1
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2025; 45:530-555. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
2
|
Wang Q, Jia Y, Lin X, Tan L, Du H, Wang A. Identification and Expression Analysis of Chalcone Synthase Gene Family in Tartary Buckwheat. Genes (Basel) 2025; 16:451. [PMID: 40282411 PMCID: PMC12027227 DOI: 10.3390/genes16040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chalcone synthase (CHS) functions as a pivotal and initiating enzyme in the flavonoid biosynthesis pathway within plants, playing a crucial role in the accumulation and metabolic processes of flavonoids. Despite its importance, there has been no comprehensive analysis or detailed description of the CHS gene family members specifically in Tartary buckwheat. METHODS Based on a comprehensive analysis using multiple bioinformatics approaches and quantitative real-time PCR (qRT-PCR) technology, this study systematically identified and characterized the CHS gene family members from the complete genome sequence of Tartary buckwheat. RESULTS In this study, we identified a total of 14 FtCHS genes (FtCHS1-FtCHS14) in Tartary buckwheat. Analysis of gene structure and protein motifs showed that most FtCHS genes consist of two exons and a single intron, featuring conserved Chal-sti-synt_N and Chal-sti-synt_C domains. Phylogenetic studies suggested that FtCHS genes can be categorized into four primary groups: Groups I, II, III, and IV. Further analysis of the promoter regions revealed that the FtCHS family genes contain multiple cis-acting elements that respond to light, plant hormones, stress, and developmental cues. By combining phylogenetic analysis with gene expression data, we found that the genes in Group II (FtCHS3, FtCHS4, FtCHS5, and FtCHS6) exhibit significantly elevated expression levels specifically in flowers. CONCLUSIONS Our study indicated that FtCHS is a gene superfamily comprising at least four functional members. The expression patterns of these FtCHS genes suggest their probable involvement in flower-related biological processes in Tartary buckwheat. This work provides fundamental insights into the comprehensive understanding of the functional roles of the CHS gene family in Tartary buckwheat.
Collapse
Affiliation(s)
- Qinghai Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China; (L.T.); (H.D.); (A.W.)
| | - Yanhua Jia
- School of Resources and Environment, Xichang University, Xichang 615013, China;
| | - Xin Lin
- School of Agricultural Sciences, Xichang University, Xichang 615013, China;
| | - Lu Tan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China; (L.T.); (H.D.); (A.W.)
| | - Hanmei Du
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China; (L.T.); (H.D.); (A.W.)
| | - Anhu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China; (L.T.); (H.D.); (A.W.)
| |
Collapse
|
3
|
Li H, Yao X, He A, Xue G, Yang H, Fan Y, Yang S, Ruan J. Genome-wide identification and gene expression pattern analysis of the carotenoid cleavage oxygenase gene family in Fagopyrum tataricum. BMC PLANT BIOLOGY 2025; 25:466. [PMID: 40217154 PMCID: PMC11992870 DOI: 10.1186/s12870-025-06503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Carotenoid cleavage oxygenases (CCOs) convert carotenoids into volatile aromatic compounds implicated in plant growth and development. They affect the synthesis of hormones, including abscisic acid (ABA) and strigolactone (SL). However, the CCO family in Tartary buckwheat remains unelucidated. RESULTS We identified the FtCCO gene family based on Tartary buckwheat genomic data and analyzed the biological function of the FtCCO genes using bioinformatics methods and the expression pattern of the gene using fluorescence quantitative PCR. Three pairs of fragment duplication genes were found in FtCCOs, and the motifs were highly conserved within the same subfamily. FtCCO genes are closely related to the dicotyledonous Arabidopsis thaliana, which has the highest number of co-linear genes. The qRT-PCR showed that among the tissue-specific expression patterns of Tartary buckwheat CCO genes, the expression of the FtCCOs was higher in the leaves. In Tartary buckwheat grain development, the relative expression of most FtCCOs was higher at the later stage. The relative expression of many genes was higher in the stems under cold, dark, NaCl, and abiotic stress conditions. However, under the hormone and plant growth regulator treatments, the expression of the nine FtCCOs was relatively low in the stems. Notably, the relative expression of FtNCED4 was extremely high under abiotic stress and hormone induction, indicating that FtNCED4 may be involved in the growth and development of Tartary buckwheat. In this study, the FtCCO family genes of Tartary buckwheat were identified at the genome-wide level, and the gene expression pattern of the FtCCO gene family in different tissues or treatments was determined. This study provides a theoretical basis for further analysis of the functions of theFtCCO family, which is of great significance for the mining of resistance genes and trait improvement.
