1
|
Yu M, Fei B, Chu S. Targeting HNRNPA2B1 to overcome chemotherapy resistance in gastric cancer stem cells: Mechanisms and therapeutic potential. J Biol Chem 2025; 301:108234. [PMID: 39870196 PMCID: PMC11999277 DOI: 10.1016/j.jbc.2025.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge, particularly due to the resistance of gastric cancer stem cells (GCSCs) to chemotherapy. This study investigates the role of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), a member of the heterogeneous nuclear ribonucleoproteins (hnRNPs), in modulating mitochondrial metabolic reprogramming and contributing to chemoresistance in GCSCs. Through extensive analysis of tumor cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets, HNRNPA2B1 was identified as a key regulator in GCSCs, correlating with poor prognosis and enhanced resistance to chemoresistance. CRISPR-Cas9 mediated knockout of HNRNPA2B1 in GCSCs led to a significant decrease in mitochondrial function, reduced migration, invasion, and sphere formation abilities, and markedly increased apoptosis. These changes were accompanied by a shift in metabolic activity, evidenced by decreased oxygen consumption and increased extracellular acidification. Our results highlight HNRNPA2B1 as a pivotal factor in sustaining the malignant phenotype of GCSCs and present it as a potential therapeutic target to improve chemotherapy efficacy in GC.
Collapse
Affiliation(s)
- Miao Yu
- Department of Gastrointestinal colorectal and anal surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Bingyuan Fei
- Department of Gastrointestinal colorectal and anal surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Songtao Chu
- Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin, Jilin Province, China.
| |
Collapse
|
2
|
Chen F, Xu W, Tang M, Tian Y, Shu Y, He X, Zhou L, Liu Q, Zhu Q, Lu X, Zhang J, Zhu WG. hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability. Cell Death Differ 2025; 32:382-396. [PMID: 39511404 PMCID: PMC11893882 DOI: 10.1038/s41418-024-01412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Repair of double strand breaks (DSBs) by RNA-binding proteins (RBPs) is vital for ensuring genome integrity. DSB repair is accompanied by local transcriptional repression in the vicinity of transcriptionally active genes, but the mechanism by which RBPs regulate transcriptional regulation is unclear. Here, we demonstrated that RBP hnRNPA2B1 functions as a RNA polymerase-associated factor that stabilizes the transcription complex under physiological conditions. Following a DSB, hnRNPA2B1 is released from damaged chromatin, reducing the efficiency of RNAPII complex assembly, leading to local transcriptional repression. Mechanistically, SIRT6 deacetylates hnRNPA2B1 at K113/173 residues, enforcing its rapid detachment from DSBs. This process disrupts the integrity of the RNAPII complex on active chromatin, which is a pre-requisite for transient but complete repression of local transcription. Functionally, the overexpression of an acetylation mimic stabilizes the transcription complex and facilitates the functioning of the transcription machinery. hnRNPA2B1 acetylation status was negatively correlated with SIRT6 expression, and acetylation mimic enhanced radio-sensitivity in vivo. Our findings demonstrate that hnRNPA2B1 is crucial for transcriptional repression. We have uncovered the missing link between DSB repair and transcriptional regulation in genome stability maintenance, highlighting the potential of hnRNPA2B1 as a therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Wenchao Xu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Tian
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yuxin Shu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Xingkai He
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Linmin Zhou
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qi Liu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qian Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
3
|
Mizokami H, Okabe A, Choudhary R, Mima M, Saeda K, Fukuyo M, Rahmutulla B, Seki M, Goh BC, Kondo S, Dochi H, Moriyama-Kita M, Misawa K, Hanazawa T, Tan P, Yoshizaki T, Fullwood MJ, Kaneda A. Enhancer infestation drives tumorigenic activation of inactive B compartment in Epstein-Barr virus-positive nasopharyngeal carcinoma. EBioMedicine 2024; 102:105057. [PMID: 38490101 PMCID: PMC10951899 DOI: 10.1016/j.ebiom.2024.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING The funds are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Harue Mizokami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan
| | - Ruchi Choudhary
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Kenta Saeda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Hamamatsu University School of Medicine, Shizuoka, 431-3125, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore, 117599, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
4
|
Yang Y, Zhang Y, Feng T, Zhu C. HNRNPA2B1 induces cell proliferation and acts as biomarker in breast cancer. Cancer Biomark 2024; 40:285-296. [PMID: 39177591 PMCID: PMC11380248 DOI: 10.3233/cbm-230576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Numerous studies have shown that m6A plays an important regulatory role in the development of tumors. HNRNPA2B1, one of the m6A RNA methylation reading proteins, has been proven to be elevated in human cancers. OBJECTIVE In this study, we aimed to identify the role of HNRNPA2B1 in breast cancer. METHODS HNRNPA2B1 expression was investigated via RT-qPCR and TCGA database in breast cancer. Then, the function of HNRNPA2B1 on cancer cell was measured by CCK8 assays, colony formation and scratch assays. In addition, HNRNPA2B1 expression in BRCA was explored via the Wilcoxon signed-rank test, KruskalWallis test and logistic regression. The association with HNRNPA2B1 expression and survival were considered by KaplanMeier and Cox regression analyses. The biological function of HNRNPA2B1 was analyzed via gene set enrichment analysis (GSEA) and the cluster Profiler R software package. RESULTS We found that HNRNPA2B1 was highly expressed and induced cell proliferation and migration in breast cancer. Moreover, we observed HNRNPA2B1 induced tumor growth in vivo. In addition, we also found HNRNPA2B1 expression was associated with characteristics and prognosis in breast cancer patients. CONCLUSION Our findings suggested that HNRNPA2B1 promoted tumor growth and could function as a new potential molecular marker in breast cancer.
