1
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
2
|
Mehdawi LM, Ghatak S, Chakraborty P, Sjölander A, Andersson T. LGR5 Expression Predicting Poor Prognosis Is Negatively Correlated with WNT5A in Colon Cancer. Cells 2023; 12:2658. [PMID: 37998393 PMCID: PMC10670301 DOI: 10.3390/cells12222658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
WNT/β-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair β-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of β-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as β-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed β-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since β-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and β-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE 214 28 Malmö, Sweden; (S.G.); (P.C.); (A.S.)
| |
Collapse
|
3
|
Tufail M, Wu C. WNT5A: a double-edged sword in colorectal cancer progression. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108465. [PMID: 37495091 DOI: 10.1016/j.mrrev.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
WNT5A in tumor development and progression: A comprehensive review. Biomed Pharmacother 2022; 155:113599. [PMID: 36089446 DOI: 10.1016/j.biopha.2022.113599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
The investigation of tumor microenvironment (TME) is essential to better characterize the complex cellular crosstalk and to identify important immunological phenotypes and biomarkers. The niche is a crucial contributor to neoplasm initiation, maintenance and progression. Therefore, a deeper analysis of tumor surroundings could improve cancer diagnosis, prognosis and assertive treatment. Thus, the WNT family exerts a critical action in tumorigenesis of different types of neoplasms due to dysregulations in the TME. WNT5A, an evolutionary WNT member, is involved in several cellular and physiopathological processes, in addition to tissue homeostasis. The WNT5A protein exerts paradoxical effects while acting as both an oncogene or tumor suppressor by regulating several non-canonical signaling pathways, and consequently interfering in cell growth, cytoskeletal remodeling, migration and invasiveness. This review focuses on a thorough characterization of the role of WNT5A in neoplastic transformation and progression, which may help to understand the prognostic potentiality of WNT5A and its features as a therapeutic target in several cancers. Additionally, we herein summarized novel findings on the mechanisms by which WNT5A might favor tumorigenesis or suppression of cancer progression and discussed the recently developed treatment strategies using WNT5A as a protagonist.
Collapse
|
5
|
Fan L, Li Y, Zhang X, Wu Y, Song Y, Zhang F, Zhang J, Sun H. Time-resolved proteome and transcriptome of paraquat-induced pulmonary fibrosis. Pulm Pharmacol Ther 2022; 75:102145. [PMID: 35817254 DOI: 10.1016/j.pupt.2022.102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS Pulmonary fibrosis (PF) is a pathological state presenting at the progressive stage of heterogeneous interstitial lung disease (ILD). The current understanding of the molecular mechanisms involved is incomplete. This clinical toxicology study focused on the pulmonary fibrosis induced by paraquat (PQ), a widely-used herbicide. Using proteo-transcriptome analysis, we identified differentially expressed proteins (DEPs) derived from the initial development of fibrosis to the dissolved stage and provided further functional analysis. METHODS We established a mouse model of progressive lung fibrosis via intratracheal instillation of paraquat. To acquire a comprehensive and unbiased understanding of the onset of pulmonary fibrosis, we performed time-series proteomics profiling (iTRAQ) and RNA sequencing (RNA-Seq) on lung samples from paraquat-treated mice and saline control. The biological functions and pathways involved were evaluated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Correlation tests were conducted on comparable groups 7 days and 28 days post-exposure. Differentially expressed proteins and genes following the same trend on the protein and mRNA levels were selected for validation. The functions of the selected molecules were identified in vitro. The protein level was overexpressed by transfecting gene-containing plasmid or suppressed by transfecting specific siRNA in A549 cells. The levels of endothlial-mesenchymal transition (EMT) markers, including E-cadherin, vimentin, FN1, and α-SMA, were determined via western blot to evaluate the fibrotic process. RESULTS We quantified 1358 DEPs on day 7 and 426 DEPs on day 28 post exposure (Fold change >1.2; Q value < 0.05). The top 5 pathways - drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, chemical carcinogenesis, protein digestion and absorption - were involved on both day 7 and day 28. Several pathways, including tight junction, focal adhesion, platelet activation, and ECM-receptor interaction, were more enriched on day 28 than on day 7. Integrative analysis of the proteome and transcriptome revealed a moderate correlation of quantitative protein abundance ratios with RNA abundance ratios (Spearman R = 0.3950 and 0.2477 on days 7 and 28, respectively), indicating that post-transcriptional regulation plays an important role in lung injury and repair. Western blot identified that the protein expressions of FN1, S100A4, and RBM3 were significantly upregulated while that of CYP1A1, FMO3, and PGDH were significantly downregulated on day 7. All proteins generally recovered to baseline on day 28. qPCR showed the mRNA levels of Fn1, S100a4, Rbm3, Cyp1a1, Fmo3, and Hpgd changed following the same trend as the levels of their respective proteins. Further, in vitro experiments showed that RBM3 was upregulated while PGDH was downregulated in an EMT model established in human lung epithelial A549 cells. RBM3 overexpression and PGDH knockout could both induce EMT in A549 cells. RBM3 knockout or PGDH overexpression had no reverse effect on EMT in A549 cells. CONCLUSIONS Our proteo-transcriptomic study determined the proteins responsible for fibrogenesis and uncovers their dynamic regulation from lung injury to repair, providing new insights for the development of biomarkers for diagnosis and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China; Department of Emergency, Clinical Medical College, Yangzhou University, Yangzhou, PR China.
| | - Yuan Li
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Xiaomin Zhang
- Department of Emergency, The Second People's Hospital of Wuxi, Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yang Song
- Department of Emergency, Nanjing Jiangbei Hospital, Affiliated to Southeast University, Nanjing, PR China.
| | - Feng Zhang
- Department of Emergency, Jiangsu Province Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
6
|
Topi G, Ghatak S, Satapathy SR, Ehrnström R, Lydrup ML, Sjölander A. Combined Estrogen Alpha and Beta Receptor Expression Has a Prognostic Significance for Colorectal Cancer Patients. Front Med (Lausanne) 2022; 9:739620. [PMID: 35360718 PMCID: PMC8963951 DOI: 10.3389/fmed.2022.739620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
We reported that high estrogen receptor beta (ERβ) expression is independently associated with better prognosis in female colorectal cancer (CRC) patients. However, estrogen receptor alpha (ERα) is expressed at very low levels in normal colon mucosa, and its prognostic role in CRC has not been explored. Herein, we investigated the combined role of ERα and ERβ expression in the prognosis of female patients with CRC, which, to the best of our knowledge, is the first study to investigate this topic. A total number of 306 primary CRCs were immunostained for ERα and ERβ expression. A Cox regression model was used to evaluate overall survival (OS) and disease-free survival (DFS). The combined expression of high ERβ + negative ERα correlates with longer OS (HR = 0.23; 95% CI: 0.11–0.45, P <0.0001) and DFS (HR = 0.10; 95% CI: 0.03–0.26, P < 0.0001) and a more favorable tumor outcome, as well as significantly higher expression of antitumorigenic proteins than combined expression of low ERβ + positive ERα. Importantly, we found that low ERβ expression was associated with local recurrence of CRC, whereas ERα expression was correlated with liver metastasis. Overall, our results show that the combined high ERβ + negative ERα expression correlated with a better prognosis for CRC patients. Our results suggest that the combined expression of ERα and ERβ could be used as a predictive combination marker for CRC patients, especially for predicting DFS.