Collapse
Affiliation(s)
- Huan Li
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Ailing He
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Yu Fan
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
4
|
Hibbins MS, Rifkin JL, Choudhury BI, Voznesenska O, Sacchi B, Yuan M, Gong Y, Barrett SCH, Wright SI. Phylogenomics resolves key relationships in Rumex and uncovers a dynamic history of independently evolving sex chromosomes. Evol Lett 2025; 9:221-235. [PMID: 40191415 PMCID: PMC11968192 DOI: 10.1093/evlett/qrae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/13/2024] [Accepted: 10/22/2024] [Indexed: 04/09/2025] Open
Abstract
Sex chromosomes have evolved independently many times across eukaryotes. Despite a considerable body of literature on sex chromosome evolution, the causes and consequences of variation in their formation, degeneration, and turnover remain poorly understood. Chromosomal rearrangements are thought to play an important role in these processes by promoting or extending the suppression of recombination on sex chromosomes. Sex chromosome variation may also contribute to barriers to gene flow, limiting introgression among species. Comparative approaches in groups with sexual system variation can be valuable for understanding these questions. Rumex is a diverse genus of flowering plants harboring significant sexual system and karyotypic variation, including hermaphroditic and dioecious clades with XY (and XYY) sex chromosomes. Previous disagreement in the phylogenetic relationships among key species has rendered the history of sex chromosome evolution uncertain. Resolving this history is important for investigating the interplay of chromosomal rearrangements, introgression, and sex chromosome evolution in the genus. Here, we use new transcriptome assemblies from 11 species representing major clades in the genus, along with a whole-genome assembly generated for a key hermaphroditic species. Using phylogenomic approaches, we find evidence for the independent evolution of sex chromosomes across two major clades, and introgression from unsampled lineages likely predating the formation of sex chromosomes in the genus. Comparative genomic approaches revealed high rates of chromosomal rearrangement, especially in dioecious species, with evidence for a complex origin of the sex chromosomes through multiple chromosomal fusions. However, we found no evidence of elevated rates of fusion on the sex chromosomes in comparison with autosomes, providing no support for an adaptive hypothesis of sex chromosome expansion due to sexually antagonistic selection. Overall, our results highlight a complex history of karyotypic evolution in Rumex, raising questions about the role that chromosomal rearrangements might play in the evolution of large heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Mark S Hibbins
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Olena Voznesenska
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Bianca Sacchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Meng Yuan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yunchen Gong
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
5
|
Zhu L, Lv Y, Shi T, Huang J, Du Q, Tang G, Sun G, Prince O, Chen Q. Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3483-3494. [PMID: 39821414 DOI: 10.1002/jsfa.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent). Key traits, including germination percentage, germination energy, germination index, field PHS (PHS-F) and simulated PHS (PHS-S), were evaluated, and a quantitative trait locus (QTL) mapping analysis was performed. RESULTS (i) PHS-S was strongly and significantly correlated with PHS-F. (ii) A total of 11 QTLs associated with seed germination and 14 QTLs related to PHS were identified. Notably, the major QTL cluster qPHS8-1 was consistently detected and mapped within the interval of 8.53-9.65 Mbp on chromosome Ft8. (iii) Genotyping of 221 XJ-RILs across eight chromosomes revealed five residual heterozygous lines carrying a heterozygous interval of qPHS8-1 cluster, with inbred line R56 being particularly suited for the fine mapping of qPHS8-1. CONCLUSION The PHS-S test, conducted on entire Tartary buckwheat spikes, is an effective and comprehensive method for assessing PHS resistance in this crop. QTL mapping identified qPHS8-1 as a major locus for PHS resistance, and inbred line R56 offers a promising resource for further fine mapping of this cluster. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Qianqian Du
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Guohong Tang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| | - Genlou Sun
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Odika Prince
- Applied Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China
| |
Collapse
|
6
|
Wang Z, He Y, Zhao M, Liu XQ, Lin H, Shi Y, Zhang K, Lei G, Lai D, Liu T, Peng X, He J, Li W, Wang X, Woo SH, Quinet M, Fernie AR, Huang XY, Zhou M. Genome-Wide Association Studies Reveal the Genetic Architecture of Ionomic Variation in Grains of Tartary Buckwheat. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412291. [PMID: 40079224 DOI: 10.1002/advs.202412291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Indexed: 03/14/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is esteemed as a medicinal crop due to its high nutritional and health value. However, the genetic basis for the variations in Tartary buckwheat grain ionome remains inadequately understood. Through genome-wide association studies (GWAS) on grain ionome, 52 genetic loci are identified associated with 10 elements undergoing selection. Molecular experiments have shown that the variation in FtACA13's promoter (an auto-inhibited Ca2+-ATPase) is accountable for grain sodium concentration and salt tolerance, which underwent selection during domestication. FtYPQ1 (a vacuolar amino acid transporter) exhibits zinc transport activity, enhancing tolerance to excessive zinc stress and raising zinc accumulation. Additionally, FtNHX2 (a Na+/H+ exchanger) positively regulates arsenic content. Further genomic comparative analysis of "20A1" (wild accession) and "Pinku" (cultivated accession) unveiled structural variants in key genes involved in ion uptake and transport that may result in considerable changes in their functions. This research establishes the initial comprehensive grain ionome atlas in Tartary buckwheat, which will significantly aid in genetic improvement for nutrient biofortification.
Collapse
Affiliation(s)
- Zhirong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Mengyu Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hao Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Guijie Lei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, School of Agriculture, Yunnan University, Kunming, 650500, P. R. China
| | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Tong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiaoyang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Jiayue He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, 28644, Republic of Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, Louvain-la-Neuve, B-1348, Belgium
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Sanya Institute of Nanjing Agricultural University, Sanya, 572024, P. R. China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utilization Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
7
|
Zhao J, Wu H, Wang L, Yin Z, Sun Y, Wang L, Li C, Zhao H, Wu Q. The Seed-Specific Rutin-Degrading Enzyme FtBGLU29 is a Key Factor Promoting the Accumulation of the Bitter Compound Quercetin in Tartary Buckwheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5328-5340. [PMID: 39989010 DOI: 10.1021/acs.jafc.4c10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Rutin-degrading enzymes play a crucial role in catalyzing the hydrolysis of rutin (quercetin 3-O-rutinoside) into the bitter compound quercetin, contributing significantly to the bitterness of Tartary buckwheat (Fagopyrum tataricum) (TB). Mitigating this bitterness is vital for improving the palatability and marketability of TB products. In this study, we integrated genomic and transcriptomic data with molecular docking analyses to identify 12 potential rutin-degrading enzymes in TB. Among them, FtBGLU29 exhibited a stable binding affinity for rutin and significantly higher expression levels, specifically in TB seeds. This unique expression was confirmed through Native-PAGE and MALDI-TOF/TOF-MS, which identified FtBGLU29 as the predominant rutin-degrading enzyme in TB seeds. In vitro hydrolysis experiments revealed that FtBGLU29 efficiently catalyzes the conversion of rutin to quercetin upon the hydration of TB flour. Functional studies showed that FtBGLU29 overexpression in TB seeds significantly enhanced the rutin hydrolysis rate relative to the control group (p < 0.05). In conclusion, this study establishes FtBGLU29 as a key enzyme in the degradation of rutin in TB seeds, highlighting its critical role in enhancing the enzymatic conversion efficiency and potentially reducing the bitterness of TB products.
