse
|
11
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
12
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
13
|
Stefanou IK, Dovrolis N, Gazouli M, Theodorou D, Zografos GK, Toutouzas KG. miRNAs expression pattern and machine learning models elucidate risk for gastric GIST. Cancer Biomark 2022; 33:237-247. [PMID: 35213356 DOI: 10.3233/cbm-210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gatrointestinal stromal tumors (GISTs) are the main mesenchymal tumors found in the gastrointestinal system. GISTs clinical phenotypes differ significantly and their molecular basis is not yet completely known. microRNAs (miRNAs) have been involved in carcinogenesis pathways by regulating gene expression at post-transcriptional level. OBJECTIVE The aim of the present study was to elucidate the expression profiles of miRNAs relevant to gastric GIST carcinogenesis, and to identify miRNA signatures that can discriminate the GIST from normal cases. METHODS miRNA expression was tested by miScript™miRNA PCR Array Human Cancer PathwayFinder kit and then we used machine learning in order to find a miRNA profile that can predict the risk for GIST development. RESULTS A number of miRNAs were found to be differentially expressed in GIST cases compared to healthy controls. Among them the hsa-miR-218-5p was found to be the best predictor for GIST development in our cohort. Additionally, hsa-miR-146a-5p, hsa-miR-222-3p, and hsa-miR-126-3p exhibit significantly lower expression in GIST cases compared to controls and were among the top predictors in all our predictive models. CONCLUSIONS A machine learning classification approach may be accurate in determining the risk for GIST development in patients. Our findings indicate that a small number of miRNAs, with hsa-miR218-5p as a focus, may strongly affect the prognosis of GISTs.
Collapse
Affiliation(s)
- Ioannis K Stefanou
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens, Athens, Greece
- School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Dimitrios Theodorou
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios K Zografos
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos G Toutouzas
- 1st Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B, Majidinia M. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci 2021; 285:119984. [PMID: 34592229 DOI: 10.1016/j.lfs.2021.119984] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 01/07/2023]
Abstract
Phosphoinositide-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important proliferative signaling pathways with critical undeniable function in various aspects of cancer initiation/progression, including proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. On the other hand, numerous genetic alterations in the key genes involved in the PI3K/AKT/mTOR signaling pathway have been identified in multiple solid and hematological tumors. In addition, accumulating recent evidences have demonstrated a reciprocal interaction between this signaling pathway and microRNAs, a large group of small non-coding RNAs. Therefore, in this review, it was attempted to discuss about the interaction between key components of PI3K/AKT/mTOR signaling pathway with various miRNAs and their importance in cancer biology.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Akbarzadeh
- Department of Physical Education and Sport Medicine, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
15
|
BAG2 mediates coelomocyte apoptosis in Vibrio splendidus challenged sea cucumber Apostichopus japonicus. Int J Biol Macromol 2021; 189:34-43. [PMID: 34418417 DOI: 10.1016/j.ijbiomac.2021.08.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are closely related to the occurrence, development, and immune response of diseases. BCL2-associated athanogene 2 (BAG2) is a member of the BAG family that functions in diverse cellular processes, including cell death, differentiation, and cell division. In this study, we cloned the cDNA full-length of sea cucumber (Apostichopus japonicus) BAG2 (AjBAG2) and confirmed it is an anti-apoptotic protein in vitro and in vivo during Vibrio splendidus infection. Moreover, we identified a perfect complementarity between miR-375 and the 3'-untranslated region (UTR) sequence of AjBAG2. The miR-375 expression decreased the luciferase activity dose-dependently when co-transfected with the AjBAG2 3'-UTR-luciferase reporter containing the miR-375 target site in epithelioma papulosum cyprini (EPC) cells. This inhibition was partially recovered by a miR-375 specific inhibitor. The mRNA and protein levels of AjBAG2 were opposite to that of coelomocytes in challenged sea cucumber when treated with miR-375 mimics or inhibitors. Additionally, miR-375 expression induced coelomocytes apoptosis and blocked the anti-apoptotic activity of AjBAG2. Our data demonstrated that AjBAG2 is an anti-apoptotic protein during V. splendidus infection and this function can be inhibited by miR-375 in sea cucumbers.
Collapse
|
16
|
Buhagiar A, Seria E, Borg M, Borg J, Ayers D. Overview of microRNAs as liquid biopsy biomarkers for colorectal cancer sub-type profiling and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:934-945. [PMID: 35582382 PMCID: PMC8992439 DOI: 10.20517/cdr.2021.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
| | - Miriana Borg
- Faculty of medical sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
17
|
Zhang X, Wang W, Wang Y, Jiang G. Identification of genes and pathways leading to metastasis and poor prognosis in melanoma. Aging (Albany NY) 2021; 13:22474-22489. [PMID: 34582363 PMCID: PMC8507267 DOI: 10.18632/aging.203554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
Melanoma causes the highest mortality rate among all skin cancers. However, the underlying molecular mechanisms leading to metastasis and poor prognosis in melanoma have not been fully elucidated. In this study, the differentially expressed genes (DEGs) related to metastasis in melanoma were screened out. The results of gene annotation was combined with The Cancer Genome Atlas (TCGA) database. The microRNA (miRNA) network that regulates key genes and their correlation with BRAFV600E was preliminarily analyzed. Cell and molecular biology experiments were conducted to verify the results of bioinformatics analysis. Results showed that the PI3K-Akt signaling pathway contained the key genes CDK2, CDK4, KIT, and Von Willebrand factor. Survival analysis showed that high expression of the four key genes significantly reduced the survival rate of patients with melanoma. Correlation analysis showed that BRAFV600E may regulate the expression of the four key genes, and a total of 240 miRNAs may regulate this expression. Experiments showed that the inactivation of key genes inhibits the proliferation, migration, and invasion of melanoma. In conclusion, the PI3K-Akt signaling pathway and the four key genes promoted the proliferation, migration, and invasion of melanoma, and related to poor prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Wandong Wang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Aryal YP, Kim TY, Lee ES, An CH, Kim JY, Yamamoto H, Lee S, Lee Y, Sohn WJ, Neupane S, Kim JY. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol 2021; 9:697243. [PMID: 34513833 PMCID: PMC8424101 DOI: 10.3389/fcell.2021.697243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sanggyu Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan-si, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
19
|
Ahmed SH, Espinoza-Sánchez NA, El-Damen A, Fahim SA, Badawy MA, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS One 2021; 16:e0250642. [PMID: 33901254 PMCID: PMC8075236 DOI: 10.1371/journal.pone.0250642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, but aggressive entity of breast carcinoma with rapid dermal lymphatic invasion in young females. It is either poorly or misdiagnosed as mastitis because of the absence of a distinct lump. Small extracellular vesicles (sEVs) circulating in liquid biopsies are a novel class of minimally invasive diagnostic alternative to invasive tissue biopsies. They modulate cancer progression via shuttling their encapsulated cargo including microRNAs (miRNAs) into recipient cells to either trigger signaling or induce malignant transformation of targeted cells. Plasma sEVs < 200 nm were isolated using a modified cost-effective polyethylene glycol (PEG)-based precipitation method and compared to standard methods, namely ultracentrifugation and a commercial kit, where the successful isolation was verified by different approaches. We evaluated the expression levels of selected sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p using quantitative real PCR (qPCR). Relative to non-IBC, our qPCR data showed that sEV-derived miR-181b-5p and miR-222-3p were significantly upregulated, whereas let-7a-5p was downregulated in IBC patients. Interestingly, receiver operating characteristic (ROC) curves analysis revealed that diagnostic accuracy of let-7a-5p alone was the highest for IBC with an area under curve (AUC) value of 0.9188, and when combined with miR-222-3p the AUC was improved to 0.973. Further, 38 hub genes were identified using bioinformatics analysis. Together, circulating sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p serve as promising non-invasive diagnostic biomarkers for IBC.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Ahmed El-Damen