Collapse
Affiliation(s)
- Geriolda Topi
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Souvik Ghatak
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Roy Ehrnström
- Division of Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Marie-Louise Lydrup
- Division of Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
- *Correspondence: Anita Sjölander
| |
Collapse
|
7
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
8
|
Ghatak S, Mehrabi SF, Mehdawi LM, Satapathy SR, Sjölander A. Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers. Int J Mol Sci 2022; 23:ijms23020793. [PMID: 35054980 PMCID: PMC8776147 DOI: 10.3390/ijms23020793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The current TNM (Tumor, Node, and Metastasis) classification approach is suboptimal in determining the prognosis of CRC patients. The prognosis for CRC is affected by a variety of features that are present at the initial diagnosis. Herein, we performed a systematic exploration and established a novel five-panel gene signature as a prognostic and early diagnosis biomarker after performing differential gene expression analyses in five independent in silico CRCs cohort and independently validating it in one clinical cohort, using immunohistochemistry. Four genes (BDNF, PTGS2, GSK3B, and CTNNB1) were significantly upregulated and one gene (HPGD) was significantly downregulated in primary tumor tissues compared with adjacent normal tissues throughout all the five in silico datasets. The univariate CoxPH analysis yielded a five-gene signature that accurately predicted overall survival (OS) and recurrence-free survival (RFS) in the in silico training (AUC = 0.73 and 0.69, respectively) and one independent in silico validation cohort (AUC = 0.69 and 0.74, respectively). This five-gene signature demonstrated significant associations with poor OS in independent clinical validation cohorts of colon cancer (CC) patients (AUC = 0.82). Intriguingly, a risk stratification model comprising of the five-gene signature together with TNM stage and gender status achieved an even superior AUC of 0.89 in the clinical cohorts. On the other hand, the circulating mRNA expression of the upregulated four-gene signature achieved a robust AUC = 0.83 with high sensitivity and specificity as a diagnosis marker in plasma from CRC patients. We have identified a novel, five-gene signature as an independent predictor of OS, which in combination with TNM stage and gender offers an easy-to-translate and facile assay for the personalized risk-assessment in CRC patients.
Collapse
|
9
|
Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, Feng C, Zheng L, Peng XY, Tang CF. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol 2021; 101:108176. [PMID: 34655851 DOI: 10.1016/j.intimp.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yun-Yi Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
10
|
Pashirzad M, Sathyapalan T, Sahebkar A. Clinical Importance of Wnt5a in the Pathogenesis of Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3136508. [PMID: 34603445 PMCID: PMC8486513 DOI: 10.1155/2021/3136508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022]
Abstract
Wnt5a is one of the potent signaling molecules that initiates responses involved in cancer through activation of both canonical and noncanonical signaling cascades. Wnt5a both directly and indirectly triggers cancer-associated signaling pathways based on the cancer type. In colorectal cancer (CRC), altering Wnt5a expression can influence several cellular processes of tumor cells, including proliferation, differentiation, migration, invasion, and metastasis. This review summarizes the molecular mechanisms and clinical importance of Wnt5a in the pathogenesis of CRC for better understanding the pathogenesis and its potential role as a prognostic marker and as an appropriate therapeutic target in the treatment of this disease in the future.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Wang X, Ni C, Jiang N, Wei J, Liang J, Zhao B, Lin X. Generation of liver bipotential organoids with a small-molecule cocktail. J Mol Cell Biol 2021; 12:618-629. [PMID: 32232340 PMCID: PMC7683013 DOI: 10.1093/jmcb/mjaa010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Understanding the mechanism of how cholangiocytes (liver ductal cells) are activated upon liver injury and specified to hepatocytes would permit liver regenerative medicine. Here we achieved long-term in vitro expansion of mouse liver organoids by modulating signaling pathways with a combination of three small-molecule compounds. CHIR-99021, blebbistatin, and forskolin together maintained the liver organoids in bipotential stage with both cholangiocyte- and hepatocyte-specific gene expression profiles and enhanced capacity for further hepatocyte differentiation. By employing a chemical approach, we demonstrated that Wnt/β-catenin, NMII–Rac, and PKA–ERK are core signaling pathways essential and sufficient for mouse liver progenitor expansion. Moreover, the advanced small-molecule culture of bipotential organoids facilitates the ex vivo investigation of liver cell fate determination and the application of organoids in liver regenerative medicine.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chao Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jianqing Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Sun G, Wu L, Sun G, Shi X, Cao H, Tang W. WNT5a in Colorectal Cancer: Research Progress and Challenges. Cancer Manag Res 2021; 13:2483-2498. [PMID: 33758546 PMCID: PMC7981155 DOI: 10.2147/cmar.s289819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Despite the clinical development of new adjuvant and neoadjuvant chemotherapy drugs, colorectal cancer is still one of the leading causes of cancer-related death in human beings. WNT5a, an autocrine and paracrine β-catenin independent ligand, has been shown to induce tumor inhibition and carcinogenic signals, depending on the type of cancer. In patients with colorectal cancer, WNT5a triggers a variety of downstream signaling pathways, which mainly affect the migration and invasion of tumor cells. This article reviews the mechanism and therapeutic potential of WNT5a in colorectal cancer. In short, an in-depth understanding of the role of WNT5a in colorectal cancer is very helpful to better deal with this disease.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Zolghadr F, Bakhshinejad B, Davuchbabny S, Sarrafpour B, Seyedasli N. Critical regulatory levels in tumor differentiation: Signaling pathways, epigenetics and non-coding transcripts. Bioessays 2021; 43:e2000190. [PMID: 33644880 DOI: 10.1002/bies.202000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
Approaches to induce tumor differentiation often result in manageable and therapy-naïve cellular states in cancer cells. This transformation is achieved by activating pathways that drive tumor cells away from plasticity, a state that commonly correlates with enhanced aggression, metastasis and resistance to therapy. Here, we discuss signaling pathways, epigenetics and non-coding RNAs as three main regulatory levels with the potential to drive tumor differentiation and hence as potential targets in differentiation therapy approaches. The success of an effective therapeutic regimen in one cancer, however, does not necessarily sustain across cancer types; a phenomenon largely resulting from heterogeneity in the genetic and physiological landscapes of tumor types necessitating an approach designed for each cancer's unique genetic and phenotypic build-up.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sapir Davuchbabny
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Babak Sarrafpour
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| |
Collapse
|
14
|
Yadav V, Jobe N, Mehdawi L, Andersson T. Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 2021; 269:279-303. [PMID: 34455485 DOI: 10.1007/164_2021_528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
WNT signalling is known to be a crucial regulator of embryonic development and tissue homeostasis. Aberrant expression of WNT signalling elements or their mutations has been implicated in carcinogenesis and/or the progression of several different cancer types. Investigations of how WNT signalling affects carcinogenesis and cancer progression have revealed that it has essential roles in the regulation of proliferation, apoptosis, and cancer stemness and in angiogenesis and metastasis. Consequently, WNT-targeted therapy has gained much attention and has resulted in the development of several small molecules, the majority of which act as inhibitors of different WNT signalling events. However, although numerous inhibitory WNT signalling drug candidates have been included in clinical trials, no significant breakthroughs have been made. This could possibly be due to problems with inefficient binding to the target, compensatory signalling mechanisms and toxicity towards normal cells. Therapeutic peptides targeting WNT signalling in cancer cells have been developed as an alternative approach, with the hope that they might overcome the limitations reported for small WNT inhibitory molecules. In this chapter, we describe recent developments made in the design and characterization of WNT signalling-derived peptides aiming at their use as alternative cancer therapeutics and/or combined adjuvant therapy to conventional therapies.