Collapse
Affiliation(s)
- Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Lijiao Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Ziyi Yin
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Yilin Sun
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| |
Collapse
|
8
|
Wang S, Cao X, Li H, Shan Z, Wang T, Li C, Wu Q. FtbHLH1, a transcription factor that interacts with FtATG8a, enhances the drought stress response in Tartary buckwheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109729. [PMID: 40037176 DOI: 10.1016/j.plaphy.2025.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is a traditional cereal crop cultivated in hilly, arid, cool mountainous regions. The bHLH transcription factors play a pivotal role in regulating flavonoid metabolism and enhancing resistance to extreme environments in Tartary buckwheat. However, the functional characterization of bHLH genes in this species remains incomplete. Previous research identified FtbHLH1 as an interacting partner of the key autophagy protein FtATG8a through yeast library screening. Yeast two-hybrid, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that FtbHLH1 interacts with FtATG8a. This interaction depends on the AIM motifs (LEWYYL and QSWHFV) present in FtbHLH1, with both proteins co-localizing in the nucleus. The expression of FtbHLH1 was significantly induced by drought stress (P < 0.05), and its overexpression led to increased drought tolerance in transgenic Tartary buckwheat hairy roots. RNA sequencing revealed that FtbHLH1 up-regulated genes associated with stress response (e.g., FtCu/ZnSOD) as well as those involved in abscisic acid and methyl jasmonate biosynthesis and signaling pathways (e.g., FtCYP707As, FtRD29B, and FtJAZs). Further analysis indicated that the overexpression of FtbHLH1 enhances drought stress tolerance by altering the activities of antioxidant enzymes and promoting proline accumulation in both transgenic Arabidopsis and Tartary buckwheat hairy roots. This study provides theoretical support for selecting drought-resistant Tartary buckwheat varieties by elucidating the role of FtbHLH1 in the response to drought stress.
Collapse
Affiliation(s)
- Shuang Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agriculture University, Chengdu, 611130, China
| | - XinYi Cao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Zhi Shan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Tao Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
9
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 PMCID: PMC11814136 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
10
|
Liu H, Shi G, Ye W, Behera JR, Kilaru A, Wang L. Functional role of DFR genes in various blue Iris for the regulation of delphinidin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109355. [PMID: 39708701 DOI: 10.1016/j.plaphy.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Flowers belonging to the Iris genus, with a predominant display of blue hues, showcase a variety of blue polymorphisms across different species. This study focused on analyzing the L∗, a∗, and b∗ color values of Iris typhifolia, I. lactea, I. laevigata, and I. sanguinea. Notably, I. lactea exhibited the highest L∗ value, indicating a brighter hue, while I. typhifolia and I. laevigata displayed larger a∗ values, suggesting a shift towards a reddish tone. I. sanguinea, conversely, presented the most profound blue with the lowest b∗ value. Our research delved into understanding the influence of anthocyanin components on these color variations and explored the regulatory role of the dihydroflavonol-4-reductase (DFR) gene. The findings underscore delphinidin as the primary blue pigment, with the additional presence of petunidin in I. typhifolia and I. laevigata introducing a purplish-red hue. Flavonoids were identified as contributors to enhancing the brightness of I. lactea's color. The study elucidates that blue polymorphism predominantly arises from varying proportions of delphinidin pigments, closely linked to substrate selection by Asp type DFRs. Following the expression of different DFR genes from the two blue Iris species, significant substrate selection differences were observed. These findings lay a foundation for future efforts to enhance flower colors in Irises and other related species by offering DFR as a target candidate gene.
Collapse
Affiliation(s)
- Huijun Liu
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Gongfa Shi
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Wangbin Ye
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Jyoti R Behera
- Department of Biological Sciences, East Tennessee State University, 37614, Johnson City, TN, USA.
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, 37614, Johnson City, TN, USA.
| | - Ling Wang
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| |
Collapse
|
11
|
Gao Y, Shi Y, Jahan T, Huda MN, Hao L, He Y, Quinet M, Chen H, Zhang K, Zhou M. Buckwheat UDP-Glycosyltransferase FtUGT71K6 and FtUGT71K7 Tandem Repeats Contribute to Drought Tolerance by Regulating Epicatechin Synthesis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39887720 DOI: 10.1111/pce.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferase genes are organised as tandem repeats in the buckwheat genome, yet the functional implications and evolutionary significance of duplicated genes remain largely unexplored. In this study, gene family analysis revealed that FtUGT71K6 and FtUGT71K7 are tandem repeats in the buckwheat genome. Moreover, GWAS results for epicatechin suggested that this tandem repeat function was associated with epicatechin content of Tartary buckwheat germplasm, highlighting variations in the promoter haplotypes of FtUGT71K7 influenced epicatechin levels. FtUGT71K6 and FtUGT71K7 were shown to catalyse UDP-glucose conjugation to cyanidin and epicatechin. Furthermore, overexpression of FtUGT71K6 and FtUGT71K7 increased total antioxidant capacity and altered metabolite content of the epicatechin biosynthesis pathway, contributing to improved drought tolerance, while overexpression of FtUGT71K6 significantly improved salt stress tolerance. However, overexpression of these two genes did not contribute to resistance against Rhizoctonia solani. Evolutionary selection pressure analysis suggested positive selection of a critical amino acid ASP-53 in FtUGT71K6 and FtUGT71K7 during the duplication event. Overall, our study indicated that FtUGT71K6 and FtUGT71K7 play crucial roles in drought stress tolerance via modulating epicatechin synthesis in buckwheat.
