1
|
Chen J, Zhao L, Li H, Yang C, Lin X, Lin Y, Zhang H, Zhang M, Bie X, Zhao P, Xu S, Seung D, Zhang X, Zhang X, Yao Y, Wang D, Xiao J. Nuclear factor-Y-polycomb repressive complex2 dynamically orchestrates starch and seed storage protein biosynthesis in wheat. THE PLANT CELL 2024; 36:4786-4803. [PMID: 39293039 PMCID: PMC11530772 DOI: 10.1093/plcell/koae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modifications. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y-PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.
Collapse
Affiliation(s)
- Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Li
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfeng Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujing Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Bie
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Peng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| |
Collapse
|
2
|
Yang Z, Bai T, E Z, Niu B, Chen C. OsNF-YB7 inactivates OsGLK1 to inhibit chlorophyll biosynthesis in rice embryo. eLife 2024; 13:RP96553. [PMID: 39288070 PMCID: PMC11407766 DOI: 10.7554/elife.96553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.
Collapse
Affiliation(s)
- Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Tianqi Bai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research InstituteHangzhouChina
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| |
Collapse
|
3
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
4
|
Zhang D, Ji K, Wang J, Liu X, Zhou Z, Huang R, Ai G, Li Y, Wang X, Wang T, Lu Y, Hong Z, Ye Z, Zhang J. Nuclear factor Y-A3b binds to the SINGLE FLOWER TRUSS promoter and regulates flowering time in tomato. HORTICULTURE RESEARCH 2024; 11:uhae088. [PMID: 38799124 PMCID: PMC11116822 DOI: 10.1093/hr/uhae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
The control of flowering time is essential for reproductive success and has a major effect on seed and fruit yield and other important agricultural traits in crops. Nuclear factors Y (NF-Ys) are transcription factors that form heterotrimeric protein complexes to regulate gene expression required for diverse biological processes, including flowering time control in plants. However, to our knowledge, there has been no report on mutants of individual NF-YA subunits that promote early flowering phenotype in plants. In this study, we identified SlNF-YA3b, encoding a member of the NF-Y transcription factor family, as a key gene regulating flowering time in tomato. Knockout of NF-YA3b resulted in an early flowering phenotype in tomato, whereas overexpression of NF-YA3b delayed flowering in transgenic tomato plants. NF-YA3b was demonstrated to form heterotrimeric protein complexes with multiple NF-YB/NF-YC heterodimers in yeast three-hybrid assays. Biochemical evidence indicated that NF-YA3b directly binds to the CCAAT cis-elements of the SINGLE FLOWER TRUSS (SFT) promoter to suppress its gene expression. These findings uncovered a critical role of NF-YA3b in regulating flowering time in tomato and could be applied to the management of flowering time in crops.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Zhang B, Feng M, Zhang J, Song Z. Involvement of CONSTANS-like Proteins in Plant Flowering and Abiotic Stress Response. Int J Mol Sci 2023; 24:16585. [PMID: 38068908 PMCID: PMC10706179 DOI: 10.3390/ijms242316585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
The process of flowering in plants is a pivotal stage in their life cycle, and the CONSTANS-like (COL) protein family, known for its photoperiod sensing ability, plays a crucial role in regulating plant flowering. Over the past two decades, homologous genes of COL have been identified in various plant species, leading to significant advancements in comprehending their involvement in the flowering pathway and response to abiotic stress. This article presents novel research progress on the structural aspects of COL proteins and their regulatory patterns within transcription complexes. Additionally, we reviewed recent information about their participation in flowering and abiotic stress response, aiming to provide a more comprehensive understanding of the functions of COL proteins.
Collapse
Affiliation(s)
- Bingqian Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Minghui Feng
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain of Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (B.Z.); (M.F.); (J.Z.)