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Galala University, Suez, Egypt.,Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | |
Collapse
|
20
|
Zhang Y, Hong WL, Li ZM, Zhang QY, Zeng K. The Mechanism of miR-222 Targets Matrix Metalloproteinase 1 in Regulating Fibroblast Proliferation in Hypertrophic Scars. Aesthetic Plast Surg 2021; 45:749-757. [PMID: 32350561 DOI: 10.1007/s00266-020-01727-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/11/2020] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate the value of miR-222 in hypertrophic scars (HS). Specific mechanisms were used to measure the level of miR-222, while MTT assay, flow cytometry, western blot and qRT-PCR were employed to detect the relative proteins after fibroblasts were transfected with the miR-222 mimic/inhibitor. The direct target of miR-222 was determined by Dual-Luciferase Reporter assay. Furthermore, qRT-PCR and western blot were employed to detect the matrix metalloproteinase 1 (MMP1) RNA/protein after fibroblasts were transfected with the miR-222 mimic/inhibitor. These results revealed that miR-222 was significantly upregulated in HS fibroblasts. The overexpression of miR-222 enhanced the HS fibroblast proliferation, increased the cell population in the S phase, inhibited the cell apoptosis, enhanced the expression levels of Col1A1, Col3A1 mRNA/protein, proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin E1 and CDK1 and reduced the expression levels of cleaved caspase-3/9. However, the miR-222 suppression triggered opposite effects. Furthermore, miR-222 played a regulatory role in HS by negatively regulating its target gene MMP1 by binding with its 3'-untranslated region. The overexpression of MMP1 reduced the expression levels of PCNA and cyclin D1, but enhanced the expression levels of cleaved caspase-3. Therefore, MiR-222 and MMP1 have potential value for HS. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yi Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Road, Baiyun District, Guangzhou, 510515, Guangdong, China
- Department of Dermatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wei-Long Hong
- Department of Surgery Lab, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhi-Ming Li
- Department of Dermatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qi-Yu Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B, Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene 2020; 40:277-291. [PMID: 33122827 PMCID: PMC7808938 DOI: 10.1038/s41388-020-01525-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs have been identified as key regulators in the progression of various cancers. LINC00261 has been reported as a tumor suppressor in multiple cancers. However, its function and underlying mechanisms in pancreatic cancer remain largely unclear. Quantitative real-time PCR was performed to detect RNA expression. In situ hybridization was used to discover the subcellular location. The direct binding of LINC00261 to miR-222-3p was verified using a dual-luciferase reporter assay and RNA immunoprecipitation. LINC00261-binding proteins were detected using an RNA pulldown assay. LINC00261 was downregulated in pancreatic cancer tissues and cell lines. Its reduced expression was correlated with advanced pathological stage and poor prognosis. Forced expression of LINC00261 suppressed pancreatic cancer glycolysis and proliferation and induced cell cycle arrest and apoptosis. Mechanistically, downregulation of LINC00261 was caused by hypermethylation of the CpG island in the promoter region and EZH2-mediated histone H3 lysine 27 trimethylation. Moreover, LINC00261 exerted its biological function by binding to miR-222-3p to activate the HIPK2/ERK/c-myc pathway. In addition, LINC00261 could also reduce c-myc expression by sequestering IGF2BP1. Our study suggests that LINC00261 functions as a tumor suppressor in pancreatic cancer and identifies novel epigenetic and posttranscriptional regulatory mechanisms of LINC00261, which contribute to the targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
22
|
Fernandez-Serra A, Moura DS, Sanchez-Izquierdo MD, Calabuig-Fariñas S, Lopez-Alvarez M, Martínez-Martínez A, Carrasco-Garcia I, Ramírez-Calvo M, Blanco-Alcaina E, López-Reig R, Obrador-Hevia A, Alemany R, Gutierrez A, Hindi N, Poveda A, Lopez-Guerrero JA, Martin-Broto J. Prognostic Impact of let-7e MicroRNA and Its Target Genes in Localized High-Risk Intestinal GIST: A Spanish Group for Research on Sarcoma (GEIS) Study. Cancers (Basel) 2020; 12:E2979. [PMID: 33066614 PMCID: PMC7602387 DOI: 10.3390/cancers12102979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level, and they have been described as being associated with tumor prognosis. Here, miRNA profiling was planned to explore new molecular prognostic biomarkers in localized intestinal high-risk GIST. Paraffin tumor blocks of 14 and 86 patients were used in the discovery and expansion sets, respectively. GeneChip miRNA v3.0 was employed to identify the miRNAs differentially expressed between relapsed and non-relapsed patient samples, which were validated in the expansion set, by qRT-PCR. RT2 Profiler PCR Array was used for the screening of let-7e targets. Expression levels were correlated with relapse-free survival and overall survival. In the discovery set, 39 miRNAs were significantly deregulated, let-7e and miR-550 being the most underexpressed and overexpressed miRNAs in the relapsed group, respectively. In the expansion set, the underexpression of let-7e or the overexpression of 4 of its target genes (ACVR1B, CASP3, COL3A1, and COL5A2) were statistically associated with worse relapse-free survival. The expression of let-7e and 4 of its target genes are potential prognostic biomarkers in high-risk localized intestinal GIST. The expression of these genes is a potential molecular tool useful for a more accurate prognosis in this subset of GIST patients.
Collapse
Affiliation(s)
- Antonio Fernandez-Serra
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (A.F.-S.); (A.M.-M.); (M.R.-C.); (R.L.-R.)
| | - David S. Moura
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
| | | | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), 28029 Madrid, Spain
- Department of Pathology, Universitat de València, 46003 Valencia, Spain
| | - Maria Lopez-Alvarez
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
| | - Andrea Martínez-Martínez
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (A.F.-S.); (A.M.-M.); (M.R.-C.); (R.L.-R.)
| | - Irene Carrasco-Garcia
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
- Medical Oncology Department, University Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Marta Ramírez-Calvo
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (A.F.-S.); (A.M.-M.); (M.R.-C.); (R.L.-R.)
| | - Elena Blanco-Alcaina
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
| | - Raquel López-Reig
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (A.F.-S.); (A.M.-M.); (M.R.-C.); (R.L.-R.)
| | - Antonia Obrador-Hevia
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d’Investigació Sanitària de les Illes Balears (IdISBa-IUNICS), 07120 Palma de Mallorca, Spain;
- Sequencing Unit, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Regina Alemany
- Department of Biology, Balearic Islands University, 07122 Palma de Mallorca, Spain;
| | - Antonio Gutierrez
- Hematology Department, University Hospital Son Espases, 07120 Mallorca, Spain;
| | - Nadia Hindi
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
- Medical Oncology Department, University Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Andres Poveda
- Medical Oncology Department, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Jose A. Lopez-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (A.F.-S.); (A.M.-M.); (M.R.-C.); (R.L.-R.)