Collapse
Affiliation(s)
- Yuanfen Gao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Tanzim Jahan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Md Nurul Huda
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Lin Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key laboratory Grain Crop Genetic Resources Evaluation and Utlization Ministry of Agriculture and Rural Affairs, Beijing, Haidian District, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian District, China
| |
Collapse
|
12
|
Huang J, Liu F, Zhang J, Tang B, Deng J, Shi T, Zhu L, Li H, Chen Q. Identification of the Granule-Bound Starch Synthase (GBSS) Genes Involved in Amylose Biosynthesis in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn.). PLANTS (BASEL, SWITZERLAND) 2025; 14:203. [PMID: 39861555 PMCID: PMC11768976 DOI: 10.3390/plants14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the GBSS genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat. This study comprehensively analyzed the FtGBSSs in Tartary buckwheat. Based on the genome data of Tartary buckwheat, five FtGBSS genes, namely FtGBSS-1 to FtGBSS-5, were identified on three chromosomes, exhibiting about 1800 bp lengths in their CDSs and numerous exons and introns in gene structures. Amino acid analyses revealed high homology in ten GBSS proteins from Tartary buckwheat, rice, maize, and Arabidopsis thaliana, with a specific starch synthase catalytic domain and ten conserved motifs. The Tartary buckwheat GBSS proteins had a closer relationship with GBSS proteins from monocot based on evolutionary relationship analysis. Expression analyses suggested that the FtGBSS genes showed distinct tissue-specific expression patterns in Tartary buckwheat and rice-Tartary buckwheat. Among them, FtGBSS-1, FtGBSS-2, and FtGBSS-4 were higher expressed in the root, stem, or flower, suggesting that they have a role in the amylose synthesis of these tissues. Notably, FtGBSS-3 and FtGBSS-5 were more highly expressed in seeds than in other tissues, suggesting that they have a pivotal role in amylose synthesis of the seeds of Tartary buckwheat. Furthermore, the cis acting elements in the promoters of FtGBSSs and their binding transcription factors (TFs) were investigated. A protein-protein interaction network was constructed and co-expression was analyzed based on the gene expression patterns of the FtGBSSs, and the identified TFs, belonging to bZIP, ERF, bHLH, and MADS-box TF families, were identified within this network, and their expression patterns were significantly correlated to the expression patterns of two seed-specific FtGBSS genes (FtGBSS-3 and FtGBSS-5). Finally, FtGBSS1-5 was successfully transformed into rice through transgenic manipulation, and the FtGBSS1-5 overexpression lines showed an increase in amylose content accompanied by a reduction in amylopectin and total starch contents compared with WT. Overall, this research not only deepens our understanding of the molecular mechanisms of amylose synthesis in Tartary buckwheat, but also provides scientific insights for enhancing crop amylose content and quality through molecular breeding.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Jieqiong Zhang
- Guizhou Provincial Agricultural Technology Extension Station, Guiyang 550001, China;
| | - Bin Tang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (J.H.); (F.L.); (B.T.); (J.D.); (T.S.); (L.Z.); (H.L.)
| |
Collapse
|
13
|
Dziedzic K, Ariyarathna P, Szwengiel A, Hęś M, Ratajczak K, Górecka D, Sulewska H, Walkowiak J. Changes in the Content of Dietary Fiber, Flavonoids, and Phenolic Acids in the Morphological Parts of Fagopyrum tataricum (L.) Gaertn Under Drought Stress. Molecules 2025; 30:270. [PMID: 39860140 PMCID: PMC11767487 DOI: 10.3390/molecules30020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, Fagopyrum tataricum is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant. METHODS This experiment was conducted in 7 L pots under laboratory conditions. Phenolic compounds were identified using a UHPLC-MS chromatography system. Antioxidant activity was assessed using well-known methods, including the DPPH scavenging activity and ferrous ion chelating activity. RESULTS In Tartary buckwheat leaves, stems, seeds, and husks, 57 phenolic compounds were identified, with a predominance of quercetin 3-rutinoside, quercetin, kaempferol-3-rutinoside, kaempferol, and derivatives of coumaric acid. It was observed that the Tartary buckwheat samples subjected to drought stress exhibited a slight decrease in the majority of individual phenolic compounds. CONCLUSIONS The measurement of biological parameters indicated that plant regeneration after drought stress demonstrated a rapid recovery, which can be a positive response to the progression of climate changes.
Collapse
Affiliation(s)
- Krzysztof Dziedzic
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Pathumi Ariyarathna
- Department of Agriculture, Sri Lanka School of Agriculture, Dambulla 21100, Sri Lanka;
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Marzanna Hęś
- Department of Gastronomic Technology and Functional Foods, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.H.); (D.G.)
| | - Karolina Ratajczak
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (K.R.); (H.S.)
| | - Danuta Górecka
- Department of Gastronomic Technology and Functional Foods, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (M.H.); (D.G.)
| | - Hanna Sulewska
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland; (K.R.); (H.S.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| |
Collapse
|
14
|
Gao Y, Lai J, Feng C, Li L, Zu Q, Li J, Du D. Transcriptional Analysis of Tissues in Tartary Buckwheat Seedlings Under IAA Stimulation. Genes (Basel) 2024; 16:30. [PMID: 39858577 PMCID: PMC11764492 DOI: 10.3390/genes16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background:Fagopyrum tataricum, commonly referred to as tartary buckwheat, is a cultivated medicinal and edible crop renowned for its economic and nutritional significance. Following the publication of the buckwheat genome, research on its functional genomics across various growth environments has gradually begun. Auxin plays a crucial role in many life processes. Analyzing the expression changes in tartary buckwheat after IAA treatment is of great significance for understanding its growth and environmental adaptability. Methods: This study investigated the changes in auxin response during the buckwheat seedling stage through high-throughput transcriptome sequencing and the identification and annotation of differentially expressed genes (DEGs) across three treatment stages. Results: After IAA treatment, there are 3355 DEGs in leaves and 3974 DEGs in roots identified. These DEGs are significantly enriched in plant hormone signaling, MAPK signaling pathways, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. This result suggests a notable correlation between these tissues in buckwheat and their response to IAA, albeit with significant differences in response patterns. Additionally, the identification of tissue-specific expression genes in leaves and other tissues revealed distinct tissue variations. Conclusions: Following IAA treatment, an increase in tissue-specific expression genes observed, indicating that IAA significantly regulates the growth of buckwheat tissues. This study also validated certain genes, particularly those in plant hormone signaling pathways, providing a foundational dataset for the further analysis of buckwheat growth and tissue development and laying the groundwork for understanding buckwheat growth and development.
Collapse
Affiliation(s)
- Yingying Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jialing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenglu Feng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qihang Zu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juan Li
- College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, China
- Innovation Institute for Biomedical Material, Wuhan Donghu University, Wuhan 430212, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
15
|
Li Q, Yang Y, Bai X, Xie L, Niu S, Xiong B. Systematic analysis and functional characterization of the chitinase gene family in Fagopyrum tataricum under salt stress. BMC PLANT BIOLOGY 2024; 24:1222. [PMID: 39707214 DOI: 10.1186/s12870-024-05971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored. RESULTS This study analyzed their phylogenetic relationships, conserved motifs, gene structures, syntenic relationships, physiological functions, and biochemical properties. This research identified 26 FtCHIs and examined their expression patterns under different salt stress conditions and across various tissues. Differential expression analysis revealed a significant upregulation of multiple FtCHIs in response to salt stress, which RT-qPCR further validated. Additionally, subcellular localization experiments demonstrated that Ft_chitinaseIV-2 is localized in vacuoles. The results of transient·transformation showed that·overexpression of Ft_chitinaseIV-2 could·enhance the salt tolerance of plants. CONCLUSIONS The findings provide new insights into the role of CHIs in stress tolerance and lay the groundwork for future research on the functional characterization of FtCHIs. Understanding the molecular mechanisms of CHI-mediated stress responses could contribute to developing stress-resistant crops.
