1
|
Liang HY, Luo RZ, Deng R, Chen SL, Liu X, Yang X, Wei LJ, Wei ZQ, Wu LY, Shen HM, Yun JP, Liu LL. Glycogen stores mediated by the p53-GYS1 feedback circuit engenders platinum resistance in ovarian clear cell carcinoma. Cell Death Differ 2025:10.1038/s41418-025-01500-z. [PMID: 40210982 DOI: 10.1038/s41418-025-01500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Ovarian cancer (OC) is a highly fatal and refractory malignancy affecting women, and platinum resistance remains a major clinical dilemma. Compared with other OC subtypes, ovarian clear cell carcinoma (OCCC) frequently exhibits increased platinum refractoriness, accompanied by increased glycogen levels, which promotes clear-cell morphology, and wild-type p53. However, the roles of these factors in platinum resistance of OCCC are unclear. Here, we investigated whether glycogen promotes OCCC resistance to platinum agents and reported that GYS1, a rate-limiting enzyme in glycogen synthesis, is clinically associated with poor prognosis and chemoresistance in OCCC. Mechanistically, p53 promotes GYS1 breakdown via the upregulation of RNF144a, whereas GYS1 induces the reversal of p53 ubiquitination and degradation by competitively binding to USP14, forming a positive feedback circuit. Under platinum stress, the accumulated glycogen is mobilized by the p53/GYS1 feedback circuit, which fuels energetic NADPH production, resulting in resistance to disulfidptosis and increased platinum resistance in OCCC. Collectively, our findings identify glycogen as a contributor to OCCC platinum resistance and elucidate the underlying mechanisms, highlighting a crucial p53/GYS1 positive feedback loop.
Collapse
Affiliation(s)
- Hao-Yu Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ru Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shi-Lu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xuan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Jun Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zong-Qiang Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Yan Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hui-Min Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Wei J, Ji K, Zhang Y, Zhang J, Wu X, Ji X, Zhou K, Yang X, Lu H, Wang A, Bu Z. Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach. Cell Oncol (Dordr) 2024; 47:677-693. [PMID: 37943484 DOI: 10.1007/s13402-023-00892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS. METHODS Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively. RESULTS A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy. CONCLUSION Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.
Collapse
Affiliation(s)
- Jingtao Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ke Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yue Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Ji Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaojiang Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Kai Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xuesong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hongfeng Lu
- Berry Genomics Corporation, Beijing, 102206, China
| | - Anqiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Zhaode Bu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
4
|
Mujawar A, Phadte P, Palkina KA, Markina NM, Mohammad A, Thakur BL, Sarkisyan KS, Balakireva AV, Ray P, Yamplosky I, De A. Triple Reporter Assay: A Non-Overlapping Luciferase Assay for the Measurement of Complex Macromolecular Regulation in Cancer Cells Using a New Mushroom Luciferase-Luciferin Pair. SENSORS (BASEL, SWITZERLAND) 2023; 23:7313. [PMID: 37687774 PMCID: PMC10490530 DOI: 10.3390/s23177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| | - Pratham Phadte
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ksenia A. Palkina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Nadezhda M. Markina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Ameena Mohammad
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
| | - Bhushan L. Thakur
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Karen S. Sarkisyan
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Anastasia V. Balakireva
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Pritha Ray
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ilia Yamplosky
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
| | - Abhijit De
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| |
Collapse
|
5
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
6
|
A Systems Biology Approach to Investigate Kinase Signal Transduction Networks That Are Involved in Triple Negative Breast Cancer Resistance to Cisplatin. J Pers Med 2022; 12:jpm12081277. [PMID: 36013226 PMCID: PMC9409860 DOI: 10.3390/jpm12081277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) remains a therapeutic challenge due to the lack of targetable genetic alterations and the frequent development of resistance to the standard cisplatin-based chemotherapies. Here, we have taken a systems biology approach to investigate kinase signal transduction networks that are involved in TNBC resistance to cisplatin. Treating a panel of cisplatin-sensitive and cisplatin-resistant TNBC cell lines with a panel of kinase inhibitors allowed us to reconstruct two kinase signalling networks that characterise sensitive and resistant cells. The analysis of these networks suggested that the activation of the PI3K/AKT signalling pathway is critical for cisplatin resistance. Experimental validation of the computational model predictions confirmed that TNBC cell lines with activated PI3K/AKT signalling are sensitive to combinations of cisplatin and PI3K/AKT pathway inhibitors. Thus, our results reveal a new therapeutic approach that is based on identifying targeted therapies that synergise with conventional chemotherapies.