- Department of Basic Medical Sciences, School of Medicine, Catholic University of Valencia ‘San Vicente Martir’, 46001 Valencia, Spain
| | - Javier Martin-Broto
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain; (D.S.M.); (M.L.-A.); (I.C.-G.); (E.B.-A.); (N.H.)
- Medical Oncology Department, University Hospital Virgen del Rocio, 41013 Sevilla, Spain
| |
Collapse
|
23
|
Duan Y, Haybaeck J, Yang Z. Therapeutic Potential of PI3K/AKT/mTOR Pathway in Gastrointestinal Stromal Tumors: Rationale and Progress. Cancers (Basel) 2020; 12:2972. [PMID: 33066449 PMCID: PMC7602170 DOI: 10.3390/cancers12102972] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) originates from interstitial cells of Cajal (ICCs) in the myenteric plexus of the gastrointestinal tract. Most GISTs arise due to mutations of KIT and PDGFRA gene activation, encoding the receptor tyrosine kinase (RTK). The clinical use of the RTK inhibitor imatinib has significantly improved the management of GIST patients; however, imatinib resistance remains a challenge. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is a critical survival pathway for cell proliferation, apoptosis, autophagy and translation in neoplasms. Constitutive autophosphorylation of RTKs has an impact on the activation of the PI3K/AKT/mTOR pathway. In several preclinical and early-stage clinical trials PI3K/AKT/mTOR signaling inhibition has been considered as a promising targeted therapy strategy for GISTs. Various inhibitory drugs targeting different parts of the PI3K/AKT/mTOR pathway are currently being investigated in phase I and phase II clinical trials. This review highlights the progress for PI3K/AKT/mTOR-dependent mechanisms in GISTs, and explores the relationship between mTOR downstream signals, in particular, eukaryotic initiation factors (eIFs) and the development of GISTs, which may be instrumental for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Yi Duan
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Zhihui Yang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China;
| |
Collapse
|
24
|
Dang L, Wang Y, Shi C, Liao M, Sun Z, Fang S. A Potential Tumor Suppressor Gene Named miR-508-5p Inhibited the Proliferation and Invasion of Human Melanoma Cells by Targeting KIT. Technol Cancer Res Treat 2020; 19:1533033820951801. [PMID: 33000689 PMCID: PMC7533916 DOI: 10.1177/1533033820951801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the main death cause of human skin cancer. Increasing evidences demonstrate that microRNAs act as key roles in mediating tumor occurrence and progression. MiR-508-5p has proved to participate in the development of various types of human malignancies. However, the role of miR-508-5p in melanoma remained unclear. In in vitro study, miR-508-5p level in peripheral blood samples of patients with melanoma and human melanoma A375 cells was downregulated compared to that in normal peripheral blood samples or normal human epidermal melanocytes (MHEM). MiR-508-5p overexpression significantly inhibited the cell proliferation, migration and invasion in A375 cells, and thus inhibiting KIT expression at both gene and protein levels. Furthermore, western blot analysis showed miR-508-5p reduced cell proliferation by targeting KIT to modulate RAS/RAF/MEK/ERK pathway. Taken together, we speculated that miR-508-5p functioned as an important suppressor in human melanoma by targeting KIT, suggesting miR-508-5p might be a promising tumor suppressor gene for further target therapies from bench to clinic.
Collapse
Affiliation(s)
- Lin Dang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yan Wang
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Cuiping Shi
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Mengsi Liao
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zhaojun Sun
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sining Fang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Amirnasr A, Sleijfer S, Wiemer EAC. Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:6975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
Affiliation(s)
| | | | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.A.); (S.S.)
| |
Collapse
|
26
|
Wu X, Huang J, Yang Z, Zhu Y, Zhang Y, Wang J, Yao W. MicroRNA-221-3p is related to survival and promotes tumour progression in pancreatic cancer: a comprehensive study on functions and clinicopathological value. Cancer Cell Int 2020; 20:443. [PMID: 32943991 PMCID: PMC7488115 DOI: 10.1186/s12935-020-01529-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background The microRNA miR-221-3p has previously been found to be an underlying biomarker of pancreatic cancer. However, the mechanisms of miR-221-3p underlying its role in pancreatic cancer pathogenesis, proliferation capability, invasion ability, drug resistance and apoptosis and the clinicopathological value of miR-221-3p have not been thoroughly studied. Methods Based on microarray and miRNA-sequencing data extracted from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), relevant literature, and real-time quantitative PCR (RT-qPCR), we explored clinicopathological features and the expression of miR-221-3p to determine its clinical effect in pancreatic cancer. Proliferation, migration, invasion, apoptosis and in vitro cytotoxicity tests were selected to examine the roles of mir-221-3p. In addition, several miR-221-3p functional analyses were conducted, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein–protein interaction (PPI) network analyses, to examine gene interactions with miR-221-3p. Results The findings of integrated multi-analysis revealed higher miR-221-3p expression in pancreatic cancer tissues and blood than that in para-carcinoma samples (SMD of miR-221-3p: 1.52; 95% CI 0.96, 2.08). MiR-221-3p is related to survival both in pancreatic cancer and pancreatic ductal adenocarcinoma patients. Cell experiments demonstrated that miR-221-3p promotes pancreatic cancer cell proliferation capability, migration ability, invasion ability, and drug resistance but inhibits apoptosis. Further pancreatic cancer bioinformatics analyses projected 30 genes as the underlying targets of miR-221-3p. The genes were significantly distributed in diverse critical pathways, including microRNAs in cancer, viral carcinogenesis, and the PI3K-Akt signalling pathway. Additionally, PPI indicated four hub genes with threshold values of 5: KIT, CDKN1B, RUNX2, and BCL2L11. Moreover, cell studies showed that miR-221-3p can inhibit these four hub genes expression in pancreatic cancer. Conclusions Our research revealed that pancreatic cancer expresses a high-level of miR-221-3p, indicating a potential miR-221-3p role as a prognosis predictor in pancreatic cancer. Moreover, miR-221-3p promotes proliferation capacity, migration ability, invasion ability, and drug resistance but inhibits apoptosis in pancreatic cancer. The function of miR-221-3p in the development of pancreatic cancer may be mediated by the inhibition of hub genes expression. All these results might provide an opportunity to extend the understanding of pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Xuejiao Wu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Huang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Yang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongping Zhang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancheng Wang
- Department of General Surgery, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
The Role of miR-375-3p and miR-200b-3p in Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:ijms21145151. [PMID: 32708220 PMCID: PMC7404198 DOI: 10.3390/ijms21145151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Deregulated microRNA (miRNA) expression profiles and their contribution to carcinogenesis have been observed in virtually all types of human cancer. However, their role in the pathogenesis of rare mesenchymal gastrointestinal stromal tumors (GISTs) is not well defined, yet. In this study, we aimed to investigate the role of two miRNAs strongly downregulated in GIST—miR-375-3p and miR-200b-3p—in the pathogenesis of GIST. To achieve this, miRNA mimics were transfected into GIST-T1 cells and changes in the potential target gene mRNA and protein expression, as well as alterations in cell viability, migration, apoptotic cell counts and direct miRNA–target interaction, were evaluated. Results revealed that overexpression of miR-375-3p downregulated the expression of KIT mRNA and protein by direct binding to KIT 3′UTR, reduced GIST cell viability and migration rates. MiR-200b-3p lowered expression of ETV1 protein, directly targeted and lowered expression of EGFR mRNA and protein, and negatively affected cell migration rates. To conclude, the present study identified that miR-375-3p and miR-200b-3p have a tumor-suppressive role in GIST.