Collapse
Affiliation(s)
- Vikas Yadav
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Njainday Jobe
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lubna Mehdawi
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
15
|
Harada S, Mabuchi Y, Kohyama J, Shimojo D, Suzuki S, Kawamura Y, Araki D, Suyama T, Kajikawa M, Akazawa C, Okano H, Matsuzaki Y. FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells 2020; 39:318-330. [PMID: 33338299 PMCID: PMC7986096 DOI: 10.1002/stem.3317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have garnered enormous interest as a potential resource for cell‐based therapies. However, the molecular mechanisms regulating senescence in hMSCs remain unclear. To elucidate these mechanisms, we performed gene expression profiling to compare clonal immature MSCs exhibiting multipotency with less potent MSCs. We found that the transcription factor Frizzled 5 (FZD5) is expressed specifically in immature hMSCs. The FZD5 cell surface antigen was also highly expressed in the primary MSC fraction (LNGFR+THY‐1+) and cultured MSCs. Treatment of cells with the FZD5 ligand WNT5A promoted their proliferation. Upon FZD5 knockdown, hMSCs exhibited markedly attenuated proliferation and differentiation ability. The observed increase in the levels of senescence markers suggested that FZD5 knockdown promotes cellular senescence by regulating the noncanonical Wnt pathway. Conversely, FZD5 overexpression delayed cell cycle arrest during the continued culture of hMSCs. These results indicated that the intrinsic activation of FZD5 plays an essential role in negatively regulating senescence in hMSCs and suggested that controlling FZD5 signaling offers the potential to regulate hMSC quality and improve the efficacy of cell‐replacement therapies using hMSCs.
Collapse
Affiliation(s)
- Seiko Harada
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Shimojo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Kawamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Daisuke Araki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Suyama
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | | | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
16
|
Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 2020; 133:110946. [PMID: 33212376 DOI: 10.1016/j.biopha.2020.110946] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is one of the key cascades regulating normal tissue development and has been tightly associated with cancer. The Wnt signaling can be subdivided into two categories: canonical & noncanonical. Noncanonical Wnt signaling pathways mainly include Wnt/PCP (planar cell polarity) signaling and Wnt-cGMP (cyclic guanosine monophosphate) /Ca2+ signaling. It has been well studied by previous researches that noncanonical Wnt signaling regulates multiple cell functions including proliferation, differentiation, adhesion, polarity, motility, and migration. The aberrant activation or inhibition of noncanonical Wnt signaling is crucial in cancer progression, exerting both oncogenic and tumor-suppressive effects. Recent studies show the involvement of noncanonical Wnt in regulating cancer cell invasion, metastasis, metabolism, and inflammation. Here, we review current insights into novel components of non-canonical signalings and describe their involvement in various cancer types. We also summarize recent biological and clinical discoveries that outline non-canonical Wnt signaling in tumorigenesis. Finally, we provide an overview of current strategies to target non-canonical Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of General Surgery, Zhejiang Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Yin Tang
- Omni Family Health, Bakersfield, CA, United States
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Lund CM, Dyhl-Polk A, Nielsen DL, Riis LB. Wnt5a expression and prognosis in stage II-III colon cancer. Transl Oncol 2020; 14:100892. [PMID: 33045677 PMCID: PMC7553443 DOI: 10.1016/j.tranon.2020.100892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer metastases accounts for most cancer deaths. The secreting glycoprotein Wnt5a impairs tumor cell migration and reduces invasiveness and metastasis. High Wnt5a expression in tumor cells is correlated to better outcomes in patients with breast, prostate and epithelial ovarian cancer. We aimed to investigate the association between the Wnt5a expression and outcomes in patients with colon cancer (CC) stage II/III. We performed a retrospective single-center study evaluating 345 patients with radical resection for primary CC, stage II/III, who started 6 months of adjuvant chemotherapy with 5-FU or capecitabine ± oxaliplatin between 2001 and 2015. Archived formalin-fixed paraffin embedded tumor tissue from resection specimens were stained with Wnt5a antibody using immunohistochemistry. Cytoplasmatic Wnt5a staining was assessed according to intensity and percentage of stained cells. Patients were divided in groups depending on high (n = 230) or low (n = 115) Wnt5a expression. Disease free survival (DFS) and overall survival (OS) were analyzed for the two groups using Kaplan-Meier plots and Long rank test. Patients with Wnt5a-negative tumors had significantly poorer performance status (PS) than patients with high Wnt5a expression (p = 0.046). No significant difference was seen between patients with low and high Wnt5a expression in terms of 5-year DFS (p = 0.517) or 5-year OS (p = 0.415). Poor PS was associated with lower DFS (p = 0.002) and OS (p < 0.001). In conclusion, we found no significant difference in prognosis for patients with stage II/III CC depending on their Wnt5a expression. Patients with Wnt5a-negative tumors had significant poorer PS than patients with higher levels. Poor PS was associated with lower DFS and OS. High expression of Wnt5a in tumor cells are correlated to significantly better outcomes in patients with different cancers. We found no difference in survival among patients with colon cancer stage II-III depending on their Wnt5a expression. Patients with low Wnt5a expression had significantly poor performance status than patients with high levels. Poor performance status was shown to predict poorer outcomes.
