1
|
Hayes MN, Cohen-Gogo S, Kee L, Xiong X, Weiss A, Layeghifard M, Ladumor Y, Valencia-Sama I, Rajaselvam A, Kaplan DR, Villani A, Shlien A, Morgenstern DA, Irwin MS. DNA damage response deficiency enhances neuroblastoma progression and sensitivity to combination PARP and ATR inhibition. Cell Rep 2025; 44:115537. [PMID: 40220294 DOI: 10.1016/j.celrep.2025.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Sequencing of neuroblastoma (NB) tumors has revealed genetic alterations in genes involved in DNA damage response (DDR) pathways. However, roles for specific alterations of DDR genes in pediatric solid tumors remain poorly understood. To address this, mutations in the DDR pathway including Brca2, Atm, and Palb2 were incorporated into an established zebrafish MYCN transgenic model (Tg(dbh:EGFP-MYCN)). These mutations enhance NB formation and metastasis and result in upregulation of cell-cycle checkpoint and DNA damage repair signatures, revealing molecular vulnerabilities in DDR-deficient NB. DDR gene knockdown in zebrafish and human NB cells increases sensitivity to the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, and this effect is enhanced by inhibition of the ataxia telangiectasia and rad3-related (ATR) kinase. This work provides in vivo evidence demonstrating that alterations in certain DDR-pathway genes promote aggressive NB and supports combination PARP + ATR inhibitor therapy for NB patients with tumors harboring specific genetic alterations in DDR.
Collapse
Affiliation(s)
- Madeline N Hayes
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xueting Xiong
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alex Weiss
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yagnesh Ladumor
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Anisha Rajaselvam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Bedir M, Outwin E, Colnaghi R, Bassett L, Abramowicz I, O'Driscoll M. A novel role for the peptidyl-prolyl cis-trans isomerase Cyclophilin A in DNA-repair following replication fork stalling via the MRE11-RAD50-NBS1 complex. EMBO Rep 2024; 25:3432-3455. [PMID: 38943005 PMCID: PMC11315929 DOI: 10.1038/s44319-024-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.
Collapse
Affiliation(s)
- Marisa Bedir
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rita Colnaghi
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Lydia Bassett
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Iga Abramowicz
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
3
|
Kouroukli O, Bravou V, Giannitsas K, Tzelepi V. Tissue-Based Diagnostic Biomarkers of Aggressive Variant Prostate Cancer: A Narrative Review. Cancers (Basel) 2024; 16:805. [PMID: 38398199 PMCID: PMC10887410 DOI: 10.3390/cancers16040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly men, characterized by great heterogeneity in its clinical course, ranging from an indolent to a highly aggressive disease. The aggressive variant of prostate cancer (AVPC) clinically shows an atypical pattern of disease progression, similar to that of small cell PC (SCPC), and also shares the chemo-responsiveness of SCPC. The term AVPC does not describe a specific histologic subtype of PC but rather the group of tumors that, irrespective of morphology, show an aggressive clinical course, dictated by androgen receptor (AR) indifference. AR indifference represents an adaptive response to androgen deprivation therapy (ADT), driven by epithelial plasticity, an inherent ability of tumor cells to adapt to their environment by changing their phenotypic characteristics in a bi-directional way. The molecular profile of AVPC entails combined alterations in the tumor suppressor genes retinoblastoma protein 1 (RB1), tumor protein 53 (TP53), and phosphatase and tensin homolog (PTEN). The understanding of the biologic heterogeneity of castration-resistant PC (CRPC) and the need to identify the subset of patients that would potentially benefit from specific therapies necessitate the development of prognostic and predictive biomarkers. This review aims to discuss the possible pathophysiologic mechanisms of AVPC development and the potential use of emerging tissue-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, Evaggelismos General Hospital, 10676 Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Zhang P, Ma K, Ke X, Liu L, Li Y, Liu Y, Wang Y. Development and Validation of a Five-RNA-Based Signature and Identification of Candidate Drugs for Neuroblastoma. Front Genet 2021; 12:685646. [PMID: 34745201 PMCID: PMC8564070 DOI: 10.3389/fgene.2021.685646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NBL) originating from the sympathetic nervous system is the most prevalent solid tumor in infancy. Although there is sufficient variability in prognosis among different age pyramids, age-related gene expression profiles and biomarkers remain poorly explored. The present study aimed to construct a signature based on differentially expressed genes (DEGs) between two age groups in NBL. Univariate Cox regression, multivariate Cox regression, and LASSO analyses were used to identify the optimal prognostic factors. The prediction ability of the model was assessed using the receiver operating characteristic (ROC) curve and C-index. Functional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology databases. A total of 1,160 DEGs were identified between the two groups, and 204 DEGs impacted the survival of NBL. Functional enrichment analysis revealed that the DEGs were involved in retinol metabolism, cholesterol metabolism, and glycolysis/gluconeogenesis pathways. Five RNAs, namely F8A3, PDF, ANKRD24, FAXDC2, and TMEM160 were recruited into the signature. They were correlated with COG risk classification, INSS stage, and histology. MYCN amplification was linked to FAXDC2, TMEM160, PDF, and F8A3. The expression levels of ANKRD24, PDF, and TMEM160 were lower in the hyperdiploid groups. Only FAXDC2 levels were different in the different MKI grades. The ROC curve showed that the five-RNA–based signatures effectively predicted the OS of NBL (3-years AUC = 0.791, 5-years AUC = 0.816) in the TARGET cohort. The predictive capability was also validated by the GSE49711 cohort (3-years AUC = 0.851, 5-years AUC = 0.848). The C-index in the TARGET and GSE49711 cohorts was 0.749 and 0.809, respectively. The potential mechanisms of the five RNAs were also explored via gene set enrichment analysis, and candidate drugs targeting the five genes, including dabrafenib, vemurafenib, and bafetinib, were screened. In conclusion, we constructed a five-RNA–based signature to predict the survival of NBL and screened candidate agents against NBL.