Collapse
|
28
|
Chen Y, Qin C, Cui X, Geng W, Xian G, Wang Z. miR-4510 acts as a tumor suppressor in gastrointestinal stromal tumor by targeting APOC2. J Cell Physiol 2020; 235:5711-5721. [PMID: 31975384 DOI: 10.1002/jcp.29506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Dysregulation of microRNAs (miRNAs) expression has been demonstrated in gastrointestinal stromal tumor (GIST). In this study, we aimed to determine the differential miRNAs expression in GISTs and explore the functional mechanism of differential miRNAs in GIST cells. We measured differential miRNAs in six pairs of GIST tissues and matched adjacent tissues through a high-throughput sequencing, which was confirmed in 64 pairs of GIST tissues and adjacent tissues by real-time polymerase chain reaction. We found that miR-4510 expression was significantly downregulated in GIST tissues compared to matched control tissues. Luciferase reporter assay identified apolipoprotein C-II (APOC2) as a direct target of miR-4510. Overexpression of miR-4510 inhibited the mRNA and protein expression of APOC2. In addition, overexpression of miR-4510 suppressed GIST cell proliferation, migration, and invasion. Overexpression of miR-4510 also inhibited the phosphorylation of AKT and ERK1/2, reduced the expression of matrix metallopeptidase 2 (MMP2) and MMP9. APOC2 knockdown mimicked the effect of miR-4510 overexpression. Further investigation confirmed that APOC2 was notably upregulated in GIST tissues compared to adjacent control tissues. These results suggested that miR-4510 downregulation could promote GIST progression, including growth, invasion, and metastasis, through increasing APOC2 expression.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenmao Geng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guozhe Xian
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
29
|
Wu H, Fan H, Liu XX. Biological role of microRNA-146a. Shijie Huaren Xiaohua Zazhi 2019; 27:1155-1160. [DOI: 10.11569/wcjd.v27.i18.1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are endogenous single-stranded non-coding small RNAs that specifically bind to target mRNAs to degrade mRNAs or hinder their translation to regulate the expression of target mRNAs at the post-transcriptional level. MicroRNA-146a is involved in a bulk of biological processes and has a variety of biological functions. This article will review several aspects of the role of microRNA-146a, including controlling inflammation, regulating immunity, mediating myeloid cell proliferation, and involvement in tumor occurrence and development.
Collapse
Affiliation(s)
- Hui Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
30
|
Jin J, Zhang J, Xue Y, Luo L, Wang S, Tian H. miRNA-15a regulates the proliferation and apoptosis of papillary thyroid carcinoma via regulating AKT pathway. Onco Targets Ther 2019; 12:6217-6226. [PMID: 31496725 PMCID: PMC6689766 DOI: 10.2147/ott.s213210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023] Open
Abstract
Aim Aberrantly expressed microRNAs (miRNAs) are involved in many diseases including cancer. The expression of miR-15a was reported to be downregulated in papillary thyroid carcinoma (PTC) compared to control tissue. However, the mechanism underlying this downregulation remains unclear. Methods The effects of miR-15a on the proliferation and invasion of PTC cells were evaluated by CCK-8 and transwell assays, respectively. Expression levels of AKT and rearranged during transfection (RET) in cells were assessed using Western blotting. The correlation of RET and miR-15a was validated by luciferase reporter assay. Moreover, in vivo assay was performed to demonstrate the effect of miR-15a on tumor growth. Results We confirmed that the expression of miR-15a was significantly lower in PTC tissue than that in normal tissue. Overexpression of miR-15a notably inhibited PTC cell proliferation and invasion via promoting apoptosis. Additionally, RET was found to be a target of miR-15a and this correlation was confirmed by dual-luciferase assay and Western blot. Furthermore, in vivo study revealed that overexpression of miR-15a inhibited tumor growth via downregulating the levels of RET and phosphorylated AKT. Conclusion In the present study, we demonstrated that miR-15a played an antitumor role in regulating PTC via targeting RET/AKT pathway. Therefore, miR-15a may serve as a potential molecular target for the treatment of PTC.
Collapse
Affiliation(s)
- Jin Jin
- Department of Endocrinology, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urümqi, Xinjiang 830011, People's Republic of China
| | - Yigui Xue
- Teaching and Research Laboratory of Field Medical, Border Defense Training Group of Land Force Military Medical University, Changji, Xinjiang 831200, People's Republic of China
| | - Li Luo
- Department of Endocrinology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urümqi, Xinjiang 830011, People's Republic of China
| | - Siyao Wang
- Department of Endocrinology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urümqi, Xinjiang 830011, People's Republic of China
| | - Haoming Tian
- Department of Endocrinology, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
31
|
Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv 2019; 9:23894-23907. [PMID: 35530631 PMCID: PMC9069781 DOI: 10.1039/c9ra03608c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
Surface-modified gold nanoparticles are recognized as promising gene delivery vehicles in the treatment of cancer owing to their excellent biocompatibility with biomolecules (like DNA or RNA) and their unique optical and structural properties. In this context, this review article focuses on the diverse transfection abilities of the gene to the targeted cell on the basis of different shapes and sizes of gold nanoparticles in order to promote its effective expression for cancer treatment. In addition, recent trends in gold nanoparticle mediated gene silencing, gene delivery, detection and combinatory therapies are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Devanshu Choudhary
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
32
|
Peng Y, Huang D, Qing X, Tang L, Shao Z. Investigation of MiR-92a as a Prognostic Indicator in Cancer Patients: a Meta-Analysis. J Cancer 2019; 10:4430-4441. [PMID: 31413763 PMCID: PMC6691717 DOI: 10.7150/jca.30313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 06/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background: MiR-92a has been discovered to be involved in the malignant behavior of various types of cancers. However, the particular clinical and prognostic roles of miR-92a in tumors still need to be identified more precisely. The current meta-analysis assessed the prognostic value of miR-92a in various carcinomas. Methods: Systematic literature searches of PubMed, PMC, Web of Science (WOS), Embase in English and Wanfang, SinoMed and the China National Knowledge Infrastructure (CNKI) in Chinese up to Jan 15th 2019 were conducted for eligible studies. Twenty studies involving a total of 2573 patients were included in the analysis. Pooled hazard ratios (HR) for overall survival (OS) and disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival (RFS) were assessed using fixed-effects and random-effects models. Meta-regression and subgroup analyses were carried out to explore the source of heterogeneity. Odds ratio (OR) and 95%CIs were applied to evaluate the relationship between miR-92a expression levels and clinicopathological characteristics. Results: A significant association between miR-92a levels and OS (HR=2.18) was identified. The random pooling model also revealed significance of consistency (HR=2.14), indicating that the stability of the results. Subgroup analyses were performed and the corresponding significance was recognized in Chinese cancer patients (HR=2.35), studies of specimen derived from tissues (HR=2.43), non-hematological cancer (HR=2.35), osteosarcoma (HR=2.54), non-small cell lung cancer (HR=2.33), hepatocellular carcinoma (HR=2.40) and so on. There were significant relations observed of the expression level of miR-92a to tumor size (≥5 vs <5 cm) (OR=2.13), lymph node metastasis (present vs. absent) (OR=1.87), distant metastasis (present vs. absent) (OR=2.99) and so on. Conclusions: the over expression of miR-92a is associated with unfavorable prognosis of Chinese cancer patients. In addition, patients of elevated miR-92a expression level are likely to develop the cancers of more malignant behaviors.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