Collapse
Affiliation(s)
- Yi Yang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
- The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Jiangsu, China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
- The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
5
|
Jiang T, Qu R, Liu X, Hou Y, Wang L, Hua Y. HnRNPR strongly represses splicing of a critical exon associated with spinal muscular atrophy through binding to an exonic AU-rich element. J Med Genet 2023; 60:1105-1115. [PMID: 37225410 DOI: 10.1136/jmg-2023-109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of survival of motor neuron 1 (SMN1) gene, which encodes the SMN protein. SMN2, a nearly identical copy of SMN1, with several single-nucleotide substitutions leading to predominant skipping of its exon 7, is insufficient to compensate for loss of SMN1. Heterogeneous nuclear ribonucleoprotein R (hnRNPR) has been previously shown to interact with SMN in the 7SK complex in motoneuron axons and is implicated in the pathogenesis of SMA. Here, we show that hnRNPR also interacts with SMN1/2 pre-mRNAs and potently inhibits exon 7 inclusion. METHODS In this study, to examine the mechanism that hnRNPR regulates SMN1/2 splicing, deletion analysis in an SMN2 minigene system, RNA-affinity chromatography, co-overexpression analysis and tethering assay were performed. We screened antisense oligonucleotides (ASOs) in a minigene system and identified a few that markedly promoted SMN2 exon 7 splicing. RESULTS We pinpointed an AU-rich element located towards the 3' end of the exon that mediates splicing repression by hnRNPR. We uncovered that both hnRNPR and Sam68 bind to the element in a competitive manner, and the inhibitory effect of hnRNPR is much stronger than Sam68. Moreover, we found that, among the four hnRNPR splicing isoforms, the exon 5-skipped one has the minimal inhibitory effect, and ASOs inducing hnRNPR exon 5 skipping also promote SMN2 exon 7 inclusion. CONCLUSION We identified a novel mechanism that contributes to mis-splicing of SMN2 exon 7.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ruobing Qu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yanjun Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Saldaña-Villa AK, Lara-Lemus R. The Structural Proteins of Membrane Rafts, Caveolins and Flotillins, in Lung Cancer: More Than Just Scaffold Elements. Int J Med Sci 2023; 20:1662-1670. [PMID: 37928877 PMCID: PMC10620868 DOI: 10.7150/ijms.87836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Lung cancer is one of the most frequently diagnosed cancers worldwide. Due to its late diagnosis, it remains the leading cause of cancer-related deaths. Despite it is mostly associated to tobacco smoking, recent data suggested that genetic factors are of the highest importance. In this context, different processes meaningful for the development and progression of lung cancer such endocytosis, protein secretion and signal transduction, are controlled by membrane rafts. These highly ordered membrane domains contain proteins such as caveolins and flotillins, which were traditionally considered scaffold proteins but have currently been given a preponderant role in lung cancer. Here, we summarize current knowledge regarding the involvement of caveolins and flotillins in lung cancer from a molecular point of view.
Collapse
Affiliation(s)
| | - Roberto Lara-Lemus
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, Mexico
| |
Collapse
|
7
|
Wu Y, Li A, Chen C, Fang Z, Chen L, Zheng X. Biological function and research progress of N6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers. Front Oncol 2023; 13:1229168. [PMID: 37546413 PMCID: PMC10399595 DOI: 10.3389/fonc.2023.1229168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in both mRNA and lncRNA. It exerts reversible regulation over RNA function and affects RNA processing and metabolism in various diseases, especially tumors. The m6A binding protein, hnRNPA2B1, is extensively studied as a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. It is frequently dysregulated and holds significant importance in multiple types of tumors. By recognizing m6A sites for variable splicing, maintaining RNA stability, and regulating translation and transport, hnRNPA2B1 plays a vital role in various aspects of tumor development, metabolism, and regulation of the immune microenvironment. In this review, we summarized the latest research on the functional roles and underlying molecular mechanisms of hnRNPA2B1. Moreover, we discussed its potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Li K, Gong Q, Xiang XD, Guo G, Liu J, Zhao L, Li J, Chen N, Li H, Zhang LJ, Zhou CY, Wang ZY, Zhuang L. HNRNPA2B1-mediated m 6A modification of lncRNA MEG3 facilitates tumorigenesis and metastasis of non-small cell lung cancer by regulating miR-21-5p/PTEN axis. J Transl Med 2023; 21:382. [PMID: 37308993 DOI: 10.1186/s12967-023-04190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Accumulating data indicate that N6-methyladenosine (m6A) RNA methylation and lncRNA deregulation act crucial roles in cancer progression. Heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1) as an m6A "reader" has been reported to be an oncogene in multiple malignancies. We herein aimed to elucidate the role and underlying mechanism by which HNRNPA2B1-mediated m6A modification of lncRNAs contributes to non-small cell lung cancer (NSCLC). METHODS The expression levels of HNRNPA2B1 and their association with the clinicopathological characteristics and prognosis in NSCLC were determined by RT-qPCR, Western blot, immunohistochemistry and TCGA dataset. Then, the role of HNRNPA2B1 in NSCLC cells was assessed by in vitro functional experiments and in vivo tumorigenesis and lung metastasis models. HNRNPA2B1-mediated m6A modification of lncRNAs was screened by m6A-lncRNA epi-transcriptomic microarray and verified by methylated RNA immunoprecipitation (Me-RIP). The lncRNA MEG3-specific binding with miR-21-5p was evaluated by luciferase gene report and RIP assays. The effects of HNRNPA2B1 and (or) lncRNA MEG3 on miR-21-5p/PTEN/PI3K/AKT signaling were examined by RT-qPCR and Western blot analyses. RESULTS We found that upregulation of HNRNPA2B1 was associated with distant metastasis and poor survival, representing an independent prognostic factor in patients with NSCLC. Knockdown of HNRNPA2B1 impaired cell proliferation and metastasis in vitro and in vivo, whereas ectopic expression of HNRNPA2B1 possessed the opposite effects. Mechanical investigations revealed that lncRNA MEG3 was an m6A target of HNRNPA2B1 and inhibition of HNRNPA2B1 decreased MEG3 m6A levels but increased its mRNA levels. Furthermore, lncRNA MEG3 could act as a sponge of miR-21-5p to upregulate PTEN and inactivate PI3K/AKT signaling, leading to the suppression of cell proliferation and invasion. Low expression of lncRNA MEG3 or elevated expression of miR-21-5p indicated poor survival in patients with NSCLC. CONCLUSIONS Our findings uncover that HNRNPA2B1-mediated m6A modification of lncRNA MEG3 promotes tumorigenesis and metastasis of NSCLC cells by regulating miR-21-5p/PTEN axis and may provide a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Quan Gong