Collapse
|
7
|
Zhang J, Abou-Fadel J, Renteria M, Belkin O, Chen B, Zhu Y, Dammann P, Rigamonti D. Cerebral cavernous malformations do not fall in the spectrum of PIK3CA-related overgrowth. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328901. [PMID: 35477890 DOI: 10.1136/jnnp-2022-328901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
Somatic gain-of-function (GOF) mutations in phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), the catalytic subunit of phosphoinositide 3-kinase (PI3K), have been recently discovered in cerebral cavernous malformations (CCMs), raising the possibility that the activation of PI3K pathways is a possible universal regulator of vascular morphogenesis. However, there have been contradicting data presented among various groups and studies. To enhance the current understanding of vascular anomalies, it is essential to explore this possible relationship between altered PI3K signalling pathways and its influence on the pathogenesis of CCMs. GOF PIK3CA-mutants have been linked to overgrowth syndromes, allowing this group of disorders, resulting from somatic activating mutations in PIK3CA, to be collectively named as PIK3CA-related overgrowth spectrum disorders. This paper reviews and attempts to conceptualise the relationships and differences among clinical presentations, genotypic and phenotypic correlations and possible coexistence of PIK3CA and CCM mutations/phenotypes in CCM lesions. Finally, we present a model reflecting our hypothetical understanding of CCM pathogenesis based on a systematic review and conceptualisation of data obtained from other studies.
Collapse
Affiliation(s)
- Jun Zhang
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Johnathan Abou-Fadel
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Mellisa Renteria
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Ofek Belkin
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Bixia Chen
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
8
|
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer 2022; 21:72. [PMID: 35277182 PMCID: PMC8915544 DOI: 10.1186/s12943-022-01529-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although the prognostic outcomes of liver cancer (LC) cases have improved with the advancement in diagnostic technology and treatment methods, the transferability and recurrence of HCC and the 5-year and 10-year survival rates of patients have remained unsatisfactory. As a result, there is a need for more accurate diagnostic indicators that can detect liver cancer early, effectively improving the prognosis of patients. Whole-genome sequencing (WGS) revealed that circ-ZEB1 and PIK3CA are highly expressed in HCC tissues, whereas miR-199a-3p is significantly downregulated in HCC. Multiple databases search and biological analysis revealed that elevated expression of circ-ZEB1 and PIK3CA was related to poor prognosis of HCC. In vitro and in vivo studies revealed that upregulated levels of PIK3CA and circ-ZEB1 were closely associated with HCC proliferation and apoptosis. Based on these results, we believe that circ-ZEB1 and PIK3CA could be used as biomarkers to diagnose and treat patients with HCC. More importantly, circ-ZEB1 can promotes the expression of PIK3CA by silencing miR-199a-3p and affecting the progression of HCC. METHODS AND RESULTS Postoperative specimens from 56 patients with HCC who had not undergone chemotherapy from 2015 to 2018 were collected from the Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University. WGS revealed differential expression of genes in HCC. Furthermore, RT-qPCR detected the expression of circ-ZEB1, miR-199a-3p, and PIK3CA in HCC tissues. MTT, EdU, and plate cloning experiments were conducted to detect cell proliferation, whereas flow cytometry analysis was used to detect apoptosis. FISH was used to co-localize circ-ZEB1 and miR-199a-3p, and biotin-coupled probe pull-down assay was used to detect the specific binding of circ-ZEB1 and miR-199a-3p. The dual-luciferase report assay detected the association of miR-199a-3p with PIK3CA. Western blotting was used to study the expression of PIK3CA protein. Circ-ZEB1 and PIK3CA were upregulated in HCC and predicted a poor prognosis. MiR-199a-3p showed low expression in HCC, whereas downregulation of circ-ZEB1 reduced HCC cell proliferation and promoted cell apoptosis. MiR-199a-3p blocked the effect of circ-ZEB1 on HCC. Circ-ZEB1 served as a biomarker of HCC. Circ-ZEB1 promoted the expression of PIK3CA by silencing miR-199a-3p to affect the progress of HCC. CONCLUSIONS Circ-ZEB1 promoted the expression of PIK3CA by depleting miR-199a-3p, thereby affecting HCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiakun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
9