Collapse
Affiliation(s)
- Qingqing Li
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Yongyi Yang
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xue Bai
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Lun Xie
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Suzhen Niu
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Biao Xiong
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
16
|
Gao Y, Hou H, Cang Q, Sangdan Z, Zhao G, Yuan Y, Feng B. Global Research Trends and Future Directions for Buckwheat as a Smart Crop: A Bibliometric and Content Analysis. Foods 2024; 13:4068. [PMID: 39767010 PMCID: PMC11675993 DOI: 10.3390/foods13244068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Buckwheat (Fagopyrum esculentum Moench) originates from Central Asia and is widely distributed around the world. It is recognized as a versatile food crop due to its nutritional richness. Conducting a systematic analysis of the literature on buckwheat research can help scientific researchers achieve a better understanding of the current state, hotspots, and trends in this field, thereby promoting the sustainable development of buckwheat. The study retrieved a total of 4512 articles related to buckwheat from the Web of Science Core Collection (WoSCC), involving 104 countries (regions), 3220 institutions, and 12,840 authors. The number of research papers on buckwheat is gradually increasing. China, Japan, Poland, the United States, and South Korea were the top five countries in terms of publication volume in this field. Among the top 10 institutions in terms of publication volume, Chinese institutions account for 60%. Northwest A & F University held a leading position in the number of papers published and cited. Research on buckwheat shows that both domestic and international research institutions tend to collaborate more with institutions within their own countries. A comprehensive analysis of journals with a high number of publications and citations in buckwheat research indicated that studies primarily focus on its use as food and its active substances. Analysis of the authors and cited authors indicated that Wu Qi and Zhu F, among others, have high reputations and significant influence in this field. Reference analysis has determined that early research primarily focused on buckwheat as a pseudo-cereal food; mid-term research mainly concentrated on its active substances and cultivation; later research became more comprehensive, focusing on its potential in food, biotechnology, and medical health, which gradually emerged as trends and hot topics. Keyword analysis indicates that buckwheat flour, antioxidant activity, protective biological control, and buckwheat husk are current research hotspots. This study systematically summarizes the current status of research in the field, identifies research hotspots and trends, and provides a reference for future investigations into buckwheat.
Collapse
Affiliation(s)
- Yongbin Gao
- College of Agriculture, Northwest A & F University, Xianyang 712100, China; (Y.G.); (H.H.)
- Motuo County Dexing Township Agriculture and Animal Husbandry Integrated Service Center, Linzhi 860700, China; (Q.C.); (Z.S.)
| | - Hanghang Hou
- College of Agriculture, Northwest A & F University, Xianyang 712100, China; (Y.G.); (H.H.)
| | - Quzhen Cang
- Motuo County Dexing Township Agriculture and Animal Husbandry Integrated Service Center, Linzhi 860700, China; (Q.C.); (Z.S.)
| | - Zhuoma Sangdan
- Motuo County Dexing Township Agriculture and Animal Husbandry Integrated Service Center, Linzhi 860700, China; (Q.C.); (Z.S.)
| | - Guan Zhao
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 851418, China;
| | - Yuhao Yuan
- College of Agriculture, Henan Agricultural University Zhengzhou, Zhengzhou 450002, China
| | - Baili Feng
- College of Agriculture, Northwest A & F University, Xianyang 712100, China; (Y.G.); (H.H.)
| |
Collapse
|
17
|
He J, Hao Y, He Y, Li W, Shi Y, Khurshid M, Lai D, Ma C, Wang X, Li J, Cheng J, Fernie AR, Ruan J, Zhang K, Zhou M. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2398-2419. [PMID: 39488739 DOI: 10.1111/tpj.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Jiayue He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanrong Hao
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Muhammad Khurshid
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chongzhong Ma
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jinbo Li
- LuoYang Normal University, Luoyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
18
|
Zhang X, Yang G, Gu L, Liu C, Chen Q. Identification of Fungus GZ in Buckwheat Rhizosphere and Its Promoting Effect in Buckwheat Seed Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:3360. [PMID: 39683152 DOI: 10.3390/plants13233360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
To obtain fungal strains that enhance plant growth in the rhizosphere soil of buckwheat, we utilized morphological and molecular biological methods to identify 10 fungal strains from the rhizosphere soil and subsequently evaluated their effects on seed germination. The results demonstrated that all 10 fungal strains were classified as Isaria cateniannulata. The spores of these strains significantly enhanced the germination of buckwheat seeds, with germination rates improving by 3.46% to 700.75% compared to the control group. This study fills the gap in understanding I. cateniannulata as soil rhizosphere fungi, providing a foundation and materials for the seed coating technology of buckwheat seeds.