| |
Collapse
|
7
|
Zhang C, Jian M, Li W, Yao X, Tan C, Qian Q, Hu Y, Liu X, Hou X. Gibberellin signaling modulates flowering via the DELLA-BRAHMA-NF-YC module in Arabidopsis. THE PLANT CELL 2023; 35:3470-3484. [PMID: 37294919 PMCID: PMC10473208 DOI: 10.1093/plcell/koad166] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023]
Abstract
Gibberellin (GA) plays a key role in floral induction by activating the expression of floral integrator genes in plants, but the epigenetic regulatory mechanisms underlying this process remain unclear. Here, we show that BRAHMA (BRM), a core subunit of the chromatin-remodeling SWItch/sucrose nonfermentable (SWI/SNF) complex that functions in various biological processes by regulating gene expression, is involved in GA-signaling-mediated flowering via the formation of the DELLA-BRM-NF-YC module in Arabidopsis (Arabidopsis thaliana). DELLA, BRM, and NF-YC transcription factors interact with one another, and DELLA proteins promote the physical interaction between BRM and NF-YC proteins. This impairs the binding of NF-YCs to SOC1, a major floral integrator gene, to inhibit flowering. On the other hand, DELLA proteins also facilitate the binding of BRM to SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The GA-induced degradation of DELLA proteins disturbs the DELLA-BRM-NF-YC module, prevents BRM from inhibiting NF-YCs, and decreases the DNA-binding ability of BRM, which promote the deposition of H3K4me3 on SOC1 chromatin, leading to early flowering. Collectively, our findings show that BRM is a key epigenetic partner of DELLA proteins during the floral transition. Moreover, they provide molecular insights into how GA signaling coordinates an epigenetic factor with a transcription factor to regulate the expression of a flowering gene and flowering in plants.
Collapse
Affiliation(s)
- Chunyu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mingyang Jian
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Li
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiani Yao
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany and State Key Laboratory of Plant Diversity and Prominent Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu M, Pan Z, Yu J, Zhu L, Zhao M, Wang Y, Chen P, Liu C, Hu J, Liu T, Wang K, Wang Y, Zhang M. Transcriptome-wide characterization, evolutionary analysis, and expression pattern analysis of the NF-Y transcription factor gene family and salt stress response in Panax ginseng. BMC PLANT BIOLOGY 2022; 22:320. [PMID: 35787249 PMCID: PMC9252045 DOI: 10.1186/s12870-022-03687-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Jilin ginseng (Panax ginseng C. A. Meyer) has a long history of medicinal use worldwide. The quality of ginseng is governed by a variety of internal and external factors. Nuclear factor Y (NF-Y), an important transcription factor in eukaryotes, plays a crucial role in the plant response to abiotic stresses by binding to a specific promoter, the CCAAT box. However, the NF-Y gene family has not been reported in Panax ginseng. In this study, 115 PgNF-Y transcripts with 40 gene IDs were identified from the Jilin ginseng transcriptome database. These genes were classified into the PgNF-YA (13), PgNF-YB (14), and PgNF-YC (13) subgroups according to their subunit types, and their nucleotide sequence lengths, structural domain information, and amino acid sequence lengths were analyzed. The phylogenetic analysis showed that the 79 PgNF-Y transcripts with complete ORFs were divided into three subfamilies, NF-YA, NF-YB, and NF-YC. PgNF-Y was annotated to eight subclasses under three major functions (BP, MF, and CC) by GO annotation, indicating that these transcripts perform different functions in ginseng growth and development. Expression pattern analysis of the roots of 42 farm cultivars, 14 different tissues of 4-year-old ginseng plants, and the roots of 4 different-ages of ginseng plants showed that PgNF-Y gene expression differed across lineages and had spatiotemporal specificity. Coexpression network analysis showed that PgNF-Ys acted synergistically with each other in Jilin ginseng. In addition, the analysis of the response of PgNF-YB09, PgNF-YC02, and PgNF-YC07-04 genes to salt stress treatment was investigated by fluorescence quantitative PCR. The expression of these genes increased after salt stress treatment, indicating that they may be involved in the regulation of the response to salt stresses in ginseng. These results provide important functional genetic resources for the improvement and gene breeding of ginseng in the future.Conclusions: This study fills a knowledge gap regarding the NF-Y gene family in ginseng, provides systematic theoretical support for subsequent research on PgNF-Y genes, and provides data resources for resistance to salt stress in ginseng.
Collapse
Affiliation(s)
- Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Zhaoxi Pan
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Jie Yu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| |
Collapse
|
9
|
Hourston JE, Steinbrecher T, Chandler JO, Pérez M, Dietrich K, Turečková V, Tarkowská D, Strnad M, Weltmeier F, Meinhard J, Fischer U, Fiedler‐Wiechers K, Ignatz M, Leubner‐Metzger G. Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. PLANT, CELL & ENVIRONMENT 2022; 45:1315-1332. [PMID: 35064681 PMCID: PMC9305896 DOI: 10.1111/pce.14264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.