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Xu-Dong Xiang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Gang Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jia Liu
- Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Li Zhao
- Department of Anesthesiology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jun Li
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Nan Chen
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Li-Juan Zhang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Chun-Yan Zhou
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Zhi-Yong Wang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Li Zhuang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
9
|
Liu Y, Shen X. Expression and effect of heterogeneous nuclear ribonucleoprotein A2/B1 in tongue squamous cell carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:633-640. [PMID: 37539565 PMCID: PMC10930411 DOI: 10.11817/j.issn.1672-7347.2023.220316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Tongue squamous cell carcinoma (TSCC) is a common cancer in the oral and maxillofacial region, which seriously endangers people's life and health.Heterogeneous nuclear ribonucleoprotein A2/B1(hnRNP A2/B1) is an RNA-binding protein that regulates the expression of a variety of genes and participates in the occurrence and development of a variety of cancers. This study aims to investigate the role of hnRNP A2/B1 in TSCC progression. METHODS The differential expression of hnRNP A2/B1 in oral squamous cell carcinoma (OSCC) and normal oral mucosa cells and tissues was analyzed based on the gene expression profiles of GSE146483 and GSE85195 in the Gene Expression Omnibus (GEO) database. The correlation between hnRNP A2/B1 expression and disease-free survival of TSCC patients was analyzed based on TSCC related chip of GSE4676. TSCC cancer and paracancerous tissue samples of 30 patients were collected in Hunan Cancer Hospital from July to December 2021. Real-time RT-PCR and Western blotting were used to verify the mRNA and protein expression of hnRNP A2/B1 in TSCC patients'samples, respectively. Human TSCC Tca-8113 cells were transfected with hnRNP A2/B1 empty vector (a sh-NC group), knockdown plasmid (a sh-hnRNP A2/B1 group), empty vector overexpression plasmid (an OE-NC group) and overexpression plasmid (an OE-hnRNP A2/B1 group), respectively. The knockdown or overexpression efficiency of hnRNP A2/B1 was detected by Western blotting. The proliferation activity of Tca-8113 cells was detected by cell counting kit-8 (CCK-8), and the apoptosis rate of Tca-8113 cells was detected by flow cytometry. RESULTS Based on the analysis of OSCC-related chips of GSE146483 and GSE85195 in the GEO database, it was found that hnRNP A2/B1 was differentially expressed in the OSCC and normal oral mucosa cells and tissues (all P<0.01). Meanwhile, the analysis of TSCC related chip GSE4676 confirmed that the expression of hnRNP A2/B1 was negatively correlated with the disease-free survival of TSCC patients (P=0.006). The results of real-time RT-PCR and Western blotting showed that the relative expression levels of hnRNP A2/B1 mRNA and protein in TSCC tissues were significantly up-regulated compared with those in adjacent tissues (all P<0.01). The results of Western blotting showed that the expression level of hnRNP A2/B1 in Tca-8113 cells was significantly inhibited or promoted after knockdown or overexpression of hnRNP A2/B1 (all P<0.01). The results of CCK-8 and flow cytometry showed that inhibition of hnRNP A2/B1 expression in Tca-8113 cells reduced cell proliferation activity (P<0.05) and increased cell apoptic rate (P<0.01). Overexpression of hnRNP A2/B1 in Tca-8113 cells significantly increased cell proliferation (P<0.05) and decreased cell apoptosis (P<0.01). CONCLUSIONS HnRNP A2/B1 is a key factor regulating the proliferation and apoptosis of TSCC cells. Inhibition of hnRNP A2/B1 expression can reduce the proliferation activity of TSCC cells and promote the apoptosis of TSCC cells.
Collapse
Affiliation(s)
- Yan Liu
- Department of Head and Neck Surgery, Hunan Cancer Hospital & Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Xing Shen
- Department of Head and Neck Surgery, Hunan Cancer Hospital & Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
11
|
Hu L, Liu S, Yao H, Hu Y, Wang Y, Jiang J, Li X, Fu F, Yin Q, Wang H. Identification of a novel heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) ligand that disrupts HnRNPA2B1/nucleic acid interactions to inhibit the MDMX-p53 axis in gastric cancer. Pharmacol Res 2023; 189:106696. [PMID: 36791898 DOI: 10.1016/j.phrs.2023.106696] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Gastric carcinoma is a highly malignant tumor that still lacks effective molecular targets. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an essential oncogenic driver overexpressed in various cancers. The potential role of hnRNPA2B1 in oncotherapy has not been revealed because of the absence of active chemical molecules. In this study, we identified the pseudourea derivative XI-011 as a novel hnRNPA2B1 ligand using chemical proteomics. An interaction study indicated that XI-011 could bind the nucleotide-binding domain to disrupt the recruitment of hnRNPA2B1 to the promoter and untranslated region of the murine double minute X (MDMX) gene, thereby inhibiting its transcription. In addition, chemical targeting of hnRNPA2B1 recovered inactivated p53 and enhanced the therapeutic efficacy of apatinib in vivo. This work presented a novel strategy to restore p53 activity for the treatment of gastric cancers via chemically targeting hnRNPA2B1.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingpeng Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
12
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
13
|
Han BY, Liu Z, Hu X, Ling H. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis 2022; 13:940. [PMID: 36347834 PMCID: PMC9643420 DOI: 10.1038/s41419-022-05376-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is a great detriment to women's health due to the lack of effective therapeutic targets. In this study, we employed an integrated genetic screen to identify a pivotal oncogenic factor, heterogeneous nuclear ribonucleoprotein U (HNRNPU), which is required for the progression of TNBC. We elucidated the pro-oncogenic role of HNRNPU, which can induce the proliferation and migration of TNBC cells via its association with DEAD box helicase 5 (DDX5) protein. Elevated levels of the HNRNPU-DDX5 complex prohibited the intron retention of minichromosome maintenance protein 10 (MCM10) pre-mRNA, decreased nonsense-mediated mRNA decay, and activated Wnt/β-catenin signalling; on the other hand, HNRNPU-DDX5 is located in the transcriptional start sites (TSS) of LIM domain only protein 4 (LMO4) and its upregulation promoted the transcription of LMO4, consequently activating PI3K-Akt-mTOR signalling. Our data highlight the synergetic effects of HNRNPU in RNA transcription and splicing in regulating cancer progression and suggest that HNRNPU may act as a potential molecular target in the treatment of TNBC.