Collapse
Affiliation(s)
- Xiaona Zhang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Guimin Yang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Lingdi Gu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Can Liu
- School of International Education, Guizhou Normal University, Guiyang 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
19
|
Zhang H, Yao T, Wang J, Ji G, Cui C, Song J, Sun N, Qi S, Xu N, Zhang H. Genome-wide identification of R2R3-MYB transcription factors in Betula platyphylla and functional analysis of BpMYB95 in salt tolerance. Int J Biol Macromol 2024; 279:135193. [PMID: 39216584 DOI: 10.1016/j.ijbiomac.2024.135193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The Myeloblastosis (MYB) transcription factor (TF) family is one of the largest transcription factor families in plants and plays an important role in various physiological processes. At present, there are few reports on birch (Betula platyphylla Suk.) of R2R3-MYB-TFs, and most BpMYBs still need to be characterized. In this study, 111 R2R3-MYB-TFs with conserved R2 and R3 MYB domains were identified. Phylogenetic tree analysis showed that the MYB family members of Arabidopsis thaliana and birch were divided into 23 and 21 subgroups, respectively. The latter exhibited an uneven distribution across 14 chromosomes. There were five tandem duplication events and 17 segmental duplication events between BpMYBs, and repeat events play an important role in the expansion of the family. In addition, the promoter region of MYBs was rich in various cis-acting elements, and MYB-TFs were involved in plant growth and development, light responses, biotic stress, and abiotic stress. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results revealed that most R2R3-MYB-TFs in birch responded to salt stress. In particular, the expression of BpMYBs in the S20 subfamily was significantly induced by salt, drought, abscisic acid, and methyl jasmonate stresses. Based on the weighted co-expression network analysis of physiological and RNA-seq data of birch under salt stress, a key MYB-TF BpMYB95 (BPChr12G24087), was identified in response to salt stress, and its expression level was induced by salt stress. BpMYB95 is a nuclear localization protein with transcriptional activation activity in yeast and overexpression of this gene significantly enhanced salt tolerance in Saccharomyces cerevisiae. The qRT-PCR and histochemical staining results showed that BpMYB95 exhibited the highest expression in the roots, young leaves, and petioles of birch plants. Overexpression of BpMYB95 significantly improved salt-induced browning and wilting symptoms in birch leaves and alleviated the degree of PSII photoinhibition caused by salt stress in birch seedlings. In conclusion, most R2R3-MYB-TFs found in birch were involved in the salt stress response mechanisms. Among these, BpMYB95 was a key regulatory factor that significantly enhanced salt tolerance in birch. The findings of this study provide valuable genetic resources for the development of salt-tolerant birch varieties.
Collapse
Affiliation(s)
- Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tongtong Yao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Xu
- Harbin Univ, Sch Geog & Tourism, Key Lab Heilongjiang Prov Cold Reg Wetlands Ecol &, Harbin, China.
| | - Huiui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
20
|
Wang L, Mao Y, Zhou S, Liu L, Wang T, Li C, Wu H, Zhao H, Wang A, Li S, Wu Q. Understanding the amylose biosynthesis and regulation mechanisms in Tartary buckwheat by the endosperm transcriptome. Int J Biol Macromol 2024; 279:135275. [PMID: 39233155 DOI: 10.1016/j.ijbiomac.2024.135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Starch serves as a crucial energy source for both plants and humans, predominantly synthesized and stored in endosperms, tubers, rhizomes, and cotyledons. Given the significant role of amylose in determining the quality of starchy crops, optimizing its content has become a key objective in current crop breeding efforts. Tartary buckwheat, a dicotyledonous plant, notably accumulates high levels of amylose in its endosperm, surpassing common cereals like rice and maize. However, the mechanisms underlying amylose accumulation, distribution, and regulation in Tartary buckwheat remain unclear. Here, amylose content was determined across various tissues and organs of Tartary buckwheat, identifying with the endosperm as the primary site for its biosynthesis and accumulation. RNA sequencing analysis of endosperms from different developmental stages identified 35 genes potentially involved in starch biosynthesis, with 13 genes showing high endosperm-specific expression, suggesting crucial roles in starch biosynthesis. Additionally, the transcription factor FtNF-YB2, which was specifically highly expressed in the endosperm, was discovered to enhance amylose synthesis. Moreover, promoters with potential endosperm-specific activity were identified, advancing our understanding of amylose regulation. Additionally, this study also demonstrates that brassinosteroids (BR) positively influence amylose biosynthesis in Tartary buckwheat endosperm. These findings provide essential insights into the mechanisms of understanding amylose biosynthesis, accumulation and regulation in Tartary buckwheat, offering significant implications for future breeding strategies.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Shuyan Zhou
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Tao Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Anhu Wang
- Xichang University, 615013 Xichang, Sichuan, China
| | - Shengchun Li
- Xichang University, 615013 Xichang, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China.
| |
Collapse
|
21
|
Zeng S, Mo C, Xu B, Wang Z, Zhang F, Biao A, Li S, Kong Q, Wang J. T2T genome assemblies of Fallopia multiflora (Heshouwu) and F. multiflora var. angulata. Sci Data 2024; 11:1103. [PMID: 39384802 PMCID: PMC11464673 DOI: 10.1038/s41597-024-03943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
The traditional Chinese medicinal plant Fallopia multiflora (hereafter AYY) is well known for its anti-hyperlipidaemia, immunomodulating, and hepatoprotective effects, attributed to its abundance of anthraquinones and stilbene glycosides, which are distinct to its variety F. multiflora var. angulata (hereafter CYY) in proportion and composition. In this study, telomere-to-telomere (T2T) genomes were assembled for AYY and CYY using PacBio HiFi reads and Hi-C data. The genome sizes, percentages of repetitive sequences, and numbers of protein-coding genes of AYY and CYY assemblies were 1,458.37 Mb/70.48%/84,768 and 1,174.38 Mb/67.36%/69,100, respectively. Comprehensive assessments confirmed high continuity (contig N50: 112.58 Mb and 94.83 Mb; number of gaps: 9 and 5), completeness (BUSCOs: 97.30% and 97.60%; LAI: 16.93 and 16.77), and correctness (QV: 51.42 and 52.60) of AYY and CYY assemblies. These T2T genomes of F. multiflora provide valuable resources for studying the biosynthesis of specialized metabolites and facilitating precise genetic improvement.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, 341000, P.R. China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingqiang Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, P. R. China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - A Biao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - Sixuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China.