Collapse
Affiliation(s)
- James E. Hourston
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Tina Steinbrecher
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Jake O. Chandler
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Marta Pérez
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | | | | | | | | | - Michael Ignatz
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Gerhard Leubner‐Metzger
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
10
|
Zhang L, Yung WS, Sun W, Li MW, Huang M. Genome-wide characterization of nuclear factor Y transcription factors in Fagopyrum tataricum. PHYSIOLOGIA PLANTARUM 2022; 174:e13668. [PMID: 35289420 DOI: 10.1111/ppl.13668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nuclear factor Y (NF-Y) is an important transcription factor family that regulates plant developmental processes and abiotic stress responses. Currently, genome-wide studies of the NF-Y family are limited in Fagopyrum tataricum, an important economic crop. Based on the released genome assembly, we predicted a total of 38 NF-Y encoding genes (FtNF-Ys), including 12 FtNF-YAs, 18 FtNF-YBs, and eight FtNF-YCs subunits, in F. tataricum. Phylogenetic tree and sequence alignments showed that FtNF-Ys were conserved between F. tataricum and other species. Tissue expressions and network analyses suggested that FtNF-Ys might be involved in regulating developmental processes in different tissues. Several FtNF-YAs and FtNF-Ybs were also potentially involved in light response. In addition, FtNF-YC-like1 and FtNF-YC-like2 partially rescued the late flowering phenotype in nf-yc1 nf-yc3 nf-yc4 nf-yc9 (ycQ) mutant in Arabidopsis thaliana, supporting a conserved role of FtNF-Ys in regulating developmental processes. Together, the genomic information provides a comprehensive understanding of the NF-Y transcription factors in F. tataricum, which will be useful for further investigation of their functions in F. tataricum.
Collapse
Affiliation(s)
- Ling Zhang
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
| | - Wai-Shing Yung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingkun Huang
- Lushan Botanical Garden Jiangxi Province and Chinese Academy of Sciences, Jiujiang, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Li S, Zhang N, Zhu X, Ma R, Liu S, Wang X, Yang J, Si H. Genome-Wide Analysis of NF-Y Genes in Potato and Functional Identification of StNF-YC9 in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:749688. [PMID: 34858457 PMCID: PMC8631771 DOI: 10.3389/fpls.2021.749688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 06/03/2023]
Abstract
The nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 StNF-Y genes were identified in the potato genome. In addition, the phylogenetic, gene structure, motif, and chromosomal location of this family were analyzed. The tissue expression profiles based on RNA-seq data showed that 27 StNF-Y genes had tissue-specific expression, while the remaining 14 had low expression in all tissues. Publicly available transcriptomics data from various abiotic stresses revealed several stress-responsive StNF-Y genes, which were further verified via quantitative real-time polymerase chain reaction experiments. Furthermore, the StNF-YC9 gene was highly induced by dehydration and drought treatments. StNF-YC9 protein was mainly localized in the nucleus and cytoplasmic membrane. Overexpressing StNF-YC9 potato lines (OxStNF-YC9) had significantly increased in root length and exhibited stronger stomatal closure in potato treated by polyethylene-glycol and abscisic acid. In addition, OxStNF-YC9 lines had higher photosynthetic rates and decreased water loss under short-term drought stress compared to wild-type plants. During long-term drought stress, OxStNF-YC9 lines had higher proline levels, lower malondialdehyde content, and increased activity of several antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase. This study increased our understanding of the StNF-Y gene and suggested that StNF-YC9 played an important role in drought tolerance by increased the photosynthesis rate, antioxidant enzyme activity, and proline accumulation coupled to lowered malondialdehyde accumulation in potato.
Collapse
Affiliation(s)
- Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xi Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Rui Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Shengyan Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Xu S, Wu Z, Hou H, Zhao J, Zhang F, Teng R, Ding L, Chen F, Teng N. The transcription factor CmLEC1 positively regulates the seed-setting rate in hybridization breeding of chrysanthemum. HORTICULTURE RESEARCH 2021; 8:191. [PMID: 34376645 PMCID: PMC8355372 DOI: 10.1038/s41438-021-00625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1's overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1-CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA's expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.
Collapse
Affiliation(s)
- Sujuan Xu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Huizhong Hou
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Jingya Zhao
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Renda Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Liping Ding
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
13
|
Lv X, Zeng X, Hu H, Chen L, Zhang F, Liu R, Liu Y, Zhou X, Wang C, Wu Z, Kim C, He Y, Du J. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. THE PLANT CELL 2021; 33:1182-1195. [PMID: 33693873 DOI: 10.1093/plcell/koab016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/09/2021] [Indexed: 05/19/2023]
Abstract
Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.