Collapse
Affiliation(s)
- Bo-yue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhebin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
14
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
15
|
Li W, Hao Y, Zhang X, Xu S, Pang D. Targeting RNA N 6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol Cancer 2022; 21:176. [PMID: 36071523 PMCID: PMC9454167 DOI: 10.1186/s12943-022-01652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized the treatment of many types of cancer, particularly advanced-stage cancers. Nevertheless, although a subset of patients experiences dramatic and long-term disease regression in response to ICIs, most patients do not benefit from these treatments. Some may even experience cancer progression. Immune escape by tumor cells may be a key reason for this low response rate. N6-methyladenosine (m6A) is the most common type of RNA methylation and has been recognized as a critical regulator of tumors and the immune system. Therefore, m6A modification and related regulators are promising targets for improving the efficacy of tumor immunotherapy. However, the association between m6A modification and tumor immune escape (TIE) has not been comprehensively summarized. Therefore, this review summarizes the existing knowledge regarding m6A modifications involved in TIE and their potential mechanisms of action. Moreover, we provide an overview of currently available agents targeting m6A regulators that have been tested for their elevated effects on TIE. This review establishes the association between m6A modifications and TIE and provides new insights and strategies for maximizing the efficacy of immunotherapy by specifically targeting m6A modifications involved in TIE.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yi Hao
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Xingda Zhang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Shouping Xu
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| | - Da Pang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
16
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
17
|
Zhang W, Xiao P, Tang J, Wang R, Wang X, Wang F, Ruan J, Yu S, Tang J, Huang R, Zhao X. m6A Regulator-Mediated Tumour Infiltration and Methylation Modification in Cervical Cancer Microenvironment. Front Immunol 2022; 13:888650. [PMID: 35572541 PMCID: PMC9098799 DOI: 10.3389/fimmu.2022.888650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant internal mRNA modification in eukaryotic cells. There is accumulating evidence that m6A methylation can play a significant role in the early diagnosis and treatment of cancers. However, the mechanism underlying the involvement of m6A in cervical cancer remains unclear. Methods Here, we examined the m6A modification patterns of immune cells in the tumour microenvironments (TMEs) of 306 patients with cervical cancer from The Cancer Genome Atlas dataset and analysed the relations between them according to 32 m6A regulators. Immune infiltration in the TME of cervical cancer was analysed using the CIBERSORT algorithm and single-sample gene set enrichment analysis. The m6Ascore was structured though principal component analysis. Results Two different m6A modification patterns were detected in 306 patients with cervical cancer, designated as m6Acluster A and B. The immune cell infiltration characteristics and biological behaviour differed between the two patterns, with m6Acluster A showing a higher level of immune infiltration. The samples were also divided into two genomic subtypes according to 114 m6A regulatory genes shown to be closely correlated with prognosis on univariate Cox regression analysis. Survival analysis showed that gene cluster B was related to better survival than gene cluster A. Most of the m6A regulators showed higher expression in gene cluster B than in gene cluster A. Single-sample gene set enrichment analysis indicated a higher level of immune cell infiltration in gene cluster A. The m6Ascore signature was examined to determine the m6A modification patterns in cervical cancer. Patients with a high m6Ascore showed better survival, while the low m6Ascore group had a higher mutation frequency and better response to treatment. Conclusions This study showed that m6A modification patterns play important roles in cervical cancer. Analysis of m6A modification patterns will yield an improved understanding of the TME in cervical cancer, and facilitate the development of better immunotherapy strategies.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Pei Xiao
- Center for Non-Communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jiayi Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| |
Collapse
|
18
|
Zhou B, Lu D, Wang A, Cui J, Zhang L, Li J, Fan L, Wei W, Liu J, Sun G. Endoplasmic reticulum stress promotes sorafenib resistance via miR-188-5p/hnRNPA2B1-mediated upregulation of PKM2 in hepatocellular carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:1051-1065. [PMID: 34786210 PMCID: PMC8569435 DOI: 10.1016/j.omtn.2021.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 01/27/2023]
Abstract
Emerging evidence has shown that endoplasmic reticulum (ER) stress promotes sorafenib resistance in hepatocellular carcinoma (HCC). However, the underlying mechanisms are poorly understood. The purpose of this study was to explore the mechanism by which ER stress promotes sorafenib resistance in HCC. We found that pyruvate kinase isoform M2 (PKM2) was highly expressed in human HCC tissues and co-related with worse clinicopathologic features and overall survival. Activation of ER stress positively correlated with PKM2 expression both in HCC tissue samples and tunicamycin (TM)-induced HCC cell lines. PKM2 knockdown increased sorafenib-induced apoptosis and decreased the ability of colony formation, while upregulation of PKM2 reverses this phenomenon. Furthermore, high-throughput sequencing identified that activation of ER stress significantly downregulated the expression of miR-188-5p in HCC cells. According to bioinformatics analysis and dual-luciferase assays, we further confirmed that hnRNPA2B1 is the target gene of miR-188-5p. Downregulating the expression of hnRNPA2B1 with siRNA could decrease the expression of PKM2 and enhance sorafenib-induced apoptosis in HepG2 cells. Our study demonstrated that ER stress could promote sorafenib resistance through upregulating PKM2 via miR-188-5p/hnRNPA2B1. Therefore, targeting the miR-188-5p/hnRNPA2B1/PKM2 pathway and ER stress may prove instrumental in overcoming sorafenib resistance in HCC treatment.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Donghui Lu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Anqi Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jie Cui
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Li Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jian Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lulu Fan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiatao Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.,Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Guoping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
19
|
Xiao D, Zou Q, Meng L, Xu Y, Zhang H, Meng F, He L, Zhang J. Glycopeptidomics Analysis of a Cell Line Model Revealing Pathogenesis and Potential Marker Molecules for the Early Diagnosis of Gastric MALT Lymphoma. Front Cell Infect Microbiol 2021; 11:715454. [PMID: 34476221 PMCID: PMC8407071 DOI: 10.3389/fcimb.2021.715454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Background & Aims Gastric mucosa-associated lymphoma (GML) is a mature B cell tumor related to Helicobacter pylori (H.pylori) infection. The clinical manifestations of GML are not specific, so GML is often misdiagnosed, leading to excessive treatment. The pathogenesis of H.pylori-induced GML is not well understood and there are no molecular markers for early GML diagnosis. Methods Glycopeptidomics analyses of host cell lines (a BCG823 cell line, C823) and C823 cells infected by H. pylori isolated from patients with GML (GMALT823), gastritis (GAT823), gastric ulcer (GAU823) and gastric cancer (GAC823) were carried out to clarify the host reaction mechanism against GML and to identify potential molecular criteria for the early diagnosis of GML. Results Thirty-three samples were analyzed and approximately 2000 proteins, 200 glycoproteins and 500 glycopeptides were detected in each sample. O-glycans were the dominant glycoforms in GMALT823 cells only. Four specific glycoforms in GMALT823 cells and 2 specific glycoforms in C823 and GMALT823 cells were identified. Eight specific glycopeptides from 7 glycoproteins were found in GMALT823 cells; of these glycopeptides, 6 and 3 specific glycopeptides had high affinity for T cell epitopes and have conformational B cell epitopes, respectively. Conclusion The predominant glycoforms of host cells infected by MALT H. pylori isolates differ from others, and the glycoproteins, glycosylation sites and glycoforms might be closely related to the formation of GML, which provides new insights into the pathogenic mechanisms of H. pylori infection and suggests molecular indicators for the early diagnosis of GML.