| |
Collapse
|
22
|
Du H, Ke J, Sun X, Tan L, Yu Q, Wei C, Ryan PR, Wang A, Li H. FtMYB163 Gene Encodes SG7 R2R3-MYB Transcription Factor from Tartary Buckwheat ( Fagopyrum tataricum Gaertn.) to Promote Flavonol Accumulation in Transgenic Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2704. [PMID: 39409574 PMCID: PMC11478641 DOI: 10.3390/plants13192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse grain crop rich in flavonoids that are beneficial to human health because they function as anti-inflammatories and provide protection against cardiovascular disease and diabetes. Flavonoid biosynthesis is a complex process, and relatively little is known about the regulatory pathways involved in Tartary buckwheat. Here, we cloned and characterized the FtMYB163 gene from Tartary buckwheat, which encodes a member of the R2R3-MYB transcription factor family. Amino acid sequence and phylogenetic analysis indicate that FtMYB163 is a member of subgroup 7 (SG7) and closely related to FeMYBF1, which regulates flavonol synthesis in common buckwheat (F. esculentum). We demonstrated that FtMYB163 localizes to the nucleus and has transcriptional activity. Expression levels of FtMYB163 in the roots, stems, leaves, flowers, and seeds of F. tataricum were positively correlated with the total flavonoid contents of these tissues. Overexpression of FtMYB163 in transgenic Arabidopsis enhanced the expression of several genes involved in early flavonoid biosynthesis (AtCHS, AtCHI, AtF3H, and AtFLS) and significantly increased the accumulation of several flavonoids, including naringenin chalcone, naringenin-7-O-glucoside, eriodictyol, and eight flavonol compounds. Our findings demonstrate that FtMYB163 positively regulates flavonol biosynthesis by changing the expression of several key genes in flavonoid biosynthetic pathways.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Jin Ke
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Peter R. Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| | - An’hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| |
Collapse
|
23
|
Tomasiak A, Piński A, Milewska-Hendel A, Andreu Godall I, Borowska-Żuchowska N, Morończyk J, Moreno-Romero J, Betekhtin A. H3K4me3 changes occur in cell wall genes during the development of Fagopyrum tataricum morphogenic and non-morphogenic calli. FRONTIERS IN PLANT SCIENCE 2024; 15:1465514. [PMID: 39385990 PMCID: PMC11461221 DOI: 10.3389/fpls.2024.1465514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Epigenetic changes accompany the dynamic changes in the cell wall composition during the development of callus cells. H3K4me3 is responsible for active gene expression and reaction to environmental cues. Chromatin immunoprecipitation (ChIP) is a powerful technique for studying the interplay between epigenetic modifications and the DNA regions of interest. In combination with sequencing, it can provide the genome-wide enrichment of the specific epigenetic mark, providing vital information on its involvement in the plethora of cellular processes. Here, we describe the genome-wide distribution of H3K4me3 in morphogenic and non-morphogenic callus of Fagopyrum tataricum. Levels of H3K4me3 were higher around the transcription start site, in agreement with the role of this mark in transcriptional activation. The global levels of methylation were higher in the non-morphogenic callus, which indicated increased gene activation compared to the morphogenic callus. We also employed ChIP to analyse the changes in the enrichment of this epigenetic mark on the cell wall-related genes in both calli types during the course of the passage. Enrichment of H3K4me3 on cell wall genes was specific for callus type, suggesting that the role of this mark in cell-wall remodelling is complex and involved in many processes related to dedifferentiation and redifferentiation. This intricacy of the cell wall composition was supported by the immunohistochemical analysis of the cell wall epitopes' distribution of pectins and extensins. Together, these data give a novel insight into the involvement of H3K4me3 in the regeneration processes in F. tataricum in vitro callus tissue culture.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ignasi Andreu Godall
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalia Borowska-Żuchowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
24
|
Zhao P, Yan X, Qian C, Ma G, Fan X, Yin X, Liao Y, Fang T, Zhou S, Awuku I, Ma XF. Flavonoid Synthesis Pathway Response to Low-Temperature Stress in a Desert Medicinal Plant, Agriophyllum Squarrosum (Sandrice). Genes (Basel) 2024; 15:1228. [PMID: 39336819 PMCID: PMC11431328 DOI: 10.3390/genes15091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives:Agriophyllum squarrosum (L.) Moq. (A. squarrosum), also known as sandrice, is an important medicinal plant widely distributed in dunes across all the deserts of China. Common garden trials have shown content variations in flavonoids among the ecotypes of sandrice, which correlated with temperature heterogeneity in situ. However, there have not been any environmental control experiments to further elucidate whether the accumulation of flavonoids was triggered by cold stress; Methods: This study conducted a four-day ambient 4 °C low-temperature treatment on three ecotypes along with an in situ annual mean temperature gradient (Dulan (DL), Aerxiang (AEX), and Dengkou (DK)); Results: Target metabolomics showed that 12 out of 14 flavonoids in sandrice were driven by cold stress. Among them, several flavonoids were significantly up-regulated, such as naringenin and naringenin chalcone in all three ecotypes; isorhamnetin, quercetin, dihydroquercetin, and kaempferol in DL and AEX; and astragalin in DK. They were accompanied by 19 structural genes of flavonoid synthesis and 33 transcription factors were markedly triggered by cold stress in sandrice. The upstream genes, AsqAEX006535-CHS, AsqAEX016074-C4H, and AsqAEX004011-4CL, were highly correlated with the enrichment of naringenin, which could be fine-tuned by AsqAEX015868-bHLH62, AsqAEX001711-MYB12, and AsqAEX002220-MYB1R1; Conclusions: This study sheds light on how desert plants like sandrice adapt to cold stress by relying on a unique flavonoid biosynthesis mechanism that regulating the accumulation of naringenin. It also supports the precise development of sandrice for the medicinal industry. Specifically, quercetin and isorhamnetin should be targeted for development in DL and AEX, while astragalin should be precisely developed in DK.
Collapse
Affiliation(s)
- Pengshu Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Yan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chaoju Qian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guorong Ma
- Gulang County Sand Prevention and Control Technology Promotion Center, Wuwei 733100, China
| | - Xingke Fan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoyue Yin
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuqiu Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingzhou Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shanshan Zhou
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ibrahim Awuku
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiao-Fei Ma
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
25
|
Huang J, Liu F, Ren R, Deng J, Zhu L, Li H, Cai F, Meng Z, Chen Q, Shi T. QTL Mapping and Candidate Gene Analysis for Starch-Related Traits in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2024; 25:9243. [PMID: 39273191 PMCID: PMC11395678 DOI: 10.3390/ijms25179243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fang Cai
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Ziye Meng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
26
|
Zhu L, Liu F, Du Q, Shi T, Deng J, Li H, Cai F, Meng Z, Chen Q, Zhang J, Huang J. Variation Analysis of Starch Properties in Tartary Buckwheat and Construction of Near-Infrared Models for Rapid Non-Destructive Detection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2155. [PMID: 39124273 PMCID: PMC11314173 DOI: 10.3390/plants13152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Due to the requirements for quality testing and breeding Tartary buckwheat (Fagopyrum tartaricum Gaerth), it is necessary to find a method for the rapid detection of starch content in Tartary buckwheat. To obtain samples with a continuously distributed chemical value, stable Tartary buckwheat recombinant inbred lines were used. After scanning the near-infrared spectra of whole grains, we employed conventional methods to analyze the contents of Tartary buckwheat. The results showed that the contents of total starch, amylose, amylopectin, and resistant starch were 532.1-741.5 mg/g, 176.8-280.2 mg/g, 318.8-497.0 mg/g, and 45.1-105.2 mg/g, respectively. The prediction model for the different starch contents in Tartary buckwheat was established using near-infrared spectroscopy (NIRS) in combination with chemometrics. The Kennard-Stone algorithm was used to split the training set and the test set. Six different methods were used to preprocess the spectra in the wavenumber range of 4000-12,000 cm-1. The Competitive Adaptive Reweighted Sampling algorithm was then used to extract the characteristic spectra, and the prediction model was built using the partial least squares method. Through a comprehensive analysis of each parameter of the model, the best model for the prediction of each nutrient was determined. The correlation coefficient of calibration (Rc) and the correlation coefficient of prediction (Rp) of the best models for total starch and amylose were greater than 0.95, and the Rc and Rp of the best models for amylopectin and resistant starch were also greater than 0.93. The results showed that the NIRS-based prediction model fulfilled the requirement for the rapid determination of Tartary buckwheat starch, thus providing an effective technical approach for the rapid and non-destructive testing of starch content in the food science and agricultural industry.