Collapse
Affiliation(s)
- Xinchen Lv
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Zeng
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hongmiao Hu
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixian Chen
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelin Zhou
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chanhong Kim
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Kumar A, Yadav G. Shared ancestry of core-histone subunits and non-histone plant proteins containing the Histone Fold Motif (HFM). J Bioinform Comput Biol 2021; 19:2140001. [PMID: 33888032 DOI: 10.1142/s0219720021400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three helical Histone Fold Motif (HFM) of core histone proteins provides an evolutionarily favored site for the protein-DNA interface. Despite significant variation in sequence, the HFM retains a distinctive structural fold that has diversified into several non-histone protein families. In this work, we explore the ancestry of non-histone HFM containing families in the plant kingdom. A sequence search algorithm was developed using iterative profile Hidden Markov Models to identify remote homologs of core-histone proteins. The resulting hits were functionally annotated, classified into families, and subjected to comprehensive phylogenetic analyses via Maximum likelihood and Bayesian methods. We have identified 4390 HFM containing proteins in the plant kingdom that are not histones, mostly existing as diverse transcription factor families, distributed widely within and across taxonomic groups. Patterns of homology suggest that core histone subunit H2A has evolved into newer families like NF-YC and DRAP1, whereas the H2B subunit of core histones shares a common ancestry with NF-YB and DR1 class of TFs. Core histone subunits H3 and H4 were found to have evolved into DPE and TAF proteins, respectively. Taken together these results provide insights into diversification events during the evolution of the HFM, including sub-functionalization and neo-functionalization of the HFM.
Collapse
Affiliation(s)
- Amish Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Sciences, University of Cambridge, U.K
| |
Collapse
|
15
|
LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat Commun 2021; 12:626. [PMID: 33504790 PMCID: PMC7840934 DOI: 10.1038/s41467-020-20883-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Master transcription factors reprogram cell fate in multicellular eukaryotes. Pioneer transcription factors have prominent roles in this process because of their ability to contact their cognate binding motifs in closed chromatin. Reprogramming is pervasive in plants, whose development is plastic and tuned by the environment, yet little is known about pioneer transcription factors in this kingdom. Here, we show that the master transcription factor LEAFY (LFY), which promotes floral fate through upregulation of the floral commitment factor APETALA1 (AP1), is a pioneer transcription factor. In vitro, LFY binds to the endogenous AP1 target locus DNA assembled into a nucleosome. In vivo, LFY associates with nucleosome occupied binding sites at the majority of its target loci, including AP1. Upon binding, LFY 'unlocks' chromatin locally by displacing the H1 linker histone and by recruiting SWI/SNF chromatin remodelers, but broad changes in chromatin accessibility occur later. Our study provides a mechanistic framework for patterning of inflorescence architecture and uncovers striking similarities between LFY and animal pioneer transcription factor.
Collapse
|
16
|
Chaves-Sanjuan A, Gnesutta N, Gobbini A, Martignago D, Bernardini A, Fornara F, Mantovani R, Nardini M. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:49-61. [PMID: 33098724 DOI: 10.1111/tpj.15038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
NF-Y transcription factor comprises three subunits: NF-YA, NF-YB and NF-YC. NF-YB and NF-YC dimerize through their histone fold domain (HFD), which can bind DNA in a non-sequence-specific fashion while serving as a scaffold for NF-YA trimerization. Upon trimerization, NF-YA specifically recognizes the CCAAT box sequence on promoters and enhancers. In plants, each NF-Y subunit is encoded by several genes giving rise to hundreds of potential heterotrimeric combinations. In addition, plant NF-YBs and NF-YCs interact with other protein partners to recognize a plethora of genomic motifs, as the CCT protein family that binds CORE sites. The NF-Y subunit organization and its DNA-binding properties, together with the NF-Y HFD capacity to adapt different protein modules, represent plant-specific features that play a key role in development, growth and reproduction. Despite their relevance, these features are still poorly understood at the molecular level. Here, we present the structures of Arabidopsis and rice NF-YB/NF-YC dimers, and of an Arabidopsis NF-Y trimer in complex with the FT CCAAT box, together with biochemical data on NF-Y mutants. The dimeric structures identify the key residues for NF-Y HFD stabilization. The NF-Y/DNA structure and the mutation experiments shed light on HFD trimerization interface properties and the NF-YA sequence appetite for the bases flanking the CCAAT motif. These data explain the logic of plant NF-Y gene expansion: the trimerization adaptability and the flexible DNA-binding rules serve the scopes of accommodating the large number of NF-YAs, CCTs and possibly other NF-Y HFD binding partners and a diverse audience of genomic motifs.