Collapse
Affiliation(s)
- Di Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinghua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Le Meng
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University, Boston, MA, United States
| | - Yanli Xu
- Hebei University of Engineering, Affiliated Hospital, College of Medicine, Handan, China
| | - Huifang Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanliang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
20
|
Chen ZQ, Yuan T, Jiang H, Yang YY, Wang L, Fu RM, Luo SQ, Zhang T, Wu ZY, Wen KM. MicroRNA‑8063 targets heterogeneous nuclear ribonucleoprotein AB to inhibit the self‑renewal of colorectal cancer stem cells via the Wnt/β‑catenin pathway. Oncol Rep 2021; 46:219. [PMID: 34396427 PMCID: PMC8377466 DOI: 10.3892/or.2021.8170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of cancer stem cells (CSCs) is a major cause of therapeutic failure in a variety of cancer types, including colorectal cancer (CRC). However, the underlying mechanisms that regulate the self-renewal of colorectal cancer stem cells (CRCSCs) remain unclear. Our previous study utilized CRCSCs and their parent cells; through gene microarray screening and bioinformatics analysis, we hypothesized that microRNA (miR)-8063 may bind to, and regulate the expression of, heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) to facilitate the regulation of CRCSC self-renewal. The aim of the present study was to confirm this conjecture through relevant experiments. The results indicated that compared with that in parent cells, miR-8063 expression was significantly downregulated in CRCSCs, while hnRNPAB expression was increased. Furthermore, hnRNPAB was identified as a direct target of miR-8063 using a dual-Luciferase assay. Overexpression of hnRNPAB promoted the acquisition of CSC characteristics in CRC cells (increased colony formation ability, enhanced tumorigenicity, and upregulated expression of CSC markers), as well as the upregulation of key proteins (Wnt3a, Wnt5a and β-catenin) in the Wnt/β-catenin signaling pathway. Similarly, after silencing miR-8063 in CRC cells, the characteristics of CSC were altered, and the expression of hnRNPAB protein was promoted. However, post overexpression of miR-8063 in CRCSCs, the self-renewal ability of CSCs was weakened with the downregulation of hnRNPAB protein, Wnt3a, Wnt5a and β-catenin. These results suggest that as a tumor suppressor, miR-8063 is involved in regulating the self-renewal of CRCSCs, where loss of miR-8063 expression weakens its inhibition on hnRNPAB, which leads to the activation of Wnt/β-catenin signaling to promote the self-renewal of CRCSCs.
Collapse
Affiliation(s)
- Zheng-Quan Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yuan-Yuan Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lin Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui-Min Fu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Sheng-Qiang Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhen-Yu Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
21
|
Li X, Feng Z, Wang R, Hu J, He X, Shen Z. Expression Status and Prognostic Value of m 6A RNA Methylation Regulators in Lung Adenocarcinoma. Life (Basel) 2021; 11:619. [PMID: 34206803 PMCID: PMC8306618 DOI: 10.3390/life11070619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is the most abundant modification method in mRNA, and it plays an important role in the occurrence and development of many cancers. This paper mainly discusses the role of m6A RNA methylation regulators in lung adenocarcinoma (LUAD) to identify novel prognostic biomarkers. The gene expression data of 19 m6A methylation regulators in LUAD patients and its relevant clinical parameters were extracted from The Cancer Genome Atlas (TCGA) database. We selected three significantly differentially expressed m6A regulators in LUAD to construct the risk signature, and evaluated its prognostic prediction efficiency using the receiver operating characteristic (ROC) curve. Kaplan-Meier survival analysis and Cox regression analysis were used to identify the independent prognostic significance of the risk signature. The ROC curve indicated that the area under the curve (AUC) was 0.659, which means that the risk signature had a good prediction efficiency. The results of the Kaplan-Meier survival analysis and Cox regression analysis showed that the risk score can be used as an independent prognostic factor for LUAD. In addition, we explored the differential signaling pathways and cellular processes related to m6A methylation regulators in LUAD.
Collapse
Affiliation(s)
- Xiuhong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.L.); (Z.F.); (J.H.)
| | - Zian Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.L.); (Z.F.); (J.H.)
| | - Rui Wang
- Deparment of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China;
| | - Jie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.L.); (Z.F.); (J.H.)
| | - Xiaodong He
- Anhui Provincial Center for Clinical Laboratories, Hefei 230001, China;
| | - Zuojun Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.L.); (Z.F.); (J.H.)