Collapse
Affiliation(s)
- Cecilia Margareta Lund
- Department of Medicine, Copenhagen University Hospital, Herlev and Gentofte, Denmark; Copenage, Copenhagen Center for Clinical Age Research, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
| | - Anne Dyhl-Polk
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Dorte Lisbeth Nielsen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark
| | - Lene Buhl Riis
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark; Department of Pathology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| |
Collapse
|
18
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
19
|
Tumour suppressor 15-hydroxyprostaglandin dehydrogenase induces differentiation in colon cancer via GLI1 inhibition. Oncogenesis 2020; 9:74. [PMID: 32814764 PMCID: PMC7438320 DOI: 10.1038/s41389-020-00256-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established risk factor for colorectal cancer. We and others have shown that colorectal cancer patients with elevated cysteinyl leukotriene receptor 2 (CysLT2R) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) levels exhibit good prognoses. However, both CysLT2R and 15-PGDH, which act as tumour suppressors, are often suppressed in colorectal cancer. We previously reported that leukotriene C4 (LTC4)-induced differentiation in colon cancer via CysLT2R signalling. Here, we investigated the involvement of Hedgehog (Hh)-GLI1 signalling, which is often hyperactivated in colorectal cancer. We found that the majority of colorectal cancer patients had high-GLI1 expression, which was negatively correlated with CysLT2R, 15-PGDH, and Mucin-2 and overall survival compared with the low-GLI1 group. LTC4-induced 15-PGDH downregulated both the mRNA and protein expression of GLI1 in a protein kinase A (PKA)-dependent manner. Interestingly, the LTC4-induced increase in differentiation markers and reduction in Wnt targets remained unaltered in GLI1-knockdown cells. The restoration of GLI1 in 15-PGDH-knockdown cells did not ameliorate the LTC4-induced effects, indicating the importance of both 15-PGDH and GLI1. LTC4-mediated reduction in the DCLK1 and LGR5 stemness markers in colonospheres was abolished in cells lacking 15-PGDH or GLI1. Both DCLK1 and LGR5 were highly increased in tumour tissue compared with the matched controls. Reduced Mucin-2 levels were observed both in zebrafish xenografts with GLI1-knockdown cells and in the cysltr2-/- colitis-associated colon cancer (CAC) mouse model. Furthermore, GLI1 expression was positively correlated with stemness and negatively correlated with differentiation in CRC patients when comparing tumour and mucosal tissues. In conclusion, restoring 15-PGDH expression via CysLT2R activation might benefit colorectal cancer patients.
Collapse
|
20
|
Gajos-Michniewicz A, Czyz M. WNT Signaling in Melanoma. Int J Mol Sci 2020; 21:E4852. [PMID: 32659938 PMCID: PMC7402324 DOI: 10.3390/ijms21144852] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.
Collapse
Affiliation(s)
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92–215 Lodz, Poland;
| |
Collapse
|
21
|
Topi G, Satapathy SR, Dash P, Fred Mehrabi S, Ehrnström R, Olsson R, Lydrup ML, Sjölander A. Tumour-suppressive effect of oestrogen receptor β in colorectal cancer patients, colon cancer cells, and a zebrafish model. J Pathol 2020; 251:297-309. [PMID: 32333795 DOI: 10.1002/path.5453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Oestrogen receptor β (ERβ) has been suggested to have anti-proliferative and anti-tumour effects in breast and prostate cancer cells, but other studies have indicated its tumour-promoting effects. Understanding the complex effects of this receptor in different contexts requires further study. We reported that high ERβ expression is independently associated with improved prognosis in female colorectal cancer (CRC) patients. Herein, we investigated the possible anti-tumour effect of ERβ and its selective agonist. CRC patients with high ERβ expression had significantly higher levels of membrane-associated β-catenin, cysteinyl leukotriene receptor 2 (CysLT2 R), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which have anti-tumour effects, but lower levels of nuclear β-catenin, cysteinyl leukotriene receptor 1 (CysLT1 R), and cyclooxygenase-2 (COX-2), which have tumour-promoting effects. These interesting findings were further supported by two different publicly available CRC mRNA datasets that showed a significant positive correlation between ERβ expression and 15-PGDH and CysLT2 R expression and a negative correlation between ERβ expression and β-catenin, CysLT1 R, and COX-2 expression. We next evaluated ERβ expression in three different colon cancer mouse models; ERβ expression was negatively correlated with tumourigenesis. Furthermore, treatment with the ERβ-agonist ERB-041 reduced CysLT1 R, active β-catenin, and COX-2 levels but increased phospho-β-catenin, CysLT2 R, and 15-PGDH levels in HCT-116, Caco-2, and SW-480 colon cancer cells compared to vehicle-treated cells. Interestingly, ERB-041-treated cells showed significantly decreased migration, survival, and colonosphere formation and increased apoptotic activity, as indicated by increased CASPASE-3 and apoptotic blebs. Finally, patients with low ERβ expression had significantly more distant metastasis at the time of diagnosis than patients with high ERβ expression. Therefore, we studied the effects of ERB-041-treated colon cancer cells in a zebrafish xenograft model. We found significantly less distant metastasis of ERB-041-treated cells compared to vehicle-treated cells. These results further support ERβ's anti-tumour role in CRC and the possible use of its agonist in CRC patients. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geriolda Topi
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pujarini Dash
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Syrina Fred Mehrabi
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roy Ehrnström
- Division of Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roger Olsson
- The Chemical Biology and Therapeutics Division, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie-Louise Lydrup
- Division of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
22
|
Nie X, Liu H, Liu L, Wang YD, Chen WD. Emerging Roles of Wnt Ligands in Human Colorectal Cancer. Front Oncol 2020; 10:1341. [PMID: 32923386 PMCID: PMC7456893 DOI: 10.3389/fonc.2020.01341] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer death worldwide, and constitutive activation of the Wnt signaling pathway is universal in most CRC cases. Wnt ligands (Wnts) are secreted glycoproteins and fundamentally essential for the transduction of Wnt signaling pathway. However, the 19 members of Wnts in humans imply a daunting complexity of Wnt signaling and biological effects, and our understanding of their roles in CRC tumorigenesis is still quite rudimentary. This review will give an overview of the structural characteristics and maturation process of Wnts. The expression pattern of all human Wnts in CRC tissues, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, and their relationship with the tumorigenesis and the progression of CRC will be specifically summarized separately. Despite certain challenges, Wnt-based therapeutics for CRC emerge continuously and some are now in clinical trials. In conclusion, a deep understanding of Wnts is very helpful for a better management of this disease.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yan-Dong Wang
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