Collapse
Affiliation(s)
- Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Andrea Gobbini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Fabio Fornara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| |
Collapse
|
17
|
Martignago D, Siemiatkowska B, Lombardi A, Conti L. Abscisic Acid and Flowering Regulation: Many Targets, Different Places. Int J Mol Sci 2020; 21:E9700. [PMID: 33353251 PMCID: PMC7767233 DOI: 10.3390/ijms21249700] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Plants can react to drought stress by anticipating flowering, an adaptive strategy for plant survival in dry climates known as drought escape (DE). In Arabidopsis, the study of DE brought to surface the involvement of abscisic acid (ABA) in controlling the floral transition. A central question concerns how and in what spatial context can ABA signals affect the floral network. In the leaf, ABA signaling affects flowering genes responsible for the production of the main florigen FLOWERING LOCUS T (FT). At the shoot apex, FD and FD-like transcription factors interact with FT and FT-like proteins to regulate ABA responses. This knowledge will help separate general and specific roles of ABA signaling with potential benefits to both biology and agriculture.
Collapse
Affiliation(s)
| | | | | | - Lucio Conti
- Department of Biosciences, University of Milan, Via Giovanni Celoria, 26-20133 Milan, Italy; (D.M.); (B.S.); (A.L.)
| |
Collapse
|
18
|
Shen C, Liu H, Guan Z, Yan J, Zheng T, Yan W, Wu C, Zhang Q, Yin P, Xing Y. Structural Insight into DNA Recognition by CCT/NF-YB/YC Complexes in Plant Photoperiodic Flowering. THE PLANT CELL 2020; 32:3469-3484. [PMID: 32843433 PMCID: PMC7610279 DOI: 10.1105/tpc.20.00067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.
Collapse
Affiliation(s)
- Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Peter SC, Murugan N, Mohanan MV, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, Shivalingamurthy SG, Chennappa M, Ramanathan V, Govindakurup H, Ram B, Chinnaswamy A. Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit ( NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus. 3 Biotech 2020; 10:304. [PMID: 32566442 DOI: 10.1007/s13205-020-02295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022] Open
Abstract
Plant nuclear factor (NF-Y) is a transcription activating factor, consisting of three subunits, and plays a key regulatory role in many stress-responsive mechanisms including drought and salinity stresses. NF-Ys function both as complex and individual subunits. Considering the importance of sugarcane as a commercial crop with high socio-economic importance and the crop being affected mostly by water deficit stress and salinity stress causing significant yield loss, nuclear transcriptional factor NF-YB2 was focused in this study. Plant nuclear factor subunit B2 from Erianthus arundinaceus (EaNF-YB2), a wild relative of sugarcane which is known for its drought and salinity stress tolerance, and commercial Saccharum hybrid Co 86032 (ShNF-YB2) was isolated and characterized. Both EaNF-YB2 and ShNF-YB2 genes are 543 bp long that encodes for a polypeptide of 180 amino acid residues. Comparison of EaNF-YB2 and ShNF-YB2 gene sequences revealed nucleotide substitutions at nine positions corresponding to three synonymous and six nonsynonymous amino acid substitutions that resulted in variations in physiochemical properties. However, multiple sequence alignment (MSA) of NF-YB2 proteins showed conservation of functionally important amino acid residues. In silico analysis revealed NF-YB2 to be a hydrophilic and intracellular protein, and EaNF-YB2 is thermally more stable than that of ShNF-YB2. Phylogenetic analysis suggested the lower rate of evolution of NF-YB2. Subcellular localization in sugarcane callus revealed NF-YB2 localization at nucleus that further evidenced it to be a transcription activation factor. Comparative RT-qPCR experiments showed a significantly higher level of NF-YB2 expression in E. arundinaceus when compared to that in the commercial Saccharum hybrid Co 86032 under drought and salinity stresses. Hence, EaNF-YB2 could be an ideal candidate gene, and its overexpression in sugarcane through genetic engineering approach might enhance tolerance to drought and salinity stresses.