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
10
|
Bishnu A, Phadte P, Dhadve A, Sakpal A, Rekhi B, Ray P. Molecular imaging of the kinetics of hyperactivated ERK1/2-mediated autophagy during acquirement of chemoresistance. Cell Death Dis 2021; 12:161. [PMID: 33558461 PMCID: PMC7870816 DOI: 10.1038/s41419-021-03451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
Alterations in key kinases and signaling pathways can fine-tune autophagic flux to promote the development of chemoresistance. Despite empirical evidences of strong association between enhanced autophagic flux with acquired chemoresistance, it is still not understood whether an ongoing autophagic flux is required for both initiation, as well as maintenance of chemoresistance, or is sufficient for one of the either steps. Utilizing indigenously developed cisplatin-paclitaxel-resistant models of ovarian cancer cells, we report an intriguing oscillation in chemotherapy-induced autophagic flux across stages of resistance, which was found to be specifically elevated at the early stages or onset of chemoresistance. Conversely, the sensitive cells and cells at late stages of resistance showed stalled and reduced autophagic flux. This increased flux at early stages of resistance was found to be dictated by a hyperactive ERK1/2 signaling, which when inhibited either pharmacologically (U0126/Trametinib) or genetically, reduced p62 degradation, number of LC3+veLAMP1+ve puncta, autophagolysosome formation, and led to chemo-sensitization and apoptosis. Inhibition of ERK1/2 activation also altered the level of UVRAG and Rab7, the two key proteins involved in autophagosome-lysosome fusion. Noninvasive imaging of autophagic flux using a novel autophagy sensor (mtFL-p62 fusion reporter) showed that combinatorial treatment of platinum-taxol along with Trametinib/chloroquine blocked autophagic flux in live cells and tumor xenografts. Interestingly, Trametinib was found to be equally effective in blocking autophagic flux as chloroquine both in live cells and tumor xenografts. Combinatorial treatment of Trametinib and platinum-taxol significantly reduced tumor growth. This is probably the first report of real-time monitoring of chemotherapy-induced autophagy kinetics through noninvasive bioluminescence imaging in preclinical mouse model. Altogether our data suggest that an activated ERK1/2 supports proper completion of autophagic flux at the onset of chemoresistance to endure initial chemotherapeutic insult and foster the development of a highly chemoresistant phenotype, where autophagy becomes dispensable.
Collapse
Affiliation(s)
- Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Ajit Dhadve
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Asmita Sakpal
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India
| | - Bharat Rekhi
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, TMC, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
11
|
Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J Pharmacol Exp Ther 2020; 373:453-462. [PMID: 32238452 DOI: 10.1124/jpet.120.265082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 03/08/2025] Open
Abstract
Paclitaxel (PTX) is an antineoplastic drug extracted from the Taxus species, and peripheral neuropathy is a common side effect. Paclitaxel-induced peripheral neuropathy (PIPN) seriously affects patient quality of life. Currently, the mechanism of PIPN is still unknown, and few treatments are recognized clinically. Duloxetine is recommended as the only potential treatment of chemotherapy-induced peripheral neuropathy (CIPN) by the American Society of Clinical Oncology. However, this guidance lacks a theoretical basis and experimental evidence. Our study suggested that duloxetine could improve PIPN and provide neuroprotection. We explored the potential mechanisms of duloxetine on PIPN. As a result, duloxetine acts by inhibiting poly ADP-ribose polymerase cleavage (PARP) and tumor suppressor gene p53 activation and regulating apoptosis regulator the Bcl2 family to reverse PTX-induced oxidative stress and apoptosis. Taken together, the present study shows that using duloxetine to attenuate PTX-induced peripheral nerve injury and peripheral pain may provide new clinical therapeutic targets for CIPN. SIGNIFICANCE STATEMENT: This study reported that duloxetine significantly alleviates neuropathic pain induced by paclitaxel and is related to poly ADP-ribose polymerase (PARP), tumor suppressor gene p53, and apoptosis regulator the Bcl2 family. Our findings thus not only provide important guidance to support duloxetine to become the first standard chemotherapy-induced peripheral neuropathy (CIPN) drug but also will find potential new targets and positive control for new CIPN drug development.