33
|
Ravegnini G, Serrano C, Simeon V, Sammarini G, Nannini M, Roversi E, Urbini M, Ferrè F, Ricci R, Tarantino G, Pantaleo MA, Hrelia P, Angelini S. The rs17084733 variant in the KIT 3' UTR disrupts a miR-221/222 binding site in gastrointestinal stromal tumour: a sponge-like mechanism conferring disease susceptibility. Epigenetics 2019; 14:545-557. [PMID: 30983504 PMCID: PMC6557610 DOI: 10.1080/15592294.2019.1595997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several miRNAs are dysregulated in gastrointestinal stromal tumours (GIST), and miR-221/222 appear to have a prominent role in GIST biology. Therefore, we investigated the role of DNA variants located in miR-221/222 precursor sequences and their target KIT 3'UTR. Ninety-five polymorphisms were analysed in 115 GIST cases and 88 healthy controls. KIT 3'UTR rs17084733 and pri-miR-222 rs75246947 were found significantly associated with GIST susceptibility. Specifically, KIT rs17084733 A allele was more common in GIST, particularly in KIT wild-type (WT) patients (Padj = 0.017). rs17084733 variant is located within one of the three miR-221/222 binding sites in the KIT 3'UTR, resulting in a mismatch in this seed region. Conversely, KIT mRNA levels were lower in patients carrying the variant allele, except for KIT mutant GIST. Luciferase assay data in GIST cells, generated using a construct containing all the three miR-221/222 binding sites, are consistent with KIT mRNA levels in GIST patients. Reporter assay data, generated using a construct containing only the site encompassing rs17084733, confirmed that this is a functional variant disrupting the miR-221/222 binding site. In conclusion, this is the first study investigating the role of SNPs on miR-221/222 precursor sequences and their binding region on KIT 3'UTR in GIST. We identified the KIT variant rs17084733 as a possible novel genetic biomarker for risk of developing KIT-WT GIST. Moreover, our findings suggest the role of one of the three miR-221/222 binding sites on KIT 3'UTR as endogenous sponge, soaking up and subtracting miR-221/222 to the other two sites characterized by a higher affinity.
Collapse
Affiliation(s)
- Gloria Ravegnini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - César Serrano
- b Medical Oncology Department , Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital , Barcelona , Spain
| | - Vittorio Simeon
- c Medical Statistics Unit , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Giulia Sammarini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Margherita Nannini
- d Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital , University of Bologna , Bologna , Italy
| | - Erica Roversi
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Milena Urbini
- e "Giorgio Prodi" Cancer Research Center , University of Bologna , Bologna , Italy
| | - Fabrizio Ferrè
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Riccardo Ricci
- f UOC di Anatomia Patologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,g Department of Pathology , Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Tarantino
- e "Giorgio Prodi" Cancer Research Center , University of Bologna , Bologna , Italy
| | - Maria A Pantaleo
- d Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital , University of Bologna , Bologna , Italy.,e "Giorgio Prodi" Cancer Research Center , University of Bologna , Bologna , Italy
| | - Patrizia Hrelia
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Sabrina Angelini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| |
Collapse
|
34
|
Sun S, Wang H, Ji M. Overexpression of miR-222-3p Promotes the Proliferation and Inhibits the Apoptosis of Diffuse Large B-Cell Lymphoma Cells via Suppressing PPP2R2A. Technol Cancer Res Treat 2019; 18:1533033819892256. [PMID: 31829105 PMCID: PMC6909270 DOI: 10.1177/1533033819892256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/11/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of microRNA-222-3p on activated B cell-like-type diffuse large B-cell lymphoma cells and the regulatory relationship between microRNA-222-3p and phosphatase 2 regulatory subunit B alpha. METHOD The expression of microRNA-222-3p was detected in activated B cell-like-type diffuse large B-cell lymphoma tissues and cells by quantitative reverse transcription polymerase chain reaction. The regulatory effects of microRNA-222-3p on the proliferation, invasion, and apoptosis of activated B cell-like-type diffuse large B-cell lymphoma cells were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, flow cytometry, and Transwell assay. The regulatory relationship between microRNA-222-3p and phosphatase 2 regulatory subunit B alpha was determined by luciferase reporter gene and RNA pull-down assay. In addition, the effects of microRNA-222-3p on tumor growth were further analyzed in mice. RESULTS MicroRNA-222-3p and phosphatase 2 regulatory subunit B alpha were significantly up- and downregulated in activated B cell-like-type diffuse large B-cell lymphoma tissues and cells, respectively. Phosphatase 2 regulatory subunit B alpha was a target of microRNA-222-3p. MicroRNA-222-3p promoted the proliferation and invasion and inhibited the apoptosis of activated B cell-like-type diffuse large B-cell lymphoma cells. Phosphatase 2 regulatory subunit B alpha reversed the tumor-promoting effects of microRNA-222-3p on activated B cell-like-type diffuse large B-cell lymphoma cells. In addition, microRNA-222-3p promoted the tumor growth in mice and downregulated phosphatase 2 regulatory subunit B alpha in tumor tissues. CONCLUSION MicroRNA-222-3p promoted the proliferation and invasion and inhibited the apoptosis of activated B cell-like-type diffuse large B-cell lymphoma cells through suppressing phosphatase 2 regulatory subunit B alpha expression.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adult
- Aged
- Animals
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Heterografts
- Humans
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Male
- Mice
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Staging
- Protein Phosphatase 2/genetics
- RNA Interference
Collapse
Affiliation(s)
- Shanshan Sun
- Department of Hematology, Shouguang People’s Hospital, Shouguang, Shandong, China
| | - Hui Wang
- CT Magnetic Resonance Imaging Room, Shouguang People’s Hospital, Shouguang, Shandong, China
| | - Mingyou Ji
- CT Magnetic Resonance Imaging Room, Shouguang People’s Hospital, Shouguang, Shandong, China
| |
Collapse
|
35
|