Collapse
Affiliation(s)
- Swathik Clarancia Peter
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Naveenarani Murugan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | | | | | - Mahadevaiah Chennappa
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Hemaprabha Govindakurup
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Tamil Nadu, Coimbatore, 641007 India
| |
Collapse
|
20
|
Jo L, Pelletier JM, Hsu SW, Baden R, Goldberg RB, Harada JJ. Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development. Proc Natl Acad Sci U S A 2020; 117:1223-1232. [PMID: 31892538 PMCID: PMC6969526 DOI: 10.1073/pnas.1918441117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The LEAFY COTYLEDON1 (LEC1) transcription factor is a central regulator of seed development, because it controls diverse biological programs during seed development, such as embryo morphogenesis, photosynthesis, and seed maturation. To understand how LEC1 regulates different gene sets during development, we explored the possibility that LEC1 acts in combination with other transcription factors. We identified and compared genes that are directly transcriptionally regulated by ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3), BASIC LEUCINE ZIPPER67 (bZIP67), and ABA INSENSITIVE3 (ABI3) with those regulated by LEC1. We showed that LEC1 operates with specific sets of transcription factors to regulate different gene sets and, therefore, distinct developmental processes. Thus, LEC1 controls diverse processes through its combinatorial interactions with other transcription factors. DNA binding sites for the transcription factors are closely clustered in genomic regions upstream of target genes, defining cis-regulatory modules that are enriched for DNA sequence motifs that resemble sequences known to be bound by these transcription factors. Moreover, cis-regulatory modules for genes regulated by distinct transcription factor combinations are enriched for different sets of DNA motifs. Expression assays with embryo cells indicate that the enriched DNA motifs are functional cis elements that regulate transcription. Together, the results suggest that combinatorial interactions between LEC1 and other transcription factors are mediated by cis-regulatory modules containing clustered cis elements and by physical interactions that are documented to occur between the transcription factors.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Julie M Pelletier
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Ssu-Wei Hsu
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Russell Baden
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Robert B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - John J Harada
- Department of Plant Biology, University of California, Davis, CA 95616;
| |
Collapse
|
21
|
Chen JC, Tong CG, Lin HY, Fang SC. Phalaenopsis LEAFY COTYLEDON1-Induced Somatic Embryonic Structures Are Morphologically Distinct From Protocorm-Like Bodies. FRONTIERS IN PLANT SCIENCE 2019; 10:1594. [PMID: 31850050 PMCID: PMC6896055 DOI: 10.3389/fpls.2019.01594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 05/27/2023]
Abstract
Somatic embryogenesis is commonly used for clonal propagation of a wide variety of plant species. Induction of protocorm-like-bodies (PLBs), which are capable of developing into individual plants, is a routine tissue culture-based practice for micropropagation of orchid plants. Even though PLBs are often regarded as somatic embryos, our recent study provides molecular evidence to argue that PLBs are not derived from somatic embryogenesis. Here, we report and characterize the somatic embryonic tissues induced by Phalaenopsis aphrodite LEAFY COTYLEDON1 (PaLEC1) in Phalaenopsis equestris. We found that PaLEC1-induced somatic tissues are morphologically different from PLBs, supporting our molecular study that PLBs are not of somatic embryonic origin. The embryonic identity of PaLEC1-induced embryonic tissues was confirmed by expression of the embryonic-specific transcription factors FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3), and seed storage proteins 7S GLOBULIN and OLEOSIN. Moreover, PaLEC1-GFP protein was found to be associated with the Pa7S-1 and PaFUS3 promoters containing the CCAAT element, supporting that PaLEC1 directly regulates embryo-specific processes to activate the somatic embryonic program in P. equestris. Despite diverse embryonic structures, PaLEC1-GFP-induced embryonic structures are pluripotent and capable of generating new shoots. Our study resolves the long-term debate on the developmental identity of PLB and suggests that somatic embryogenesis may be a useful approach to clonally propagate orchid seedlings.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chii-Gong Tong
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Gnesutta N, Chiara M, Bernardini A, Balestra M, Horner DS, Mantovani R. The Plant NF-Y DNA Matrix In Vitro and In Vivo. PLANTS 2019; 8:plants8100406. [PMID: 31658622 PMCID: PMC6843132 DOI: 10.3390/plants8100406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/17/2023]
Abstract
Nuclear Factor Y (NF-Y) is an evolutionarily conserved trimer formed by a Histone-Fold Domain (HFD) heterodimeric module shared by core histones, and the sequence-specific NF-YA subunit. In plants, the genes encoding each of the three subunits have expanded in number, giving rise to hundreds of potential trimers. While in mammals NF-Y binds a well-characterized motif, with a defined matrix centered on the CCAAT box, the specificity of the plant trimers has yet to be determined. Here we report that Arabidopsis thaliana NF-Y trimeric complexes, containing two different NF-YA subunits, bind DNA in vitro with similar affinities. We assayed precisely sequence-specificity by saturation mutagenesis, and analyzed genomic DNA sites bound in vivo by selected HFDs. The plant NF-Y CCAAT matrix is different in nucleotides flanking CCAAT with respect to the mammalian matrix, in vitro and in vivo. Our data point to flexible DNA-binding rules by plant NF-Ys, serving the scope of adapting to a diverse audience of genomic motifs.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Matteo Balestra
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
23
|
Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation. Front Microbiol 2019; 10:1645. [PMID: 31379791 PMCID: PMC6652802 DOI: 10.3389/fmicb.2019.01645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.