Collapse
Affiliation(s)
- Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Yangyan Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jinshuai Suo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Xinxia Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China (Y.L., P.Z., Q.Z., C.Y., Y.Q., J.S., X.T., J.Z.); Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (J.Z.)
| |
Collapse
|
12
|
Dhadve AC, Hari K, Rekhi B, Jolly MK, De A, Ray P. Decoding molecular interplay between RUNX1 and FOXO3a underlying the pulsatile IGF1R expression during acquirement of chemoresistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165754. [PMID: 32142859 DOI: 10.1016/j.bbadis.2020.165754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Hyperactive Insulin like growth factor-1-receptor (IGF1R) signalling is associated with development of therapy resistance in many cancers. We recently reported a pulsatile nature of IGF1R during acquirement of platinum-taxol resistance in Epithelial Ovarian Cancer (EOC) cells and a therapy induced upregulation in IGF1R expression in tumors of a small cohort of high grade serous EOC patients. Here, we report Runt-related transcription factor 1 (RUNX1) as a novel transcriptional regulator which along with another known regulator Forkhead Box O3 (FOXO3a), drives the dynamic modulation of IGF1R expression during platinum-taxol resistance development in EOC cells. RUNX1-FOXO3a cooperatively bind to IGF1R promoter and produce a transcriptional surge during onset of resistance and such co-operativity falls apart when cells attain maximal resistance resulting in decreased IGF1R expression. The intriguing descending trend in IGF1R and FOXO3a expressions is caused by a Protein Kinase B (AKT)-FOXO3a negative feedback loop exclusively present in the highly resistant cells eliciting the pulsatile behaviour of IGF1R and FOXO3a. In vivo molecular imaging revealed that RUNX1 inhibition causes significant attenuation of the IGF1R promoter activity, decreased tumorigenicity and enhanced drug sensitivity of tumors of early resistant cells. Altogether our findings delineate a dynamic interplay between several molecular regulators driving pulsatile IGF1R expression and identify a new avenue for targeting EOC through RUNX1-IGF1R axis during acquirement of chemoresistance.
Collapse
Affiliation(s)
- Ajit C Dhadve
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Bharat Rekhi
- Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
13
|
Chen X, Guo Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xu Y, Xie Y. Co-mutation of TP53 and PIK3CA in residual disease after neoadjuvant chemotherapy is associated with poor survival in breast cancer. J Cancer Res Clin Oncol 2019; 145:1235-1242. [PMID: 30806788 DOI: 10.1007/s00432-019-02873-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The prevalence and clinical relevance of TP53 and PIK3CA mutations in pretreatment breast cancer have been previously reported. However, little is known regarding these mutations in residual tumor tissues after neoadjuvant chemotherapy. Here, we investigated the association between TP53 and PIK3CA mutations in residual disease and survival of breast cancers. METHODS TP53 and PIK3CA somatic mutations were examined in 353 post-neoadjuvant chemotherapy residual tumor tissues by Sanger sequencing. Survival curves of patients with TP53 and PIK3CA mutations were compared using the Kaplan-Meier method. RESULTS Fifty-six (15.9%) of the 353 patients carried a TP53 somatic