Collapse
Affiliation(s)
- PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - KeXin Ma
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - XiaoFei Ke
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liu Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YaJuan Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YouJun Wang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Papp E, Hallberg D, Konecny GE, Bruhm DC, Adleff V, Noë M, Kagiampakis I, Palsgrove D, Conklin D, Kinose Y, White JR, Press MF, Drapkin R, Easwaran H, Baylin SB, Slamon D, Velculescu VE, Scharpf RB. Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep 2019; 25:2617-2633. [PMID: 30485824 PMCID: PMC6481945 DOI: 10.1016/j.celrep.2018.10.096] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
To improve our understanding of ovarian cancer, we performed genome-wide analyses of 45 ovarian cancer cell lines. Given the challenges of genomic analyses of tumors without matched normal samples, we developed approaches for detection of somatic sequence and structural changes and integrated these with epigenetic and expression alterations. Alterations not previously implicated in ovarian cancer included amplification or overexpression of ASXL1 and H3F3B, deletion or underexpression of CDC73 and TGF-beta receptor pathway members, and rearrangements of YAP1-MAML2 and IKZF2-ERBB4. Dose-response analyses to targeted therapies revealed unique molecular dependencies, including increased sensitivity of tumors with PIK3CA and PPP2R1A alterations to PI3K inhibitor GNE-493, MYC amplifications to PARP inhibitor BMN673, and SMAD3/4 alterations to MEK inhibitor MEK162. Genome-wide rearrangements provided an improved measure of sensitivity to PARP inhibition. This study provides a comprehensive and broadly accessible resource of molecular information for the development of therapeutic avenues in ovarian cancer. The overall survival of patients with late-stage ovarian cancer is dismal. To identify therapeutic opportunities, Papp et al. integrate genomic, epigenomic, and expression analyses to provide a resource of molecular abnormalities in ovarian cancer cell lines and use these to identify tumors sensitive to PARP, MEK, and PI3K inhibitors.
Collapse
Affiliation(s)
- Eniko Papp
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gottfried E Konecny
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ioannis Kagiampakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doreen Palsgrove
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dylan Conklin
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis Slamon
- Division of Hematology and Oncology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Morgenstern DA, Bagatell R, Cohn SL, Hogarty MD, Maris JM, Moreno L, Park JR, Pearson AD, Schleiermacher G, Valteau-Couanet D, London WB, Irwin MS. The challenge of defining "ultra-high-risk" neuroblastoma. Pediatr Blood Cancer 2019; 66:e27556. [PMID: 30479064 DOI: 10.1002/pbc.27556] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
Given the biological and clinical heterogeneity of neuroblastoma, risk stratification is vital to determining appropriate treatment. Historically, most patients with high-risk neuroblastoma (HR-NBL) have been treated uniformly without further stratification. Attempts have been made to identify factors that can be used to risk stratify these patients and to characterize an "ultra-high-risk" (UHR) subpopulation with particularly poor outcome. However, among published data, there is a lack of consensus in the definition of the UHR population and heterogeneity in the endpoints and statistical methods used. This review summarizes our current understanding of stratification of HR-NBL and discusses the complex issues in defining UHR neuroblastoma.