- Deparment of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China;
| |
Collapse
|
22
|
Wang Y, Su X, Zhao M, Xu M, Chen Y, Li Z, Zhuang W. Importance of N 6-methyladenosine RNA modification in lung cancer (Review). Mol Clin Oncol 2021; 14:128. [PMID: 33981432 PMCID: PMC8108057 DOI: 10.3892/mco.2021.2290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The N6-methyladenosine (m6A) modification is the most common mRNA modification in eukaryotes and exerts biological functions by affecting RNA metabolism. The m6A modification is installed by m6A methyltransferases, removed by demethylases and recognized by m6A-binding proteins. The interaction between these three elements maintains the dynamic equilibrium of m6A in cells. Accumulating evidence indicates that m6A RNA methylation has a significant impact on RNA metabolism and is involved in the pathogenesis of cancer. Lung cancer is the leading cause of cancer-related deaths worldwide. The treatment options for lung cancer have developed considerably over the past few years; however, the survival rate of patients with lung cancer still remains very low. Although diagnostic methods and targeted therapies have been rapidly developed in recent years, the underlying mechanism and importance of m6A RNA methylation in the pathogenesis of lung cancer remains ambiguous. The current review summarized the biological functions of m6A modification and considers the potential roles of m6A regulators in the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| | - Mingyao Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| | - Mingchen Xu
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| | - Yueqi Chen
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| | - Zhengyi Li
- Department of Clinical Examination Basis, Laboratory Academy, Jilin Medical University, Jilin 132000, P.R. China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin 132000, P.R. China
| |
Collapse
|
23
|
Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, Lv W, Hu J. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:10034-10057. [PMID: 33795529 PMCID: PMC8064222 DOI: 10.18632/aging.202761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
We analyzed the prognostic value of N6-methyladenosine (m6A) regulatory genes in lung adenocarcinoma (LADC) and their association with tumor immunity and immunotherapy response. Seventeen of 20 m6A regulatory genes were differentially expressed in LDAC tissue samples from the TCGA and GEO databases. We developed a five-m6A regulatory gene prognostic signature based on univariate and Lasso Cox regression analysis. Western blot analysis confirmed that the five prognostic m6A regulatory proteins were highly expressed in LADC tissues. We constructed a nomogram with five-m6A regulatory gene prognostic risk signature and AJCC stages. ROC curves and calibration curves showed that the nomogram was well calibrated and accurately distinguished high-risk and low-risk LADC patients. Weighted gene co-expression analysis showed significant correlation between prognostic risk signature genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic option for high-risk LADC patients.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Pinghui Xia
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Yu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
24
|
Lu B, Ran Y, Wang S, Li J, Zhao Y, Ran X, Li R, Hao Y. Chronic oral depleted uranium leads to reproductive damage in male rats through the ROS-hnRNP A2/B1-COX-2 signaling pathway. Toxicology 2021; 449:152666. [PMID: 33359576 DOI: 10.1016/j.tox.2020.152666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Depleted uranium (DU) is widely used in civil and military activities. The testis is one of the target organs of DU chronic toxicity. In this study, male SD rats were chronically exposed to DU by 3, 30, 300 mg U/kg through oral intake. After 6 months and 12 months of exposure, it was found that DU could lead to increased oxidative stress levels, decreased glutathione S-transferases (GSTs) expression, resulting in testicular injury and decreased serum testosterone (T) level in rats. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) expression increases with the increase of DU exposure dose. After upregulation of hnRNP A2/B1 expression, the GC-1 cell injury caused by DU is aggravated, suggesting that hnRNP A2/B1 may play an important role in the reproductive toxicity of DU. At the same time, 12 months after chronic oral exposure to DU, the expression level of cyclooxygenase-2 (COX-2) and proinflammatory factor prostaglandin E2 (PGE2) in testicular tissue were increased, and the level of hnRNP A2/B1 caused by DU was decreased by reactive oxygen scavenger N-acetylcysteine (NAC). As hnRNP A2/B1 is a COX-2 regulator, DU may lead to the upregulation of hnRNP A2/B1 expression through the increase of oxidative stress level in germ cells, which in turn leads to the increase of COX-2 and PGE2 level, and ultimately result in the reproductive toxicity. In this study, the regulation mechanism of the ROS-hnRNP A2/B1-COX-2 pathway on DU-induced reproductive damage in male rats was hypothesized, providing a new target for the prevention and treatment of chronic poisoning of DU.
Collapse
Affiliation(s)
- Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
25
|
Chen T, Huang Y, Hong J, Wei X, Zeng F, Li J, Ye G, Yuan J, Long Y. Preparation, COX-2 Inhibition and Anticancer Activity of Sclerotiorin Derivatives. Mar Drugs 2020; 19:md19010012. [PMID: 33383842 PMCID: PMC7823724 DOI: 10.3390/md19010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
The latest research has indicated that anti-tumor agents with COX-2 inhibitory activity may benefit their anti-tumor efficiency. A series of sclerotiorin derivatives have been synthesized and screened for their cytotoxic activity against human lung cancer cells A549, breast cancer cells MDA-MB-435 using the MTT method. Among them, compounds 3, 7, 12, 13, 15, 17 showed good cytotoxic activity with IC50 values of 6.39, 9.20, 9.76, 7.75, 9.08, and 8.18 μM, respectively. In addition, all compounds were tested in vitro the COX-2 inhibitory activity. The results disclosed compounds 7, 13, 25 and sclerotiorin showed moderate to good COX-2 inhibition with the inhibitory ratios of 58.7%, 51.1%, 66.1% and 56.1%, respectively. Notably, compound 3 displayed a comparable inhibition ratio (70.6%) to the positive control indomethacin (78.9%). Furthermore, molecular docking was used to rationalize the potential of the sclerotiorin derivatives as COX2 inhibitory agents by predicting their binding energy, binding modes and optimal orientation at the active site of the COX-2. Additionally, the structure-activity relationships (SARS) have been addressed.
Collapse
Affiliation(s)
- Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Yun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junxian Hong
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Xikang Wei
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Fang Zeng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jialin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Geting Ye
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (J.Y.); (Y.L.)
| | - Yuhua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
- Correspondence: (J.Y.); (Y.L.)