- Wei-Dong Chen
| |
Collapse
|
23
|
Li R, Lin S, Zhu M, Deng Y, Chen X, Wei K, Xu J, Li G, Bian L. Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. SCIENCE ADVANCES 2019; 5:eaaw3896. [PMID: 31663014 PMCID: PMC6795506 DOI: 10.1126/sciadv.aaw3896] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/25/2019] [Indexed: 05/30/2023]
Abstract
Noncanonical Wnt signaling in stem cells is essential to numerous developmental events. However, no prior studies have capitalized on the osteoinductive potential of noncanonical Wnt ligands to functionalize biomaterials in enhancing the osteogenesis and associated skeleton formation. Here, we investigated the efficacy of the functionalization of biomaterials with a synthetic Wnt5a mimetic ligand (Foxy5 peptide) to promote the mechanosensing and osteogenesis of human mesenchymal stem cells by activating noncanonical Wnt signaling. Our findings showed that the immobilized Wnt5a mimetic ligand activated noncanonical Wnt signaling via the up-regulation of Disheveled 2 and downstream RhoA-ROCK signaling, leading to enhanced intracellular calcium level, F-actin stability, actomyosin contractility, and cell adhesion structure development. This enhanced mechanotransduction in stem cells promoted the in vitro osteogenic lineage commitment and the in vivo healing of rat calvarial defects. Our work provides valuable guidance for the developmentally inspired design of biomaterials for a wide array of therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Meiling Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Jianbin Xu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, P. R. China
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077 Hong Kong, P.R. China
| |
Collapse
|
24
|
Park JM, Na HK. 15-Deoxy-Δ 12,14-prostaglandin J 2 Upregulates the Expression of 15-Hydroxyprostaglandin Dehydrogenase by Inducing AP-1 Activation and Heme Oxygenase-1 Expression in Human Colon Cancer Cells. J Cancer Prev 2019; 24:183-191. [PMID: 31624724 PMCID: PMC6786809 DOI: 10.15430/jcp.2019.24.3.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Background Abnormal upregulation of prostaglandin E2 (PGE2) is considered to be a key oncogenic event in the development and progression of inflammation-associated human colon cancer. It has been reported that 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme catabolizing PGE2, is ubiquitously downregulated in human colon cancer. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a peroxisome proliferator-activated receptor γ ligand, has been shown to have anticarcinogenic activities. In this study, we investigate the effect of 15d-PGJ2 on expression of 15-PGDH in human colon cancer HCT116 cells. Methods HCT116 cells were treated with 15d-PGJ2 analysis. The expression of 15-PGDH in the treated cells was measured by Western blot analysis and RT-PCR. In addition, the cells were subjected to a 15-PGDH activity assay. To determine which transcription factor(s) and signaling pathway(s) are involved in 15d-PGJ2-induced 15-PGDH expression, we performed a cDNA microarray analysis of 15d-PGJ2-treated cells. The DNA binding activity of AP-1 was measured by an electrophoretic mobility shift assay. To determine whether the AP-1 plays an important role in the 15d-PGJ2-induced 15-PGDH expression, the cells were transfected with siRNA of c-Jun, a major subunit of AP-1. To elucidate the upstream signaling pathways involved in AP-1 activation by 15d-PGJ2, we examined its effect on phosphorylation of Akt by Western blot analysis in the presence or absence of kinase inhibitor. Results 15d-PGJ2 (10 μM) significantly upregulated 15-PGDH expression at the mRNA and protein levels in HCT-116 cells. 15-PGDH activity was also elevated by 15d-PGJ2. We observed that genes encoding C/EBP delta, FOS-like antigen 1, c-Jun, and heme oxygenase-1 (HO-1) were most highly induced in the HCT116 cells following 15d-PGJ2 treatment. 15d-PGJ2 increased the DNA binding activity of AP-1. Moreover, transfection with specific siRNA against c-Jun significantly reduced 15-PGDH expression induced by 15d-PGJ2. 15d-PGJ2 activates Akt and a pharmacological inhibitor of Akt, LY294002, abrogated 15d-PGJ2-induced 15-PGDH expression. We also observed that an inhibitor of HO-1, zinc protoporphyrin IX, also abrogated upregulation of 15-PGDH and down-regulation of cyclooxygenase-2 expression induced by 15d-PGJ2. Conclusions These finding suggest that 15d-PGJ2 upregulates the expression of 15-PGDH through AP-1 activation in colon cancer HCT116 cells.
Collapse
Affiliation(s)
- Jong-Min Park
- Department of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
25
|
Canto LMD, Cury SS, Barros-Filho MC, Kupper BEC, Begnami MDFDS, Scapulatempo-Neto C, Carvalho RF, Marchi FA, Olsen DA, Madsen JS, Havelund BM, Aguiar S, Rogatto SR. Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. Sci Rep 2019; 9:8702. [PMID: 31213644 PMCID: PMC6582145 DOI: 10.1038/s41598-019-45151-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Most patients with locally advanced rectal cancer (LARC) present incomplete pathological response (pIR) to neoadjuvant chemoradiotherapy (nCRT). Despite the efforts to predict treatment response using tumor-molecular features, as differentially expressed genes, no molecule has proved to be a strong biomarker. The tumor secretome analysis is a promising strategy for biomarkers identification, which can be assessed using transcriptomic data. We performed transcriptomic-based secretome analysis to select potentially secreted proteins using an in silico approach. The tumor expression profile of 28 LARC biopsies collected before nCRT was compared with normal rectal tissues (NT). The expression profile showed no significant differences between complete (pCR) and incomplete responders to nCRT. Genes with increased expression (pCR = 106 and pIR = 357) were used for secretome analysis based on public databases (Vesiclepedia, Human Cancer Secretome, and Plasma Proteome). Seventeen potentially secreted candidates (pCR = 1, pIR = 13 and 3 in both groups) were further investigated in two independent datasets (TCGA and GSE68204) confirming their over-expression in LARC and association with nCRT response (GSE68204). The expression of circulating amphiregulin and cMET proteins was confirmed in serum from 14 LARC patients. Future studies in liquid biopsies could confirm the utility of these proteins for personalized treatment in LARC patients.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- International Research Center - CIPE, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil.,Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Sarah Santiloni Cury
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | | | | | | | - Robson Francisco Carvalho
- Department of Morphology - Institute of Bioscience, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | | | - Dorte Aalund Olsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark
| | - Jonna Skov Madsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, 7100, Denmark.,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark
| | - Birgitte Mayland Havelund
- Danish Colorectal Cancer Center South, Vejle, 7100, Denmark.,Department of Oncology, University Hospital of Southern Denmark, 7100, Vejle, Denmark
| | - Samuel Aguiar
- Department of Pelvic Surgery, A.C.Camargo Cancer Center, Sao Paulo, 04002-010, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, 7100, Denmark. .,Danish Colorectal Cancer Center South, Vejle, 7100, Denmark. .,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Vejle, 7100, Denmark.