Collapse
Affiliation(s)
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Michael D Hogarty
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John M Maris
- Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lucas Moreno
- Hospital Universitario Niño Jesus, Madrid, Spain
| | - Julie R Park
- Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington
| | - Andrew D Pearson
- Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey, UK
| | | | | | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Meredith S Irwin
- Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Relevance of poly (ADP-ribose) polymerase inhibitors in prostate cancer. Curr Opin Support Palliat Care 2018; 12:339-343. [DOI: 10.1097/spc.0000000000000358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Kasemeier-Kulesa JC, Schnell S, Woolley T, Spengler JA, Morrison JA, McKinney MC, Pushel I, Wolfe LA, Kulesa PM. Predicting neuroblastoma using developmental signals and a logic-based model. Biophys Chem 2018; 238:30-38. [PMID: 29734136 PMCID: PMC6016551 DOI: 10.1016/j.bpc.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022]
Abstract
Genomic information from human patient samples of pediatric neuroblastoma cancers and known outcomes have led to specific gene lists put forward as high risk for disease progression. However, the reliance on gene expression correlations rather than mechanistic insight has shown limited potential and suggests a critical need for molecular network models that better predict neuroblastoma progression. In this study, we construct and simulate a molecular network of developmental genes and downstream signals in a 6-gene input logic model that predicts a favorable/unfavorable outcome based on the outcome of the four cell states including cell differentiation, proliferation, apoptosis, and angiogenesis. We simulate the mis-expression of the tyrosine receptor kinases, trkA and trkB, two prognostic indicators of neuroblastoma, and find differences in the number and probability distribution of steady state outcomes. We validate the mechanistic model assumptions using RNAseq of the SHSY5Y human neuroblastoma cell line to define the input states and confirm the predicted outcome with antibody staining. Lastly, we apply input gene signatures from 77 published human patient samples and show that our model makes more accurate disease outcome predictions for early stage disease than any current neuroblastoma gene list. These findings highlight the predictive strength of a logic-based model based on developmental genes and offer a better understanding of the molecular network interactions during neuroblastoma disease progression.
Collapse
Affiliation(s)
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff CF24, UK
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Lauren A Wolfe
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS 66160, USA.
| |
Collapse
|
9
|
Agarwal S, Milazzo G, Rajapakshe K, Bernardi R, Chen Z, Barbieri E, Koster J, Perini G, Coarfa C, Shohet JM. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget 2018; 9:20323-20338. [PMID: 29755654 PMCID: PMC5945521 DOI: 10.18632/oncotarget.24859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimal Rajapakshe
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald Bernardi
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Zaowen Chen
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason M Shohet
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Zhang W, Liu B, Wu W, Li L, Broom BM, Basourakos SP, Korentzelos D, Luan Y, Wang J, Yang G, Park S, Azad AK, Cao X, Kim J, Corn PG, Logothetis CJ, Aparicio AM, Chinnaiyan AM, Navone N, Troncoso P, Thompson TC. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Clin Cancer Res 2018; 24:696-707. [PMID: 29138344 PMCID: PMC5823274 DOI: 10.1158/1078-0432.ccr-17-1872] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Abstract
Purpose: We investigated MYCN-regulated molecular pathways in castration-resistant prostate cancer (CRPC) classified by morphologic criteria as adenocarcinoma or neuroendocrine to extend the molecular phenotype, establish driver pathways, and identify novel approaches to combination therapy for neuroendocrine prostate cancer (NEPC).Experimental Design and Results: Using comparative bioinformatics analyses of CRPC-Adeno and CRPC-Neuro RNA sequence data from public data sets and a panel of 28 PDX models, we identified a MYCN-PARP-DNA damage response (DDR) pathway that is enriched in CRPC with neuroendocrine differentiation (NED) and CRPC-Neuro. ChIP-PCR assay revealed that N-MYC transcriptionally activates PARP1, PARP2, BRCA1, RMI2, and TOPBP1 through binding to the promoters of these genes. MYCN or PARP1 gene knockdown significantly reduced the expression of MYCN-PARP-DDR pathway genes and NED markers, and inhibition with MYCNsi and/or PARPsi, BRCA1si, or RMI2si significantly suppressed malignant activities, including cell viability, colony formation, and cell migration, in C4-2b4 and NCI-H660 cells. Targeting this pathway with AURKA inhibitor PHA739358 and PARP inhibitor olaparib generated therapeutic effects similar to those of gene knockdown in vitro and significantly suppressed tumor growth in both C4-2b4 and MDACC PDX144-13C subcutaneous models in vivoConclusions: Our results identify a novel MYCN-PARP-DDR pathway that is driven by N-MYC in a subset of CRPC-Adeno and in NEPC. Targeting this pathway using in vitro and in vivo CRPC-Adeno and CRPC-Neuro models demonstrated a novel therapeutic strategy for NEPC. Further investigation of N-MYC-regulated DDR gene targets and the biological and clinical significance of MYCN-PARP-DDR signaling will more fully elucidate the importance of the MYCN-PARP-DDR signaling pathway in the development and maintenance of NEPC. Clin Cancer Res; 24(3); 696-707. ©2017 AACR.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhui Wu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Spyridon P Basourakos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dimitrios Korentzelos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Luan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianxiang Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abul Kalam Azad