| |
Collapse
|
26
|
Sudhakaran M, Parra MR, Stoub H, Gallo KA, Doseff AI. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol 2020; 182:114259. [PMID: 33011162 DOI: 10.1016/j.bcp.2020.114259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023]
Abstract
Acquired resistance to doxorubicin is a major hurdle in triple-negative breast cancer (TNBC) therapy, emphasizing the need to identify improved strategies. Apigenin and other structurally related dietary flavones are emerging as potential chemo-sensitizers, but their effect on three-dimensional TNBC spheroid models has not been investigated. We previously showed that apigenin associates with heterogeneous ribonuclear protein A2/B1 (hnRNPA2), an RNA-binding protein involved in mRNA and co-transcriptional regulation. However, the role of hnRNPA2 in apigenin chemo-sensitizing activity has not been investigated. Here, we show that apigenin induced apoptosis in TNBC spheroids more effectively than apigenin-glycoside, owing to higher cellular uptake. Moreover, apigenin inhibited the growth of TNBC patient-derived organoids at an in vivo achievable concentration. Apigenin sensitized spheroids to doxorubicin-induced DNA damage, triggering caspase-9-mediated intrinsic apoptotic pathway and caspase-3 activity. Silencing of hnRNPA2 decreased apigenin-induced sensitization to doxorubicin in spheroids by diminishing apoptosis and partly abrogated apigenin-mediated reduction of ABCC4 and ABCG2 efflux transporters. Together these findings provide novel insights into the critical role of hnRNPA2 in mediating apigenin-induced sensitization of TNBC spheroids to doxorubicin by increasing the expression of efflux transporters and apoptosis, underscoring the relevance of using dietary compounds as a chemotherapeutic adjuvant.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/metabolism
- Apigenin/administration & dosage
- Apigenin/metabolism
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/metabolism
- Drug Delivery Systems/methods
- Female
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/deficiency
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Michael Ramirez Parra
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Hayden Stoub
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | - Andrea I Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
27
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Wu J, Hao Z, Ma C, Li P, Dang L, Sun S. Comparative proteogenomics profiling of non-small and small lung carcinoma cell lines using mass spectrometry. PeerJ 2020; 8:e8779. [PMID: 32351780 PMCID: PMC7183755 DOI: 10.7717/peerj.8779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Evidences indicated that non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) might originate from the same cell type, which however ended up to be two different subtypes of lung carcinoma, requiring different therapeutic regimens. We aimed to identify the differences between these two subtypes of lung cancer by using integrated proteome and genome approaches. Methods and Materials Two representative cell lines for each lung cancer subtype were comparatively analysed by quantitative proteomics, and their corresponding transcriptomics data were obtained from the Gene Expression Omnibus database. The integrated analyses of proteogenomic data were performed to determine key differentially expressed proteins that were positively correlated between proteomic and transcriptomic data. Result The proteomics analysis revealed 147 differentially expressed proteins between SCLC and NSCLC from a total of 3,970 identified proteins. Combined with available transcriptomics data, we further confirmed 14 differentially expressed proteins including six known and eight new lung cancer related proteins that were positively correlated with their transcriptomics data. These proteins are mainly involved in cell migration, proliferation, and invasion. Conclusion The proteogenomic data on both NSCLC and SCLC cell lines presented in this manuscript is complementary to existing genomic and proteomic data related to lung cancers and will be crucial for a systems biology-level understanding of the molecular mechanism of lung cancers. The raw mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD015270.
Collapse
Affiliation(s)
- Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
29
|
Li R, Li H, Ge C, Fu Q, Li Z, Jin Y, Tan Q, Zhu Z, Zhang Z, Dong S, Li G, Song X. Increased expression of the RNA-binding motif protein 47 predicts poor prognosis in non-small-cell lung cancer. Oncol Lett 2020; 19:3111-3122. [PMID: 32218862 PMCID: PMC7068708 DOI: 10.3892/ol.2020.11417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. In China, in particular, lung cancer mortality has markedly increased and is likely to continue to rise. RNA-binding proteins are pivotal to the development and progression of a variety of cancer types, including non-small cell lung cancer (NSCLC). RNA-binding motif protein 47 (RBM47) has been found to act as a tumor suppressor in breast cancer and NSCLC. However, to the best of our knowledge, RBM47 expression in NSCLC tissues has yet to be investigated. Analysis via the online database, Gene Expression Omnibus, revealed that RBM47 was upregulated in NSCLC and associated with pathological type, suggesting that RBM47 may play different roles in lung adenocarcinoma and lung squamous cell carcinoma. In the present study, the expression of RBM47 was examined by immunohistochemistry in 175 pairs of tumor and adjacent non-cancerous tissues resected from patients with NSCLC. The results indicated that the expression of RBM47 was significantly increased in NSCLC samples compared with that in the matched non-cancerous samples. Furthermore, RBM47 expression was higher in Xuanwei compared with that in non-Xuanwei NSCLC, suggesting that RBM47 is a more sensitive biomarker in Xuanwei NSCLC, and that it may serve as a candidate therapeutic target. In addition, RBM47 expression was associated with the pathological type, however not with the age, sex, lymph node metastasis, pT stage or pathological Tumor-Node-Metastasis stage of the patients. The increased expression level of RBM47 may indicate a worse overall survival rate for patients with NSCLC. In addition, multivariate survival analysis showed that the Xuanwei area is associated with poor prognosis for patients with NSCLC. In conclusion, the present study revealed that the upregulation of RBM47 accelerated the malignant progression of NSCLC, indicating that RBM47 may be a potential biomarker for NSCLC progression and a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Heng Li
- Department of Chest Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Yarong Jin
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Qinghua Tan
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhitao Zhu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Zhiwei Zhang
- Department of Biotherapy, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 201805, P.R. China
| | - Suwei Dong
- Department of Chest Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Gaofeng Li
- Department of Chest Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
30
|
Yang Y, Wei Q, Tang Y, Yuanyuan Wang, Luo Q, Zhao H, He M, Wang H, Zeng Q, Lu W, Xu J, Liu T, Yi P. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett 2020; 475:43-52. [PMID: 32006618 DOI: 10.1016/j.canlet.2020.01.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Ovarian cancer has the highest mortality rate among all gynecological cancers with its pathogenic mechanisms largely unknown. Here, we uncovered that ovarian cancer tissues exhibit higher heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) expression than normal ovarian epithelium tissues. Increased hnRNPA2B1 level matches along with poor prognosis of ovarian cancer patients. Importantly, hnRNPA2B1 inhibition hampers growth, reduces mobility of ovarian cancer cells in vitro and hinders xenograft tumor formation in vivo. Transcriptome profiling analysis reveals that hnRNPA2B1 dictates the expression of various important genes involved in tumorigenesis and Lin-28 Homolog B (Lin28B) is down-regulated upon hnRNPA2B1 loss. hnRNPA2B1 regulates expression of Lin28B via binding to Lin28B mRNA and enhancing its stability. Furthermore, knockdown of Lin28B reduces proliferation and mobility of ovarian cancer cells and impairs tumorigenesis in vivo, whereas Lin28B overexpression promotes xenograft tumor formation. Finally, re-expression of Lin28B in hnRNPA2B1 knockdown cells results in rescued phenotypes. Collectively, our results demonstrate that hnRNPA2B1 facilitates the malignant phenotype of ovarian cancer through activating Lin28B expression.