mutation and 79 patients (22.4%) carried a PIK3CA somatic mutation. A total of 18 patients carried co-mutation of TP53 and PIK3CA. Patients with somatic co-mutation were more likely to have high-grade tumors (35.3% vs. 10.6%, P = 0.010), estrogen receptor-negative tumors (55.6% vs. 26.7%, P = 0.009), progesterone receptor-negative tumors (61.1% vs. 30.5%, P = 0.008) and triple-negative tumors (35.3% vs. 13.3%, P = 0.025) compared with non-carriers. More importantly, co-mutation of TP53 and PIK3CA carriers had a significantly worse disease-free survival (DFS) and distant disease-free survival (DDFS) than non-carriers (5-year DFS: 58.0% vs. 83.2%, P < 0.001; 5-year DDFS: 70.3% vs. 86.4%, P = 0.024). Furthermore, in multivariate regression analysis, TP53 and PIK3CA co-mutation carriers showed a significantly worse DFS (adjusted hazard ratio = 3.70; 95% confidence interval, 1.79-7.63; P < 0.001). CONCLUSIONS Patients with somatic co-mutation of TP53 and PIK3CA were associated with unfavorable survival compared with non-carriers. Co-mutation of TP53 and PIK3CA could be used as a potential prognosis marker in post-neoadjuvant chemotherapy breast cancer patients.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Yonghai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital and Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| |
Collapse
|
14
|
Xu F, Chen K, Lu C, Gu J, Zeng H, Xu Y, Ji Y, Ge D. Large Cell Neuroendocrine Carcinoma Shares Similarity with Small Cell Carcinoma on the Basis of Clinical and Pathological Features. Transl Oncol 2019; 12:646-655. [PMID: 30818166 PMCID: PMC6393706 DOI: 10.1016/j.tranon.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Large cell neuroendocrine carcinoma (LCNEC) was categorized into pulmonary neuroendocrine tumors (NETs) according to the World Health Organization classification guideline. However, LCNEC patients often received the chemotherapy regimens similar to non-small cell lung carcinoma (NSCLC) in advanced stage and the therapeutic effect was unsatisfactory. Therefore, this study aimed to investigate the hidden clinical features, prognosis and immunoprofile of the LCNEC, compared with carcinoid and SCLC, to explore whether LCNEC shares similarity with SCLC and potential treatment approaches could be revealed. METHODS One hundred seventeen pulmonary NETs cases were retrospectively retrieved in this study. The Kaplan-Meier estimator was employed to draw survival curves. Immunohistochemistry was applied to detect NET-related markers expression. RESULTS In clinical features, compared with carcinoid, LCNEC patients were older, more commonly in male and advanced stage. The parallel phenomena were also found in the high-grade subgroup when compared with the low- to intermediate-grade one. In survival analysis, the 5-year overall survival of LCNECs was 59.1%, which was poorer than that of carcinoids, but better than that of SCLCs. Immunohistochemistry showed that p53 and PTEN functional inactivation, up-regulation of CD117 expression, down-regulation of SSR2A and SSR5 expression were commonly involved in LCNECs when compared with carcinoids, or in the high-grade subgroup when compared with the low- to intermediate-grade one. However, no significant difference was found in the comparison between LCNECs and SCLCs, or NSCLCs and SCLCs. CONCLUSION In clinical features, survival and immunoprofile, LCNEC showed more similarity with SCLC rather than carcinoid, which might guide novel therapy for pulmonary NETs.