Jiang X, Cheng Y, Hu C, Zhang A, Ren Y, Xu X. MicroRNA-221 sensitizes chronic myeloid leukemia cells to imatinib by targeting STAT5. Leuk Lymphoma 2018; 60:1709-1720. [PMID: 30516071 DOI: 10.1080/10428194.2018.1543875] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are involved in various processes from the development to drug resistance of tumors, including chronic myeloid leukemia (CML). In this study, we examined the STAT5-related miRNA-expression profile in CML cell lines (K562 and imatinib-resistant K562/G) by quantitative real-time reverse-transcriptase polymerase chain reactions. MiR-221 expression was markedly decreased in K562/G cells and peripheral blood mononuclear cells from patients with treatment failure, when compared to imatinib-sensitive CML cells and patients with optimal responses respectively. We also observed the expression of STAT5 inversely correlated with miR-221 expression in K562 and KBM5 cells. Additionally, STAT5 was validated as a direct target of miR-221 in dual-luciferase reporter vector assays. MiR-221 restoration and STAT5 knockdown in K562/G cells increased the sensitivity of CML cells to imatinib by reducing the Bcl2: Bax ratio. Collectively, our data suggested that miR-221-STAT5 axis played crucial roles in controlling the sensitivity of CML cells to imatinib.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| | - Yanhong Cheng
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| | - Chaojie Hu
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| | - Aimei Zhang
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| | - Yingli Ren
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| | - Xiucai Xu
- a Central Laboratory , Anhui Provincial Hospital, Anhui Medical University , Hefei , China
| |
Collapse
|
36
|
Li J, Zhang Q, Zeng W, Wu Y, Luo M, Zhu Y, Guo AY, Yang X. Integrating Transcriptome and Experiments Reveals the Anti-diabetic Mechanism of Cyclocarya paliurus Formula. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:419-430. [PMID: 30388616 PMCID: PMC6205057 DOI: 10.1016/j.omtn.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is generally regarded as a metabolic disorder disease with various phenotypic expressions. Traditional Chinese medicine (TCM) has been widely used for preventing and treating diabetes. In our study, we demonstrated that Cyclocarya paliurus formula extractum (CPE), a compound of TCM, can ameliorate diabetes in diabetic rats. Transcriptome profiles were performed to elucidate the anti-diabetic mechanisms of CPE on pancreas and liver. Pancreatic transcriptome analysis showed CPE treatment significantly inhibited gene expressions related to inflammation and apoptosis pathways, among which the transcription factors (TFs) nuclear factor κB (NF-κB), STAT, and miR-9a/148/200 may serve as core regulators contributing to ameliorate diabetes. Biochemical studies also demonstrated CPE treatment decreased pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-1β, and IL-6) and reduced β cell apoptosis. In liver tissue, our transcriptome and biochemical experiments showed that CPE treatment reduced lipid accumulation and liver injury, and it promoted glycogen synthesis, which may be regulated by TFs Srebf1, Mlxipl, and miR-122/128/192. Taken together, our findings revealed CPE could be used as a potential therapeutic agent to prevent and treat diabetes. It is the first time to combine transcriptome and regulatory network analyses to study the mechanism of CPE in preventing diabetes, giving a demonstration of exploring the mechanism of TCM on complex diseases.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zeng
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Wu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
38
|
Wang Y, Li J, Kuang D, Wang X, Zhu Y, Xu S, Chen Y, Cheng H, Zhao Q, Duan Y, Wang G. miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT. Cell Commun Signal 2018; 16:16. [PMID: 29661252 PMCID: PMC5902930 DOI: 10.1186/s12964-018-0228-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gain-of-function mutations and overexpression of KIT are characteristic features of gastrointestinal stromal tumor (GIST). Dysregulation in miRNA expression may lead to KIT overexpression and tumorigenesis. METHODS miRNA microarray analysis and real-time PCR were used to determine the miRNA expression profiles in a cohort of 69 clinical samples including 50 CD117IHC+/KITmutation GISTs and 19 CD117IHC-/wild-type GISTs. GO enrichment and KEGG pathway analyses were performed to reveal the predicted targets of the dysregulated miRNAs. Of the dysregulated miRNAs whose expression was inversely correlated with that of KIT miRNAs were predicted by bioinformatics analysis and confirmed by luciferase reporter assay. Cell counting kit-8 (CCK-8) and flow cytometry were used to measure the cell proliferation, cycle arrest and apoptosis. Wound healing and transwell assays were used to evaluate migration and invasion. A xenograft BALB/c nude mouse model was applied to investigate the tumorigenesis in vivo. Western blot and qRT-PCR were used to investigate the protein and mRNA levels of KIT and its downstream effectors including ERK, AKT and STAT3. RESULTS Of the six miRNAs whose expression was inversely correlated with that of KIT, we found that miR-148b-3p was significantly downregulated in the CD117IHC+/KITmutation GIST cohort. This miRNA was subsequently found to inhibit proliferation, migration and invasion of GIST882 cells. Mechanistically, miR-148b-3p was shown to regulate KIT expression through directly binding to the 3'-UTR of the KIT mRNA. Restoration of miR-148b-3p expression in GIST882 cells led to reduced expression of KIT and the downstream effectors proteins ERK, AKT and STAT3. However, overexpression of KIT reversed the inhibitory effect of miR-148b-3p on cell proliferation, migration and invasion. Furthermore, we found that reduced miR-148b-3p expression correlated with poor overall survival (OS) and disease-free survival (DFS) in GIST patients. CONCLUSION miR-148b-3p functions as an important regulator of KIT expression and a potential prognostic biomarker for GISTs.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Jun Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Yuanli Zhu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Henghui Cheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Dadao, Wuhan, 430030, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
Moura DS, Ramos R, Fernandez-Serra A, Serrano T, Cruz J, Alvarez-Alegret R, Ortiz-Duran R, Vicioso L, Gomez-Dorronsoro ML, Garcia Del Muro X, Martinez-Trufero J, Rubio-Casadevall J, Sevilla I, Lainez N, Gutierrez A, Serrano C, Lopez-Alvarez M, Hindi N, Taron M, López-Guerrero JA, Martin-Broto J. Gene expression analyses determine two different subpopulations in KIT-negative GIST-like (KNGL) patients. Oncotarget 2018; 9:17576-17588. [PMID: 29707131 PMCID: PMC5915139 DOI: 10.18632/oncotarget.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction There are limited findings available on KIT-negative GIST-like (KNGL) population. Also, KIT expression may be post-transcriptionally regulated by miRNA221 and miRNA222. Hence, the aim of this study is to characterize KNGL population, by differential gene expression, and to analyze miRNA221/222 expression and their prognostic value in KNGL patients. Methods KIT, PDGFRA, DOG1, IGF1R, MIR221 and MIR222 expression levels were determined by qRT-PCR. We also analyzed KIT and PDGFRA mutations, DOG1 expression, by immunohistochemistry, along with clinical and pathological data. Disease-free survival (DFS) and overall survival (OS) differences were calculated using Log-rank test. Results Hierarchical cluster analyses from gene expression data identified two groups: group I had KIT, DOG1 and PDGFRA overexpression and IGF1R underexpression and group II had overexpression of IGF1R and low expression of KIT, DOG1 and PDGFRA. Group II had a significant worse OS (p = 0.013) in all the series, and showed a tendency for worse OS (p = 0.11), when analyzed only the localized cases. MiRNA222 expression was significantly lower in a control subset of KIT-positive GIST (p < 0.001). OS was significantly worse in KNGL cases with higher expression of MIR221 (p = 0.028) or MIR222 (p = 0.014). Conclusions We identified two distinct KNGL subsets, with a different prognostic value. Increased levels of miRNA221/222, which are associated with worse OS, could explain the absence of KIT protein expression of most KNGL tumors.