| |
Collapse
|
26
|
Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol 2019; 58:65-79. [PMID: 30633978 DOI: 10.1016/j.semcancer.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/β-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, SW7 2AZ, United Kingdom; Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
27
|
Safian D, Ryane N, Bogerd J, Schulz RW. Fsh stimulates Leydig cell Wnt5a production, enriching zebrafish type A spermatogonia. J Endocrinol 2018; 239:351-363. [PMID: 30400013 DOI: 10.1530/joe-18-0447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when β-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin signaling via Igf3 to ensure spermatogonial differentiation.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Najoua Ryane
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
- Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway
| |
Collapse
|
28
|
Holmquist Mengelbier L, Lindell-Munther S, Yasui H, Jansson C, Esfandyari J, Karlsson J, Lau K, Hui CC, Bexell D, Hopyan S, Gisselsson D. The Iroquois homeobox proteins IRX3 and IRX5 have distinct roles in Wilms tumour development and human nephrogenesis. J Pathol 2018; 247:86-98. [PMID: 30246301 PMCID: PMC6588170 DOI: 10.1002/path.5171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 12/19/2022]
Abstract
Wilms tumour is a paediatric malignancy with features of halted kidney development. Here, we demonstrate that the Iroquois homeobox genes IRX3 and IRX5 are essential for mammalian nephrogenesis and govern the differentiation of Wilms tumour. Knock‐out Irx3−/Irx5− mice showed a strongly reduced embryonic nephron formation. In human foetal kidney and Wilms tumour, IRX5 expression was already activated in early proliferative blastema, whereas IRX3 protein levels peaked at tubular differentiation. Accordingly, an orthotopic xenograft mouse model of Wilms tumour showed that IRX3−/− cells formed bulky renal tumours dominated by immature mesenchyme and active canonical WNT/β‐catenin‐signalling. In contrast, IRX5−/− cells displayed activation of Hippo and non‐canonical WNT‐signalling and generated small tumours with abundant tubulogenesis. Our findings suggest that promotion of IRX3 signalling or inhibition of IRX5 signalling could be a route towards differentiation therapy for Wilms tumour, in which WNT5A is a candidate molecule for enforced tubular maturation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Simon Lindell-Munther
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hiroaki Yasui
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Javanshir Esfandyari
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Medical Services, University Hospital, Lund, Sweden.,Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Inhibition of 15-PGDH causes Kras-driven tumor expansion through prostaglandin E2-ALDH1 signaling in the pancreas. Oncogene 2018; 38:1211-1224. [DOI: 10.1038/s41388-018-0510-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 09/01/2018] [Indexed: 01/06/2023]
|
30
|
Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim KR, Kang D. Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep 2018; 8:13255. [PMID: 30185973 PMCID: PMC6125324 DOI: 10.1038/s41598-018-31564-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Recently there has been a growing interest in three-dimensional (3D) cell culture systems for drug discovery and development. These 3D culture systems better represent the in vivo cellular environment compared to two-dimensional (2D) cell culture, thereby providing more physiologically reliable information on drug screening and testing. Here we present the quantitative profiling of a drug-induced proteome in 2D- and 3D-cultured colorectal cancer SW480 cells using 2D nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS) integrated with isobaric tags for relative and absolute quantitation (iTRAQ). We identified a total of 4854 shared proteins between 2D- and 3D-cultured SW480 cells and 136/247 differentially expressed proteins (up/down-regulated in 3D compared to 2D). These up/down-regulated proteins were mainly involved in energy metabolism, cell growth, and cell-cell interactions. We also investigated the XAV939 (tankyrase inhibitor)-induced proteome to reveal factors involved in the 3D culture-selective growth inhibitory effect of XAV939 on SW480 cells. We identified novel XAV939-induced proteins, including gelsolin (a possible tumor suppressor) and lactate dehydrogenase A (a key enzyme of glycolysis), which were differentially expressed between 2D- and 3D-cultured SW480 cells. These results provide a promising informative protein dataset to determine the effect of XAV939 on the expression levels of proteins involved in SW480 cell growth.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hyo Jin Jeon
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Dahee Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Sun Young Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.,College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ki Young Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Kwang-Rok Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.
| |
Collapse
|
31
|
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G, Xiang T. TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenetics 2018; 10:103. [PMID: 30075814 PMCID: PMC6091063 DOI: 10.1186/s13148-018-0535-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TET1 is a tumor suppressor gene (TSG) that codes for ten-eleven translocation methyl cytosine dioxygenase1 (TET1) catalyzing the conversion of 5-methylcytosine to 5-hydroxy methyl cytosine as a first step of TSG demethylation. Its hypermethylation has been associated with cancer pathogenesis. However, whether TET1 plays any role in nasopharyngeal carcinoma (NPC) remains unclear. This study investigated the expression and methylation of TET1 in NPC and confirmed its role and mechanism as a TSG. RESULTS TET1 expression was downregulated in NPC tissues compared with nasal septum deviation tissues. Demethylation of TET1 in HONE1 and HNE1 cells restored its expression with downregulated methylation, implying that TET1 was silenced by promoter hypermethylation. Ectopic expression of TET1 suppressed the growth of NPC cells, induced apoptosis, arrested cell division in G0/G1 phase, and inhibited cell migration and invasion, confirming TET1 TSG activity. TET1 decreased the expression of nuclear β-catenin and downstream target genes. Furthermore, TET1 could cause Wnt antagonists (DACT2, SFRP2) promoter demethylation and restore its expression in NPC cells. CONCLUSIONS Collectively, we conclude that TET1 exerts its anti-tumor functions in NPC cells by suppressing Wnt/β-catenin signaling via demethylation of Wnt antagonists (DACT2 and SFRP2).