Collapse
Affiliation(s)
- Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Ke Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
15
|
Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Rebello RJ, Macpherson AA, Koushyar S, Furic L, Cullinane C, Clarkson RW, Smalley MJ, Simpson KJ, Phesse TJ, Shepherd PR, Humbert PO, Sansom OJ, Phillips WA. Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth. Cancer Discov 2018; 8:764-779. [PMID: 29581176 DOI: 10.1158/2159-8290.cd-17-0867] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Genetic alterations that potentiate PI3K signaling are frequent in prostate cancer, yet how different genetic drivers of the PI3K cascade contribute to prostate cancer is unclear. Here, we report PIK3CA mutation/amplification correlates with poor survival of patients with prostate cancer. To interrogate the requirement of different PI3K genetic drivers in prostate cancer, we employed a genetic approach to mutate Pik3ca in mouse prostate epithelium. We show Pik3caH1047R mutation causes p110α-dependent invasive prostate carcinoma in vivo Furthermore, we report that PIK3CA mutation and PTEN loss coexist in patients with prostate cancer and can cooperate in vivo to accelerate disease progression via AKT-mTORC1/2 hyperactivation. Contrasting single mutants that slowly acquire castration-resistant prostate cancer (CRPC), concomitant Pik3ca mutation and Pten loss caused de novo CRPC. Thus, Pik3ca mutation and Pten deletion are not functionally redundant. Our findings indicate that PIK3CA mutation is an attractive prognostic indicator for prostate cancer that may cooperate with PTEN loss to facilitate CRPC in patients.Significance: We show PIK3CA mutation correlates with poor prostate cancer prognosis and causes prostate cancer in mice. Moreover, PIK3CA mutation and PTEN loss coexist in prostate cancer and can cooperate in vivo to accelerate tumorigenesis and facilitate CRPC. Delineating this synergistic relationship may present new therapeutic/prognostic approaches to overcome castration/PI3K-AKT-mTORC1/2 inhibitor resistance. Cancer Discov; 8(6); 764-79. ©2018 AACR.See related commentary by Triscott and Rubin, p. 682This article is highlighted in the In This Issue feature, p. 663.
Collapse
Affiliation(s)
- Helen B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
| | - Valerie S Meniel
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | | | - Paul Waring
- Department of Pathology, the University of Melbourne, Parkville, Victoria, Australia
| | | | - Richard J Rebello
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Arthi A Macpherson
- Victorian Centre for Functional Genomics, ACRF RPPA Platform, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarah Koushyar
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Luc Furic
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
| | - Richard W Clarkson
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Kaylene J Simpson
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, ACRF RPPA Platform, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, Haydn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, the University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, the University of Auckland, Auckland, New Zealand
| | - Patrick O Humbert
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, the University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, the University of Melbourne, Parkville, Victoria, Australia
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery (St. Vincent's Hospital), the University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Kapoor A, Barai A, Thakur B, Das A, Patwardhan SR, Monteiro M, Gaikwad S, Bukhari AB, Mogha P, Majumder A, De A, Ray P, Sen S. Soft drug-resistant ovarian cancer cells migrate via two distinct mechanisms utilizing myosin II-based contractility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:392-405. [DOI: 10.1016/j.bbamcr.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
|
17
|
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study. Pharmacol Rep 2017; 70:570-576. [PMID: 29684847 DOI: 10.1016/j.pharep.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The association between p53 protein phosphorylated at serine 15 (Ser15), serine 20 (Ser20) and ovarian tumor cell sensitivity after chemotherapy was analyzed in order to define the influence of p53 activation on tumor cell sensitivity to chemotherapy. METHODS The study was performed on ovarian cancer cell line (OvBH-1), colon adenocarcinoma metastasis to ovary (SW626) and on cells isolated from ascitic fluids from patients with ovarian cancer: with (p53+) or without (p53-) p53 nuclear protein accumulation. p53 protein, Ser15, Ser20, Bax, Noxa and PgP protein expression was evaluated by means of immunocytochemical staining before and after chemotherapy. Cell viability after treatment was estimated using MTT assay. RESULTS Cell lines and tumor cells p53+, p53- revealed a significant decrease in cell survival after camptothecin, paclitaxel, cisplatin treatment, compared to the control group (p < 0.01). In p53+ group, the expression of Ser20 significantly increased after camptothecin and paclitaxel (p < 0.05). Ser15, Ser20, Bax, Noxa expression correlated with MTT and depended on p53+, p53- tumor cell and the drug used (p < 0.05). Expression of Bax and Noxa were dependent on the type of tumor cells and drug used. The correlation between Ser15, Ser20 and Bax, Noxa expression was found in cell lines and tumor cells (p < 0.05). CONCLUSIONS Our study suggests that the relation between Ser15 or Ser20 and tumor cell viability might reflect their role in tumor sensitivity on chemotherapy in dependent p53 protein status. Revealed association between p53 protein phosphorylated at Ser15, Ser20 and Bax, Noxa protein expression determined the apoptotic activity of tumor cells.