Collapse
Affiliation(s)
- David S Moura
- Institute of Biomedicine of Sevilla (IBiS, HUVR, CSIC, University of Sevilla), Sevilla, Spain
| | - Rafael Ramos
- Pathology Department, Son Espases University Hospital, Palma, Illes Baleares, Spain
| | | | - Teresa Serrano
- Pathology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Julia Cruz
- Pathology Department, Valencian Oncologic Institute, Valencia, Spain
| | | | - Rosa Ortiz-Duran
- Pathology Department, Josep Trueta University Hospital, Girona, Spain
| | - Luis Vicioso
- Pathology Department, Virgen de la Victoria University Hospital, Malaga, Spain
| | | | - Xavier Garcia Del Muro
- Medical Oncology Department, Institut Català d'Oncologia, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Jordi Rubio-Casadevall
- Medical Oncology Department, Catalan Oncologic Institute, Josep Trueta University Hospital, Girona, Spain
| | - Isabel Sevilla
- Medical Oncology Department, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Nuria Lainez
- Medical Oncology Department, Hospital Complex of Navarra, Pamplona, Spain
| | - Antonio Gutierrez
- Hematology Department, Son Espases University Hospital, Palma, Illes Baleares, Spain
| | - Cesar Serrano
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Lopez-Alvarez
- Institute of Biomedicine of Sevilla (IBiS, HUVR, CSIC, University of Sevilla), Sevilla, Spain
| | - Nadia Hindi
- Institute of Biomedicine of Sevilla (IBiS, HUVR, CSIC, University of Sevilla), Sevilla, Spain.,Medical Oncology Department, University Hospital Virgen del Rocio, Sevilla, Spain
| | - Miguel Taron
- Institute of Biomedicine of Sevilla (IBiS, HUVR, CSIC, University of Sevilla), Sevilla, Spain
| | | | - Javier Martin-Broto
- Institute of Biomedicine of Sevilla (IBiS, HUVR, CSIC, University of Sevilla), Sevilla, Spain.,Medical Oncology Department, University Hospital Virgen del Rocio, Sevilla, Spain
| |
Collapse
|
40
|
miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget 2018; 7:61312-61324. [PMID: 27494869 PMCID: PMC5308653 DOI: 10.18632/oncotarget.11016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3′-UTRs of SFRP2 and SIAH1, and activated Wnt/β-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.
Collapse
|
41
|
MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget 2018; 7:80633-80654. [PMID: 27811362 PMCID: PMC5348346 DOI: 10.18632/oncotarget.13017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/22/2016] [Indexed: 12/17/2022] Open
Abstract
Ovarian carcinoma is the most lethal gynecologic tumor worldwide. Despite having developed molecular diagnostic tools and targeted therapies over the past few decades, patient survival is still quite poor. Numerous studies suggest that microRNAs are key regulators of many fundamental biological processes, including neoplasia and tumor progression. miR-222 is one of those miRNAs that has attracted much attention for its multiple roles in human diseases, especially cancer. The potential role of microRNAs in ovarian cancer has attracted much attention in recent years. Some of these microRNAs have been suggested as potential therapeutic targets for EOC patients. In this study, we sought to investigate the biologic functions of miR-222-3p in EOC carcinogenesis. Herein, we examined the expression of miR-222-3p in EOC patients, mouse models and cell lines, and found that higher expression of miR-222-3p was associated with better overall survival in EOC patients, and its level was negatively correlated with tumor growth in vivo. Furthermore, in-vitro experiments indicated that miR-222-3p inhibited EOC cell proliferation and migration, and decreased the phosphorylation of AKT. We identified GNAI2 as a target of miR-222-3p. We also found that GNAI2 promoted EOC cell proliferation, and is an activator of the PI3K/AKT pathway. We describe the characterization of a novel regulatory axis in ovarian cancer cells, miR-222-3p/GNAI2/AKT and its potential application as a therapeutic target for EOC patients.
Collapse
|
42
|
Lu HJ, Yan J, Jin PY, Zheng GH, Qin SM, Wu DM, Lu J, Zheng YL. MicroRNA-152 inhibits tumor cell growth while inducing apoptosis via the transcriptional repression of cathepsin L in gastrointestinal stromal tumor. Cancer Biomark 2018; 21:711-722. [PMID: 29278883 DOI: 10.3233/cbm-170809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs are widely thought to play a regulatory role in gene expression. Although the more unique microRNA expression profiles have been reported in several tumors, there remains a scarcity of knowledge in relation to microRNA expression profiles in GISTs. During this study, through the alteration in the expression of microRNA-152 (miR-152) in gastrointestinal stromal tumor (GIST) cells, we subsequently evaluated its ability to influence the processes associated with cancer, including proliferation, migration, invasion, and apoptosis, as well as the associated mechanisms. METHODS The expression of miR-152 and cathepsin L (CTSL) in GIST cell lines (GIST882, GIST430, GIST48 and GIST-T1) and normal gastric mucosal cell line RGM-1 were determined. A series of miR-152 mimics, miR-152 inhibitors, and siRNA against CTSL were introduced to treat GIST-T1 cells with the lowest miR-152 and the highest CTSL were assessed. Cell viability, cell cycle entry, apoptosis, and cell migration/invasion were all evaluated by means of CCK-8 assay, flow cytometry analyses of Annexin V-FITC/PI staining, and transwell assays. RESULTS The target prediction program and luciferase reporter gene assay verified CTSL is the target of miR-152. Regarding the biological significance of miR-152, siRNA knockdown and ectopic expression studies revealed that miR-152 mimic or siRNA against CTSL exposure reduced cell viability and migration/invasion, which resulted in more cells arrested at the S stage, and induced apoptosis. MiR-152 inhibitor exposure was observed to have induced effects on CTSL cells as opposed to those induced by that of the miR-152 mimics. In contrast, miR-152 downregulation abrogated the effects induced by siRNA against CTSL treatment. CONCLUSION The key findings of this study provided evidence suggesting that miR-152 functions by means of binding to CTSL to induce GIST cell apoptosis and inhibit proliferation, migration, and invasion. The anti-tumor role of miR-152 makes it an attractive therapeutic target for GIST.
Collapse
Affiliation(s)
- Hong-Jie Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jing Yan
- Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China.,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Pei-Ying Jin
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Gui-Hong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Su-Ming Qin
- Department of Oncology, Linyi People's Hospital, Linyi 276003, Shandong, China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
43
|
Kupcinskas J. Small Molecules in Rare Tumors: Emerging Role of MicroRNAs in GIST. Int J Mol Sci 2018; 19:E397. [PMID: 29385688 PMCID: PMC5855619 DOI: 10.3390/ijms19020397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of gastrointestinal tract. GISTs have very different clinical phenotypes and underlying molecular characteristics that are not yet completely understood. microRNAs (miRNAs) have been shown to participate in carcinogenesis pathways through post-transcriptional regulation of gene expression in different tumors. Over the last years emerging evidence has highlighted the role of miRNAs in GISTs. This review provides an overview of original research papers that analyze miRNA deregulation patterns, functional role, diagnostic, therapeutic and prognostic implications in GIST as well as provides directions for further research in the field.