Collapse
Affiliation(s)
- Jiangxia Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Zhai Y, Bai J, Wang S, Li M, Wang F, Li C, Zhang Y. Aberrant Expression of Extracellular Signal-Regulated Kinase and 15-Hydroxyprostaglandin Dehydrogenase Indicates Radiation Resistance and Poor Prognosis for Patients with Clival Chordomas. World Neurosurg 2018; 115:e146-e151. [DOI: 10.1016/j.wneu.2018.03.216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
|
33
|
Osman J, Savari S, Chandrashekar NK, Bellamkonda K, Douglas D, Sjölander A. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget 2018; 8:34773-34786. [PMID: 28410235 PMCID: PMC5471010 DOI: 10.18632/oncotarget.16718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
Cysteinyl leukotriene receptor 1 (CysLT1R) has been shown to be up-regulated in the adenocarcinomas of colorectal cancer patients, which is associated with a poor prognosis. In a spontaneous model of colon cancer, CysLT1R disruption was associated with a reduced tumor burden in double-mutant female mice (ApcMin/+/Cysltr1-/-) compared to ApcMin/+ littermates. In the current study, we utilized a genetic approach to investigate the effect of CysLT1R in the induced azoxymethane/dextran sulfate sodium (AOM/DSS) model of colitis-associated colon cancer. We found that AOM/DSS female mice with a global disruption of the Cysltr1 gene (Cysltr1-/-) had a higher relative body weight, a more normal weight/length colon ratio and smaller-sized colonic polyps compared to AOM/DSS wild-type counterparts. The Cysltr1-/- colonic polyps exhibited low-grade dysplasia, while wild-type polyps had an adenoma-like phenotype. The Cysltr1-/- colonic polyps exhibited significant decreases in nuclear β-catenin and COX-2 protein expression, while the normal crypts surrounding the polyps exhibited increased Mucin 2 expression. Furthermore, Cysltr1-/- mice exhibited an overall reduction in inflammation, with a significant decrease in proinflammatory cytokines, polyp 5-LOX expression and infiltration of CD45 leukocytes and F4/80 macrophages. In conclusion, the present genetic approach in an AOM/DSS model further supports an important role for CysLT1R in colon tumorigenesis.
Collapse
Affiliation(s)
- Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Desiree Douglas
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
34
|
Mehdawi LM, Satapathy SR, Gustafsson A, Lundholm K, Alvarado-Kristensson M, Sjölander A. A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells. Oncotarget 2018; 8:35033-35047. [PMID: 28402256 PMCID: PMC5471032 DOI: 10.18632/oncotarget.16591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Cyclooxygenase-2, which plays a key role in the biosynthesis of prostaglandin E2 (PGE2), is often up-regulated in CRC and in other types of cancer. PGE2 induces angiogenesis and tumor cell survival, proliferation and migration. The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a key enzyme in PGE2 catabolism, converting it into its inactive metabolite 15-keto-PGE2, and is often down-regulated in cancer. Interestingly, CRC patients expressing high levels of the cysteinyl leukotriene 2 (CysLT2) receptor have a good prognosis; therefore, we investigated a potential link between CysLT2 signaling and the tumor suppressor 15-PGDH in colon cancer cells.We observed a significant up-regulation of 15-PGDH after treatment with LTC4, a CysLT2 ligand, in colon cancer cells at both the mRNA and protein levels, which could be reduced by a CysLT2 antagonist or a JNK inhibitor. LTC4 induced 15-PGDH promoter activity via JNK/AP-1 phosphorylation. Furthermore, we also observed that LTC4, via the CysLT2/JNK signaling pathway, increased the expression of the differentiation markers sucrase-isomaltase and mucin-2 in colon cancer cells and that down-regulation of 15-PGDH totally abolished the observed increase in these markers.In conclusion, the restoration of 15-PGDH expression through CysLT2 signaling promotes the differentiation of colon cancer cells, indicating an anti-tumor effect of CysLT2 signaling.
Collapse
Affiliation(s)
- Lubna M Mehdawi
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Annika Gustafsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Anita Sjölander
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
35
|
Arima K, Komohara Y, Bu L, Tsukamoto M, Itoyama R, Miyake K, Uchihara T, Ogata Y, Nakagawa S, Okabe H, Imai K, Hashimoto D, Chikamoto A, Yamashita YI, Baba H, Ishimoto T. Downregulation of 15-hydroxyprostaglandin dehydrogenase by interleukin-1β from activated macrophages leads to poor prognosis in pancreatic cancer. Cancer Sci 2018; 109:462-470. [PMID: 29224225 PMCID: PMC5797824 DOI: 10.1111/cas.13467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation has a crucial role in cancer development and the progression of various tumors, including pancreatic ductal adenocarcinoma (PDAC). The arachidonate cascade is a major inflammatory pathway that produces several metabolites, such as prostaglandin E2. The enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) degrades prostaglandin and is frequently decreased in several types of cancer; however, the molecular mechanisms of 15-PGDH suppression are unclear. The current study was carried out to elucidate the molecular mechanisms and clinical significance of 15-PGDH suppression in PDAC. Here, we showed that interleukin-1β (IL-1β), a pro-inflammatory cytokine, downregulates 15-PGDH expression in PDAC cells, and that IL-1β expression was inversely correlated with 15-PGDH levels in frozen PDAC tissues. We also found that activated macrophages produced IL-1β and reduced 15-PGDH expression in PDAC cells. Furthermore, the number of CD163-positive tumor-associated macrophages was shown to be inversely correlated with 15-PGDH levels in PDAC cells by immunohistochemical staining of 107 PDAC samples. Finally, we found that low 15-PGDH expression was significantly associated with advanced tumors, presence of lymph node metastasis and nerve invasion, and poor prognosis in PDAC patients. Our results indicate that IL-1β derived from TAMs suppresses 15-PGDH expression in PDAC cells, resulting in poor prognosis of PDAC patients.
Collapse
Affiliation(s)
- Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
36
|
Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes (Basel) 2018; 9:genes9010020. [PMID: 29316729 PMCID: PMC5793173 DOI: 10.3390/genes9010020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL pool. Wnt ligands can trigger alternative signalling that directly involves some of the Hippo pathway components such as YAP1, TAZ and TEADs. By upregulating Wnt pathway agonists, the alternative Wnt signalling can inhibit the canonical Wnt pathway activity.
Collapse
|
37
|
Fan D, Lin X, Zhang F, Zhong W, Hu J, Chen Y, Cai Z, Zou Y, He X, Chen X, Lan P, Wu X. MicroRNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless-type MMTV integration site family member 5A. Cancer Sci 2017; 109:354-362. [PMID: 29160937 PMCID: PMC5797816 DOI: 10.1111/cas.13451] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Invasion and metastasis are crucially important factors in the survival of malignant tumors. Epithelial-mesenchymal transition (EMT) is an early step in metastatic progression and the presence of cancer stem cells is closely related to tumor survival, proliferation, metastasis, and recurrence. Herein we report that ectopic overexpression of microRNA 26b (miR-26b) in colorectal cancer (CRC) cell lines promoted EMT and stem cell-like phenotypes in vitro. Furthermore, miR-26b directly targeted and suppressed multiple tumor suppressors, including phosphatase and tensin homolog (PTEN) and wingless-type MMTV integration site family member 5A (WNT5A). Notably, miR-26b is markedly upregulated in tumor samples from patients with lymphatic metastases. These results indicate that miR-26b promotes CRC metastasis by downregulating PTEN and WNT5A, and may represent a therapeutic target for metastatic CRC.