Collapse
Affiliation(s)
- Yinhe Mao
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:564-580. [PMID: 30916433 DOI: 10.1111/jipb.12806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
Seed development is a complex period of the flowering plant life cycle. After fertilization, the three main regions of the seed, embryo, endosperm and seed coat, undergo a series of developmental processes that result in the production of a mature seed that is developmentally arrested, desiccated, and metabolically quiescent. These processes are highly coordinated, both temporally and spatially, to ensure the proper growth and development of the seed. The transcription factor, LEAFY COTYLEDON1 (LEC1), is a central regulator that controls several aspects of embryo and endosperm development, including embryo morphogenesis, photosynthesis, and storage reserve accumulation. Thus, LEC1 regulates distinct sets of genes at different stages of seed development. Despite its critical importance for seed development, an understanding of the mechanisms underlying LEC1's multifunctionality is only beginning to be obtained. Recent studies describe the roles of specific transcription factors and the hormones, gibberellic acid and abscisic acid, in controlling the activity and transcriptional specificity of LEC1 across seed development. Moreover, studies indicate that LEC1 acts as a pioneer transcription factor to promote epigenetic reprogramming during embryogenesis. In this review, we discuss the mechanisms that enable LEC1 to serve as a central regulator of seed development.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - Julie M Pelletier
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - John J Harada
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| |
Collapse
|
25
|
Myers ZA, Holt BF. NUCLEAR FACTOR-Y: still complex after all these years? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:96-102. [PMID: 29902675 DOI: 10.1016/j.pbi.2018.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/11/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The NUCLEAR FACTOR-Y (NF-Y) families of transcription factors are important regulators of plant development and physiology. Though NF-Y regulatory roles have recently been suggested for numerous aspects of plant biology, their roles in flowering time, early seedling development, stress responses, hormone signaling, and nodulation are the best characterized. The past few years have also seen significant advances in our understanding of the mechanistic function of the NF-Y, and as such, increasingly complex and interesting questions are now more approachable. This review will primarily focus on these developmental, physiological, and mechanistic roles of the NF-Y in recent research.
Collapse
Affiliation(s)
- Zachary A Myers
- University of Oklahoma, Department of Microbiology and Plant Biology, 770 Van Vleet Oval, Norman, OK 73019, United States.
| | - Ben F Holt
- University of Oklahoma, Department of Microbiology and Plant Biology, 770 Van Vleet Oval, Norman, OK 73019, United States.
| |
Collapse
|
26
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
27
|
Lai X, Verhage L, Hugouvieux V, Zubieta C. Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation. Molecules 2018; 23:E1914. [PMID: 30065231 PMCID: PMC6222629 DOI: 10.3390/molecules23081914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023] Open
Abstract
Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Leonie Verhage
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| |
Collapse
|
28
|
E Z, Li T, Zhang H, Liu Z, Deng H, Sharma S, Wei X, Wang L, Niu B, Chen C. A group of nuclear factor Y transcription factors are sub-functionalized during endosperm development in monocots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2495-2510. [PMID: 29514259 PMCID: PMC5920288 DOI: 10.1093/jxb/ery087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/23/2018] [Indexed: 05/18/2023]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that consists of three subunits, NF-YA, NF-YB, and NF-YC. Gene functions of NF-Ys during endosperm development are not well understood. In this study, we identified eight rice NF-Y-encoding genes, namely OsNF-YA8, OsNF-YB1,9, and OsNF-YC8,9,10,11,12, that are predominantly expressed in the endosperm. Interestingly, the close homologs of these OsNF-Ys are present only in monocot species and are also preferentially expressed in the endosperm, suggesting that they have roles in the regulation of endosperm development. A systemic analysis of interactions between rice endosperm-preferential NF-Ys in yeast revealed that OsNF-YBs and OsNF-YCs could interact with each other. We also found that the endosperm-preferential OsNF-YBs and OsNF-YCs could interact with some ethylene response factors (ERFs) of rice. Unlike OsNF-YC8,9,10, the members of OsNF-YB1,9 or OsNF-YC 11,12 showed no transcriptional activation when present alone. However, they displayed functional activity while in dimer form. In addition, OsNF-YB1-knockout lines showed significant changes in seed morphology, further confirming its role in endosperm development. Our findings provide evidence that a group of phylogenetically conserved NF-Ys is probably differentiated in monocots to regulate endosperm development.