Collapse
Affiliation(s)
- Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
| |
Collapse
|
44
|
Yun S, Kim WK, Kwon Y, Jang M, Bauer S, Kim H. Survivin is a novel transcription regulator of KIT and is downregulated by miRNA-494 in gastrointestinal stromal tumors. Int J Cancer 2018; 142:2080-2093. [PMID: 29277888 PMCID: PMC5900938 DOI: 10.1002/ijc.31235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022]
Abstract
Gain-of-function mutations of KIT are pathognomonic in sporadic gastrointestinal stromal tumors (GISTs). Several microRNAs have been shown to be dysregulated in GISTs and impact KIT expression. Little is known though on KIT-independent targets of KIT-regulating mRNAs. We sought to investigate how miR-494 inhibits GIST proliferation and to identify novel target gene. We used microarray-based gene expression analyses to identify pathways and target genes affected by miR-494. The expressional relationship between survivin and miR-494 was determined in 35 GIST tissues. Cell proliferation assay, FACS analysis, colony formation assay, promoter assays and chromatin immunoprecipitation (ChiP) were performed to clarify the roles of survivin in GIST progression. Gene expression microarray analysis revealed that miR-494 inhibited GISTs by affecting multiple genes in the cell cycle pathway. Survivin (BIRC5) was a key target of miR-494, and its expression showed an inverse correlation with miR-494 expression in 35 GIST tissues (Pearson's correlation coefficient, r = -0.418, p = 0.012). Downregulation of survivin inhibited proliferation and colony formation, and resulted in cell cycle alteration. Induced survivin overexpression relieved miR-494-mediated inhibition of GIST progression. Targeting PI3K effectively suppressed proliferation of GISTs with downregulation of survivin. Survivin also regulated KIT expression at the transcription level. Immunohistochemical analysis using 113 GISTs revealed that survivin expression was significantly correlated with overall survival of GIST patients (p = 0.004). Our findings indicated that miR-494 synergistically suppressed GISTs by concomitantly targeting survivin and KIT.
Collapse
Affiliation(s)
- SeongJu Yun
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Kyu Kim
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yujin Kwon
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Jang
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sebastian Bauer
- Germany and German Cancer Consortium (DKTK), Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Heidelberg, Germany
| | - Hoguen Kim
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Exercise-induced circulating microRNA changes in athletes in various training scenarios. PLoS One 2018; 13:e0191060. [PMID: 29338015 PMCID: PMC5770042 DOI: 10.1371/journal.pone.0191060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background The aim of the study was to compare selected extracellular miRNA levels (miR-16, miR-21, miR-93 and miR-222 with the response to 8-week-long explosive strength training (EXPL), hypertrophic strength training (HYP) and high-intensity interval training (HIIT). Methods 30 young male athletes of white European origin (mean age: 22.5 ± 4.06 years) recruited at the Faculty of Sports Studies of Masaryk University were enrolled in this study. The study participants were randomly assigned to three possible training scenarios: EXPL, HYP or HITT and participated in 8-week-long program in given arm. Blood plasma samples were collected at the baseline and at week 5 and 8 and anthropometric and physical activity parameters were measured. Pre- and post-intervention characteristics were compared and participants were further evaluated as responders (RES) or non-responders (NRES). RES/NRES status was established for the following characteristics: 300°/s right leg extension (t300), 60°/s right leg extension (t60), isometric extension (IE), vertical jump, isometric extension of the right leg and body fat percentage (BFP). Results No differences in miRNA levels were apparent between the intervention groups at baseline. No statistically significant prediction role was observed using crude univariate stepwise regression model analysis where RES/NRES status for t300, t60, IE, vertical jump and pFM was used as a dependent variable and miR-21, miR-222, miR-16 and miR-93 levels at baseline were used as independent variables. The baseline levels of miR-93 expressed an independent prediction role for responder status based on isometric extension of the right leg (beta estimate 0.76, 95% CI: -0.01; 1.53, p = 0.052). Discussion The results of the study indicate that 8-week-long explosive strength training, hypertrophic strength training and high-intensity interval training regimens are associated with significant changes in miR-16, mir-21, miR-222 and miR-93 levels compared to a baseline in athletic young men.
Collapse
|
46
|
Zhang XF, Ye Y, Zhao SJ. LncRNA Gas5 acts as a ceRNA to regulate PTEN expression by sponging miR-222-3p in papillary thyroid carcinoma. Oncotarget 2017; 9:3519-3530. [PMID: 29423063 PMCID: PMC5790480 DOI: 10.18632/oncotarget.23336] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/26/2017] [Indexed: 12/03/2022] Open
Abstract
Accumulating evidence demonstrates that the long non-coding RNA Growth Arrest-Specific 5 (Gas5) has practical significance in cancer progression and metastasis. However, its role and function in papillary thyroid carcinoma (PTC) remains unknown. In this study, we aimed to explore the potential involvement of Gas5 in papillary thyroid carcinogenesis and to highlight the emerging roles of ceRNAs in the biological regulation of PTC cells. The results suggested that Gas5 was markedly downregulated in both PTC tissues and PTC cell lines. Over-expression of Gas5 remarkably suppressed PTC cells proliferation in vitro and inhibited the growth of tumor cells in vivo likewise. Furthermore, Gas5 was identified as a target of miR-222-3p which was aberrantly high in PTC cells. Enhanced expression of miR-222-3p promoted the proliferation of PTC cells while knocking down miR-222-3p could inhibit it. The advanced effects of miR-222-3p on the proliferation of PTC cells could be partly reversed by the upregulation of Gas5 expression. Furthermore, we validated that Gas5 increased the protein level of the PTEN, one of miR-222-3p’s targets, which further activated PTEN/AKT pathway. Taken together, our study identified a tumor suppressive role of Gas5 in PTC cells acting as a ceRNA, effectively becoming a sink for miR-222-3p, modulating the expression of PTEN, which lead to PTEN/AKT pathway activation and proliferation suppression. This finding may offer a new potential therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Xiao-Fang Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Yan Ye
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Shu-Jun Zhao
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
47
|
Wei WF, Zhou CF, Wu XG, He LN, Wu LF, Chen XJ, Yan RM, Zhong M, Yu YH, Liang L, Wang W. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis 2017; 8:3220. [PMID: 29242498 PMCID: PMC5870596 DOI: 10.1038/s41419-017-0077-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
MicroRNAs have implicated in the relapse and metastasis of cervical cancer, which is the leading cause of cervical cancer-related mortality. However, the underlying molecular mechanisms need further elucidation. Our present study revealed that miR-221-3p is transcriptionally promoted in metastatic cervical cancer tissues compared with non-metastatic cervical cancer tissues. Forced overexpression of miR-221-3p facilitated EMT and promoted cell migration and invasion in vitro and lymphatic metastasis in vivo. Twist homolog 2 (TWIST2) was found to be a key transcription factor binding to the promoter of miR-221-3p. Inhibitors of miR-221-3p drastically reduced the induction of EMT and decreased cell migration and invasion mediated by TWIST2. By combined computational and experimental approaches, THBS2 was recognized to be an important downstream target gene of miR-221-3p. In cervical cancer tissues, especially with lymphatic metastasis, miR-221-3p and TWIST2 were increased and THBS2 was decreased, suggesting that TWIST2 induces miR-221-3p expression and consequently suppresses its direct target THBS2 in lymphatic metastasis CC. Our findings uncover a mechanistic role for miR-221-3p in lymph node metastasis, suggesting that miR-221-3p is upregulated by the transcription factor TWIST2 and downregulates its target THBS2, which may potentially promote lymph node metastasis in cervical cancer.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Na He
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
48
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
49
|
Dufresne S, Rébillard A, Muti P, Friedenreich CM, Brenner DR. A Review of Physical Activity and Circulating miRNA Expression: Implications in Cancer Risk and Progression. Cancer Epidemiol Biomarkers Prev 2017; 27:11-24. [DOI: 10.1158/1055-9965.epi-16-0969] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/17/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
|
50
|
Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and Cancer; A Resemblance with Far-reaching Implications. Arch Med Res 2017; 48:12-26. [PMID: 28577865 DOI: 10.1016/j.arcmed.2017.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|