Collapse
Affiliation(s)
- Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xutao Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Zhang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Zhong
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancong Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zerong Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Zou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuting Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Ahmed HH, El-Abhar HS, Hassanin EAK, Abdelkader NF, Shalaby MB. Ginkgo biloba L. leaf extract offers multiple mechanisms in bridling N-methylnitrosourea – mediated experimental colorectal cancer. Biomed Pharmacother 2017; 95:387-393. [DOI: 10.1016/j.biopha.2017.08.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
|
39
|
Shi YN, Zhu N, Liu C, Wu HT, Gui Y, Liao DF, Qin L. Wnt5a and its signaling pathway in angiogenesis. Clin Chim Acta 2017. [DOI: 10.1016/j.cca.2017.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
|
41
|
Prasad CP, Södergren K, Andersson T. Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget 2017; 8:71471-71488. [PMID: 29069720 PMCID: PMC5641063 DOI: 10.18632/oncotarget.17277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Here we investigated the impact of WNT5A signaling on aerobic glycolysis and evaluated its effects on breast cancer cell migration/invasion. WNT5A signaling reduced migration and lactate production and caused selective down-regulation of the glycolytic enzyme phosphofructokinase platelet-type (PFKP). These events occurred in parallel with a WNT5A-induced inhibition of β-catenin signaling. Support for essential involvement of β-catenin and PFKP in lactate production and migration/invasion was obtained by siRNA knockdown of their expression. To also explore the effect of non-tumor cell-derived lactate, we added exogenous lactate to the cells and noted an increase in migration that was significantly impaired by recombinant WNT5A in parallel with a down-regulation of the lactate transporter monocarboxylate transporter 1 (MCT1). Interestingly enough, the drug-candidate Foxy5 (WNT5A-mimic hexapeptide) also inhibited breast cancer cell migration in the presence of exogenous lactate, suggesting a therapeutic potential for Foxy5 in managing breast tumors with high glycolytic activity. Overall, we demonstrated that WNT5A signaling (via a β-catenin-PFKP axis) reduces lactate production and lowers the expression of MCT1, a carrier mediating the uptake of lactate from the tumor microenvironment. These effects of WNT5A are essential for its ability to impair breast cancer migration/invasion even in an environment with elevated lactate levels.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Katja Södergren
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE-20502 Malmö, Sweden
| |
Collapse
|
42
|
Vinnakota K, Zhang Y, Selvanesan BC, Topi G, Salim T, Sand-Dejmek J, Jönsson G, Sjölander A. M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J Cell Physiol 2017; 232:3468-3480. [PMID: 28098359 DOI: 10.1002/jcp.25808] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The inflammatory milieu plays an important role in colon cancer development and progression. Previously, we have shown that tumor-associated macrophages (TAMs), an important component of the tumor microenvironment, are enriched in tumors compared with normal tissue and confer a poorer prognosis. In the present study, we found that matrix metallopeptidase-9 (MMP-9), which degrades extracellular matrix proteins, was increased in biopsies from colon cancer patients and in mouse xenografts with SW480 cell-derived tumors. SW480 colon cancer cells exposed to M2-like macrophage-conditioned medium (M2-medium) exhibited increased MMP-9 mRNA, protein expression and gelatinase activity. A similar effect was obtained by the addition of tumor necrosis factor-α (TNFα) and leukotriene D4 (LTD4 ). MMP-9 expression and activity were reduced by a TNFα blocking antibody adalimumab and a cysteinyl leukotriene receptor 1 (CysLTR1, the receptor for LTD4 ) antagonist montelukast. M2-medium also induced changes in the epithelial-mesenchymal transition (EMT) markers E-cadherin, β-catenin, vimentin, and snail in SW480 cells. We also found that both M2-medium and TNFα and LTD4 induced stabilization/nuclear translocation of β-catenin. Furthermore, we also observed an elongated phenotype that may indicate increased invasiveness, as confirmed in a collagen I invasion assay. M2-medium increased the invasive ability, and a similar effect was also obtained by the addition of TNFα and LTD4 . The specific MMP inhibitor I or adalimumab and montelukast reduced the number of invasive cells. In conclusion, our findings show that M2-medium enriched in TNFα and LTD4 promote colon cancer cell invasion via MMP-9 expression and activation and the induction of EMT.
Collapse
Affiliation(s)
- Katyayni Vinnakota
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Yuan Zhang
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Benson Chellakkan Selvanesan
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Geriolda Topi
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tavga Salim
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Janna Sand-Dejmek
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Gunilla Jönsson
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
43
|
Mehdawi LM, Prasad CP, Ehrnström R, Andersson T, Sjölander A. Non-canonical WNT5A signaling up-regulates the expression of the tumor suppressor 15-PGDH and induces differentiation of colon cancer cells. Mol Oncol 2016; 10:1415-1429. [PMID: 27522468 DOI: 10.1016/j.molonc.2016.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme in prostaglandin E2 catabolism and is down-regulated in colorectal cancer (CRC) tissue. Canonical Wnt signaling is frequently elevated in colon cancers and has been shown to down-regulate 15-PGDH expression. Therefore, we have in the current study investigated if the non-canonical ligand WNT5A relates to increased expression of 15-PGDH in colon cancer cells. In the same cohort of patients, we demonstrated a parallel and significant loss of 15-PGDH and WNT5A protein expression in CRC tissues compared with matched normal colon tissues. Furthermore, patients with low 15-PGDH/WNT5A expression in their tumors showed reduced survival compared with patients with high 15-PGDH/WNT5A expression. To investigate if WNT5A signaling directly affects 15-PGDH expression, we performed in vitro analyses of colon cancer cells (HT-29 and Caco-2). Both cell lines, when treated with recombinant WNT5A (rWNT5A) or Foxy-5, a WNT5A-mimicking peptide, responded by increasing their expression of 15-PGDH mRNA and protein. Our investigations showed that rWNT5A and Foxy-5 induced this increased expression of 15-PGDH through reduced β-catenin signaling as well as increased JNK/AP-1 signaling in colon cancer cells. WNT5A signaling also induced increased 15-PGDH expression in a breast cancer cell line both in vitro and in vivo. In agreement, WNT5A signaling also increased the expression of the differentiation markers sucrose-isomaltase and mucin-2 in colon cancer cells. Our results show that WNT5A signaling regulates 15-PGDH expression, thus uncovering a novel mechanism by which WNT5A acts as a tumor suppressor and suggests that increased 15-PGDH expression could be used as an indicator of a positive response to Foxy-5 in patients treated with this WNT5A agonist.
Collapse
Affiliation(s)
- Lubna M Mehdawi
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Chandra Prakash Prasad
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Roy Ehrnström
- Department of Translational Medicine, Division of Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Tommy Andersson
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden
| | - Anita Sjölander
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Skåne University Hospital Malmö, Lund University, Sweden.
| |
Collapse
|