Collapse
Affiliation(s)
- Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Li
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huaya Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Sandeep Sharma
- Marine Biotechnology and Ecology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Xuefeng Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Lei Wang
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Correspondence:
| |
Collapse
|
29
|
Gnesutta N, Mantovani R, Fornara F. Plant Flowering: Imposing DNA Specificity on Histone-Fold Subunits. TRENDS IN PLANT SCIENCE 2018; 23:293-301. [PMID: 29331540 DOI: 10.1016/j.tplants.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/27/2023]
Abstract
CONSTANS (CO) is a master regulator of flowering time, although the mechanisms underlying its role as a transcriptional regulator are not well understood. The DNA-binding domain of CO shares homology with that of NUCLEAR FACTOR YA (NF-YA), a subunit of the CCAAT-binding trimer NF-Y. Recent publications indicate that CO and its rice homolog HEADING DATE 1 (Hd1) form heterotrimers with the histone-fold subunits of NF-Y to efficiently bind promoter elements in the florigen genes. Differences in the DNA-binding specificities of NF-Y and NF-CO can be conceptualized based on our knowledge of the 3D structure of the NF-Y/CCAAT complex. Here we discuss the modes of assembly of NF-Y-like heterotrimers and possible models for their activity as flexible sequence-specific transcriptional regulators.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Roberto Mantovani
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Fabio Fornara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
30
|
Boulard C, Thévenin J, Tranquet O, Laporte V, Lepiniec L, Dubreucq B. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:443-450. [PMID: 29580949 DOI: 10.1016/j.bbagrm.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
The LAFL transcription factors LEC2, ABI3, FUS3 and LEC1 are master regulators of seed development. LEC2, ABI3 and FUS3 are closely related proteins that contain a B3-type DNA binding domain. We have previously shown that LEC1 (a NF-YB type protein) can increase LEC2 and ABI3 but not FUS3 activity. Interestingly, FUS3, LEC2 and ABI3 contain a B2 domain, the function of which remains elusive. We showed that LEC1 and LEC2 partially co-localised in the nucleus of developing embryos. By comparing protein sequences from various species, we identified within the B2 domains a set of highly conserved residues (i.e. TKxxARxxRxxAxxR). This domain directly interacts with LEC1 in yeast. Mutations of the conserved amino acids of the motif in the B2 domain abolished this interaction both in yeast and in moss protoplasts and did not alter the nuclear localisation of LEC2 in planta. Conversely, the mutations of key amino acids for the function of LEC1 in planta (D86K) prevented the interaction with LEC2. These results provide molecular evidences for the binding of LEC1 to B2-domain containing transcription factors, to form heteromers, involved in the control of gene expression.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - J Thévenin
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - O Tranquet
- UR1268 BIA, INRA Angers, Nantes Rue de la Geraudiere, 44316 Nantes Cedex 3, France
| | - V Laporte
- UR1268 BIA, INRA Angers, Nantes Rue de la Geraudiere, 44316 Nantes Cedex 3, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
31
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
32
|
Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:571-580. [PMID: 27677949 DOI: 10.1016/j.bbagrm.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
The recently determined crystal structures of the sequence-specific transcription factor NF-Y have illuminated the structural mechanism underlying transcription at the CCAAT box. NF-Y is a trimeric protein complex composed by the NF-YA, NF-YB, and NF-YC subunits. NF-YB and NF-YC contain a histone-like domain and assemble on a head-to-tail fashion to form a dimer, which provides the structural scaffold for the DNA sugar-phosphate backbone binding (mimicking the nucleosome H2A/H2B-DNA assembly) and for the interaction with NF-YA. The NF-YA subunit hosts two structurally extended α-helices; one is involved in NF-YB/NF-YC binding and the other inserts deeply into the DNA minor groove, providing exquisite sequence-specificity for recognition and binding of the CCAAT box. The analysis of these structural data is expected to serve as a powerful guide for future experiments aimed at understanding the role of post-translational modification at NF-Y regulation sites and to unravel the three-dimensional architecture of higher order complexes formed between NF-Y and other transcription factors that act synergistically for transcription activation. Moreover, these structures represent an excellent starting point to challenge the formation of a stable hybrid nucleosome between NF-Y and core histone proteins, and to rationalize the fine molecular details associated with the wide combinatorial association of plant NF-Y subunits. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Valentina Nardone
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
33
|
Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. FRONTIERS IN PLANT SCIENCE 2016; 7:2045. [PMID: 28119722 PMCID: PMC5222873 DOI: 10.3389/fpls.2016.02045] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 05/03/2023]
Abstract
Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented.
Collapse
|