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Howard Hughes Medical Institute, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Howard Hughes Medical Institute, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Petrov I, Suntsova M, Ilnitskaya E, Roumiantsev S, Sorokin M, Garazha A, Spirin P, Lebedev T, Gaifullin N, Larin S, Kovalchuk O, Konovalov D, Prassolov V, Roumiantsev A, Buzdin A. Gene expression and molecular pathway activation signatures of MYCN-amplified neuroblastomas. Oncotarget 2017; 8:83768-83780. [PMID: 29137381 PMCID: PMC5663553 DOI: 10.18632/oncotarget.19662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is a pediatric cancer arising from sympathetic nervous system. Remarkable heterogeneity in outcomes is one of its widely known features. One of the traits strongly associated with the unfavorable subtype is the amplification of oncogene MYCN. Here, we performed cross-platform biomarker detection by comparing gene expression and pathway activation patterns from the two literature reports and from our experimental dataset, combining profiles for the 761 neuroblastoma patients with known MYCN amplification status. We identified 109 / 25 gene expression / pathway activation biomarkers strongly linked with the MYCN amplification. The marker genes/pathways are involved in the processes of purine nucleotide biosynthesis, ATP-binding, tetrahydrofolate metabolism, building mitochondrial matrix, biosynthesis of amino acids, tRNA aminoacylation and NADP-linked oxidation-reduction processes, as well as in the tyrosine phosphatase activity, p53 signaling, cell cycle progression and the G1/S and G2/M checkpoints. To connect molecular functions of the genes involved in MYCN-amplified phenotype, we built a new molecular pathway using known intracellular protein interaction networks. The activation of this pathway was highly selective in discriminating MYCN-amplified neuroblastomas in all three datasets. Our data also suggest that the phosphoinositide 3-kinase (PI3K) inhibitors may provide new opportunities for the treatment of the MYCN-amplified neuroblastoma subtype.
Collapse
Affiliation(s)
- Ivan Petrov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,First Oncology Research and Advisory Center, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia.,V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Sergey Roumiantsev
- Department of Oncology, Hematology and Radiology, N.I.Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim Sorokin
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia.,Pathway Pharmaceuticals, Hong Kong, China
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Centre for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Nurshat Gaifullin
- Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Sergey Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Dmitry Konovalov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Alexander Roumiantsev
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anton Buzdin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
12
|
Transcript signatures that predict outcome and identify targetable pathways in MYCN-amplified neuroblastoma. Mol Oncol 2016; 10:1461-1472. [PMID: 27599694 DOI: 10.1016/j.molonc.2016.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In the pediatric cancer neuroblastoma (NB), patients are stratified into low, intermediate or high-risk subsets based in part on MYCN amplification status. While MYCN amplification in general predicts unfavorable outcome, no clinical or genomic factors have been identified that predict outcome within these cohorts of high-risk patients. In particular, it is currently not possible at diagnosis to determine which high-risk neuroblastoma patients will ultimately fail upfront therapy. EXPERIMENTAL DESIGN We analyzed the prognostic potential of most published gene expression signatures for NB and developed a new prognostic signature to predict outcome for patients with MYCN amplification. Network and pathway analyses identified candidate therapeutic targets for this MYCN-amplified patient subset with poor outcome. RESULTS Most signatures have a high capacity to predict outcome of unselected NB patients. However, the majority of published signatures, as well as most randomly generated signatures, are highly confounded by MYCN amplification, and fail to predict outcome in subpopulations of high-risk patients with MYCN-amplified NB. We identify a MYCN module signature that predicts patient outcome for those with MYCN-amplified tumors, that also predicts potential tractable therapeutic signaling pathways and targets including the DNA repair enzyme Poly [ADP-ribose] polymerase 1 (PARP1). CONCLUSION Many prognostic signatures for NB are confounded by MYCN amplification and fail to predict outcome for the subset of high-risk patients with MYCN amplification. We report a MYCN module signature that is associated with distinct patient outcomes, and predicts candidate therapeutic targets in DNA repair pathways, including PARP1 in MYCN-amplified NB.
Collapse
|