Collapse
Affiliation(s)
- Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuling Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qingya Luo
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Min He
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qi Zeng
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Weiliang Lu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Tao Liu
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 401120, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
31
|
Kotowski U, Erović BM, Schnöll J, Stanek V, Janik S, Steurer M, Mitulović G. Quantitative proteome analysis of Merkel cell carcinoma cell lines using SILAC. Clin Proteomics 2019; 16:42. [PMID: 31889939 PMCID: PMC6921584 DOI: 10.1186/s12014-019-9263-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumour of the skin with growing incidence. To better understand the biology of this malignant disease, immortalized cell lines are used in research for in vitro experiments. However, a comprehensive quantitative proteome analysis of these cell lines has not been performed so far. METHODS Stable isotope labelling by amino acids in cell culture (SILAC) was applied to six MCC cell lines (BroLi, MKL-1, MKL-2, PeTa, WaGa, and MCC13). Following tryptic digest of labelled proteins, peptides were analysed by mass spectrometry. Proteome patterns of MCC cell lines were compared to the proteome profile of an immortalized keratinocyte cell line (HaCaT). RESULTS In total, 142 proteins were upregulated and 43 proteins were downregulated. Altered proteins included mitoferrin-1, histone H2A type 1-H, protein-arginine deiminase type-6, heterogeneous nuclear ribonucleoproteins A2/B1, protein SLX4IP and clathrin light chain B. Furthermore, several proteins of the histone family and their variants were highly abundant in MCC cell lines. CONCLUSIONS The results of this study present a new protein map of MCC and provide deeper insights in the biology of MCC. Data are available via ProteomeXchange with identifier PXD008181.
Collapse
Affiliation(s)
- Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Boban M. Erović
- Institute of Head and Neck Diseases, Evangelical Hospital Vienna, 1180 Vienna, Austria
| | - Julia Schnöll
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Janik
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Steurer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Goran Mitulović
- Proteomics Core Facility, Medical University of Vienna, 1090 Vienna, Austria
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
32
|
Zhou JM, Jiang H, Yuan T, Zhou GX, Li XB, Wen KM. High hnRNP AB expression is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2019; 18:6459-6468. [PMID: 31819776 PMCID: PMC6896405 DOI: 10.3892/ol.2019.11034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Heterogeneous ribonucleoprotein AB (hnRNP AB) is a member of the heterogeneous nuclear ribonucleoprotein family, which serves important functions in gene expression and signal transduction. However, the expression and clinicopathological significance of hnRNP AB in colorectal cancer (CRC) remain to be elucidated. To investigate the expression and clinical significance of hnRNP AB in CRC, hnRNP AB expression levels were analysed in two independent cohorts of patients with CRC. The results of reverse transcription-quantitative PCR, immunohistochemistry and western blot analysis demonstrated that hnRNP AB was upregulated in CRC tissues compared with the corresponding adjacent normal tissues. Immunohistochemical analyses indicated that a high expression of hnRNP AB was significantly associated with preoperative carcinoembryonic antigen (CEA; P<0.001) and carbohydrate antigen 19-9 (P=0.014) levels, tumour size (P=0.022) and infiltration (P=0.026), lymph node metastasis (P<0.001) and Tumour-Node-Metastasis stage (P<0.001). Univariate and multivariate Cox survival analyses revealed that hnRNP AB expression and preoperative CEA levels were significant independent factors affecting overall survival in patients with CRC (P<0.05). According to the Kaplan-Meier model, patients with CRC with high hnRNP AB expression exhibited significantly poorer prognosis compared with those with low hnRNP AB expression (P<0.001). In conclusion, the results of the present study demonstrated that hnRNP AB expression may serve an important role in the progression of CRC and that hnRNP AB may be considered a predictor of prognosis for patients with CRC.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guang-Xun Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiang-Bing Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
33
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
34
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
36
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
37
|
Xuan Y, Wang J, Ban L, Lu JJ, Yi C, Li Z, Yu W, Li M, Xu T, Yang W, Tang Z, Tang R, Xiao X, Meng S, Chen Y, Liu Q, Huang W, Guo W, Cui X, Deng W. hnRNPA2/B1 activates cyclooxygenase-2 and promotes tumor growth in human lung cancers. Mol Oncol 2016; 10:610-24. [PMID: 26774881 PMCID: PMC5423139 DOI: 10.1016/j.molonc.2015.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in tumor cells and has been regarded as a hallmarker for cancers, but the excise regulatory mechanism of COX-2 in tumorigenesis remains largely unknown. Here, we pulled down and identified a novel COX-2 regulator, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), which could specifically bind to COX-2 core promoter and regulate tumor growth in non-small-cell lung cancers (NSCLCs). Knockdown of hnRNPA2/B1 by shRNA or siRNA downregulated COX-2 expression and prostaglandin E2 (PGE2) production, and suppressed tumor cell growth in NSCLC cells in vitro and in vivo. Conversely, overexpression of hnRNPA2/B1 up-regulated the levels of COX-2 and PGE2 and promoted tumor cell growth. We also showed that hnRNPA2/B1 expression was positively correlated with COX-2 expression in NSCLC cell lines and tumor tissues, and the up-regulated expression of hnRNPA2/B1 and COX-2 predicted worse prognosis in NSCLC patients. Furthermore, we demonstrated that the activation of COX-2 expression by hnRNPA2/B1 was mediated through the cooperation with p300, a transcriptional co-activator, in NSCLC cells. The hnRNPA2/B1 could interact with p300 directly and be acetylated by p300. Exogenous overexpression of p300, but not its histone acetyltransferase (HAT) domain deletion mutation, augmented the acetylation of hnRNPA2/B1 and enhanced its binding on COX-2 promoter, thereby promoted COX-2 expression and lung cancer cell growth. Collectively, our results demonstrate that hnRNPA2/B1 promotes tumor cell growth by activating COX-2 signaling in NSCLC cells and imply that the hnRNPA2/B1/COX-2 pathway may be a potential therapeutic target for human lung cancers.
Collapse
Affiliation(s)
- Yang Xuan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Liying Ban
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Jian-Jun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Canhui Yi
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Zhenglin Li
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wendan Yu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Mei Li
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Tingting Xu
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wenjing Yang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Zhipeng Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Ranran Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Songshu Meng
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Yiming Chen
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, PR China
| | - Wei Guo
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Xiaonan Cui
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, PR China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, PR China.
| |
Collapse
|