Collapse
Affiliation(s)
- Iwona Kamińska
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| | - Julia K Bar
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| |
Collapse
|
18
|
Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-κB-TNFα-PIK3CA loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:164. [PMID: 29169370 PMCID: PMC5701448 DOI: 10.1186/s13046-017-0636-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
Background Parallel to complex alteration in molecular and cellular events, enrichment of cancer stem cells (CSC) contributes significantly in deliberation and maintenance of cisplatin resistance. Cisplatin mediated CSC enrichment is well established in various cancers, yet the underlying mechanism is largely unknown. Cisplatin also promotes transcriptional upregulation of PIK3CA, hence activating PI3K/AKT signaling in resistant cells. However, such cisplatin-induced transcriptional regulators of PIK3CA and their impact on cancer stem cell population in resistant cells are largely unknown. Methods DNA-binding protein pulldown using PIK3CA promoter as bait followed by nLCMS was used to identify, cisplatin-induced potential transcriptional regulators of PIK3CA promoter. PIK3CA promoter activity was estimated by luciferase based reporter assay. ChIP was used to assess interaction of NF-κB with PIK3CA promoter. CSC-enriched side-population was sorted using DCV-dye exclusion methods. All the gene expression levels were assessed using qPCR. Results Using a transcription factor pull-down assay with PIK3CA promoter, we identified NF-κB as a prime regulator, which escalates both TNFα and PIK3CA expression only in CSC enriched side-population (SP) but not in non side-population (NSP) in platinum resistant ovarian cancer cells upon cisplatin treatment. This SP-specific NF-κB-TNFα-PIK3CA bi-modal loop, on one hand, maintains persistent activation of NF-κB through TNFα- NF-κB autocrine loop, while NF-κB-PIK3CA loop nurture CSC population under cisplatin treatment. Activation of PI3K/AKT signalling drives SP’s into an undifferentiated, anti-apoptotic stage through upregulating P21, P27,cFLIP expression. Contrarily, lack of active NF-κB-TNFα-PIK3CA loop makes NSPs vulnerable towards cisplatin and undergoes apoptosis. Altogether, cisplatin enriches cancer stem cells properties in SP fraction, which is evident from increased levels of pluripotency gene OCT4/SOX2/NANOG expression. Disruption of PIK3CA-NF-κB loop by Wortamannin reduces SP fraction by 1.4–1.6 fold in control and treated cells. Conclusion Together, our study signifies an active role of NF-κB-TNFα-PIK3CA bi-modal loop in cisplatin-mediated promotion and maintenance of CSC-like population in platinum-resistant cells. Electronic supplementary material The online version of this article (10.1186/s13046-017-0636-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Real NE, Castro GN, Darío Cuello-Carrión F, Perinetti C, Röhrich H, Cayado-Gutiérrez N, Guerrero-Gimenez ME, Ciocca DR. Molecular markers of DNA damage and repair in cervical cancer patients treated with cisplatin neoadjuvant chemotherapy: an exploratory study. Cell Stress Chaperones 2017; 22:811-822. [PMID: 28608263 PMCID: PMC5655369 DOI: 10.1007/s12192-017-0811-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Neoadjuvant (or induction) chemotherapy can be used for cervical cancer patients with locally advanced disease; this treatment is followed by radical surgery and/or radiation therapy. Cisplatin is considered to be the most active platinum agent drug for this cancer, with a response rate of 20%. In order to understand how the cisplatin treatment affects the stress response, in this work, we performed an exploratory study to analyze a number of stress proteins before and after cisplatin neoadjuvant chemotherapy. The study involved 14 patients; the pre- and post-chemotherapy paired biopsies were examined by hematoxylin and eosin staining and by immunohistochemistry. The proteins evaluated were p53, P16/INK4A, MSH2, nuclear protein transcriptional regulator 1 (NUPR1), and HSPB1 (total: HSPB1/t and phosphorylated: HSPB1/p). These proteins were selected because there is previous evidence of their relationship with drug resistance. The formation of platinum-DNA adducts was also studied. There was a great variation in the expression levels of the mentioned proteins in the pre-chemotherapy biopsies. After chemotherapy, p53 was not significantly affected by cisplatin, as well as P16/INK4A and MSH2 while nuclear NUPR1 content tended to decrease (p = 0.056). Cytoplasmic HSPB1/t expression levels decreased significantly following cisplatin therapy while nuclear HSPB1/t and HSPB1/p tended to increase. Since the most significant changes following chemotherapy appeared in the HSPB1 expression levels, the changes were confirmed by Western blot. The platinum-DNA adducts were observed in HeLa cell in apoptosis; however, in the tumor samples, the platinum-DNA adducts were observed in morphologically healthy tumor cells; these cells displayed nuclear HSPB1/p. Further mechanistic studies should be performed to reveal how HSPB1/p is related with drug resistance. When the correlations of the markers with the response to neoadjuvant chemotherapy were examined, only high pre-chemotherapy levels of cytoplasmic HSPB1/p correlated with a poor clinical and pathological response to neoadjuvant cisplatin chemotherapy (p = 0.056) suggesting that this marker could be useful opening its study in a larger number of cases.
Collapse
Affiliation(s)
- Nilda E Real
- Oncology Department, Hospital Diego Paroissien of Maipú, Mendoza, Argentina
| | - Gisela N Castro
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - F Darío Cuello-Carrión
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Claudia Perinetti
- Oncology Department, Hospital Diego Paroissien of Maipú, Mendoza, Argentina
| | | | - Niubys Cayado-Gutiérrez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Martin E Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - Daniel R Ciocca
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Dr. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
20
|
Thakur B, Ray P. p53 Loses grip on PIK3CA expression leading to enhanced cell survival during platinum resistance. Mol Oncol 2016; 10:1283-95. [PMID: 27401370 PMCID: PMC5423208 DOI: 10.1016/j.molonc.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/25/2016] [Accepted: 06/19/2016] [Indexed: 12/28/2022] Open
Abstract
Tumour suppressor p53, a master transcriptional regulator determines cell fate through preferential activation/repression of a myriad of genes during stress. Till date, activation and preferential binding of p53 on different promoters was reported to be influenced by the nature, strength and duration of stress which mediates its post translational modifications. Cisplatin, a widely used cytotoxic drug represses PIK3CA promoter activity and attenuates PI3K/AKT cell survival pathway through p53 activation in sensitive cells. However, very little is understood about the overall mechanism of p53-PIK3CA interaction and influence of p53 on the transcriptional status of PIK3CA during cisplatin resistance. Here we showed that cisplatin could dynamically alter p53 occupancy between the p53 binding sequences present in PIK3CA promoter in ovarian and breast cancer cells. This altered occupancy is dictated by higher acetylation and hyper-phosphorylation at serine 15, serine 20 and serine 46 residues. Interestingly, cisplatin resistant cells when challenged with cisplatin demonstrated abolished PIK3CA promoter attenuation, low level of p53 binding, and loss of p53 serine 46 phosphorylation. A phosphorylation deficient S46A mutant failed to repress PIK3CA in p53 deficient cells. Elevated expression of Bcl2, P27 and cFLIP indicated a pro-survival state in these resistant cells. Non-invasive real time imaging using two different luciferase reporters showed that cisplatin could simultaneously induce PIK3CA attenuation and p53 activation with growth regression in sensitive tumours but not in the resistant tumours where only low level of p53 activation and sustained growth was observed. This is the first report on phosphorylation of p53 serine 46 as a modulator of p53-PIK3CA promoter interaction which influences altered binding of p53 at different consensus sequences in the same promoter in response to chemotherapeutic stress. Absence of such modulation in resistant cellular milieu influences cellular homoeostasis in platinum-resistant cells probably due to altered post translational modification of p53.
Collapse
Affiliation(s)
- Bhushan Thakur
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Pritha Ray
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
| |
Collapse
|