Collapse
Affiliation(s)
- Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Qianxi Du
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Fang Cai
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Ziye Meng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| | - Jieqiong Zhang
- Guizhou Provincial Agricultural Technology Extension Station, Guiyang 550001, China;
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (F.L.); (Q.D.); (T.S.); (J.D.); (H.L.); (F.C.); (Z.M.); (Q.C.)
| |
Collapse
|
27
|
Zhang X, Yang M, Liu Z, Yang F, Zhang L, Guo Y, Huo D. Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1313-1328. [PMID: 39184561 PMCID: PMC11341512 DOI: 10.1007/s12298-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Fagopyrum tataricum, an important medicinal and edible crop, possesses significant agricultural and economic value. However, the development of buckwheat varieties and yields has been hindered by the delayed breeding progress despite the abundant material resources in China. Current research indicates that quantitative trait loci (QTLs) play a crucial role in controlling plant seed type and yield. To address these limitations, this study constructed recombinant inbred lines (RILs) utilizing both cultivated species and wild buckwheat as raw materials. In total, 84,521 Single Nucleotide Polymorphism (SNP) markers were identified through Genotyping-by-Sequencing (GBS) technology, and high-resolution and high-density SNP genetic maps were developed, which had significant value for QTL mapping, gene cloning and comparative mapping of buckwheat. In this study, we successfully identified 5 QTLs related to thousand grain weight (TGW), 9 for grain length (GL), and 1 for grain width (GW) by combining seed type and TGW data from 202 RIL populations in four different environments, within which one co-located QTL for TGW were discovered on the first chromosome. Transcriptome analysis during different grain development stages revealed 59 significant expression differences between the two materials, which can serve as candidate genes for further investigation into the regulation of grain weight and yield enhancement. The mapped major loci controlling TGW, GL and GW will be valuable for gene cloning and reveal the mechanism underlying grain development and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Miao Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031 China
| | - Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Yajing Guo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| |
Collapse
|
28
|
Zargar SM, Hami A, Manzoor M, Mir RA, Mahajan R, Bhat KA, Gani U, Sofi NR, Sofi PA, Masi A. Buckwheat OMICS: present status and future prospects. Crit Rev Biotechnol 2024; 44:717-734. [PMID: 37482536 DOI: 10.1080/07388551.2023.2229511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Buckwheat (Fagopyrum spp.) is an underutilized resilient crop of North Western Himalayas belonging to the family Polygonaceae and is a source of essential nutrients and therapeutics. Common Buckwheat and Tatary Buckwheat are the two main cultivated species used as food. It is the only grain crop possessing rutin, an important metabolite with high nutraceutical potential. Due to its inherent tolerance to various biotic and abiotic stresses and a short life cycle, Buckwheat has been proposed as a model crop plant. Nutritional security is one of the major concerns, breeding for a nutrient-dense crop such as Buckwheat will provide a sustainable solution. Efforts toward improving Buckwheat for nutrition and yield are limited due to the lack of available: genetic resources, genomics, transcriptomics and metabolomics. In order to harness the agricultural importance of Buckwheat, an integrated breeding and OMICS platforms needs to be established that can pave the way for a better understanding of crop biology and developing commercial varieties. This, coupled with the availability of the genome sequences of both Buckwheat species in the public domain, should facilitate the identification of alleles/QTLs and candidate genes. There is a need to further our understanding of the molecular basis of the genetic regulation that controls various economically important traits. The present review focuses on: the food and nutritional importance of Buckwheat, its various omics resources, utilization of omics approaches in understanding Buckwheat biology and, finally, how an integrated platform of breeding and omics will help in developing commercially high yielding nutrient rich cultivars in Buckwheat.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Kaiser A Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Najeebul Rehman Sofi
- MRCFC, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Parvaze A Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
29
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
30
|
Deng J, Zhang L, Wang L, Zhao J, Yang C, Li H, Huang J, Shi T, Zhu L, Damaris RN, Chen Q. The Complex FtBBX22 and FtHY5 Positively Regulates Light-Induced Anthocyanin Accumulation by Activating FtMYB42 in Tartary Buckwheat Sprouts. Int J Mol Sci 2024; 25:8376. [PMID: 39125947 PMCID: PMC11313212 DOI: 10.3390/ijms25158376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.
Collapse
Affiliation(s)
- Jiao Deng
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lan Zhang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lijuan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Jiali Zhao
- School of Life Sciences, Sichuan Agricultural University, Ya’an 625099, China;
| | - Chaojie Yang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | | | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| |
Collapse
|
31
|
Zhiyong S, Yaxuan G, Yuanyuan W, Xiang Y, Xu G, Zhenhong L, Jingping N, Jianping L, Zhenyu L. Nitrogen-fixing bacteria promote growth and bioactive components accumulation of Astragalus mongholicus by regulating plant metabolism and rhizosphere microbiota. BMC Microbiol 2024; 24:261. [PMID: 39004720 PMCID: PMC11247893 DOI: 10.1186/s12866-024-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.
Collapse
Affiliation(s)
- Shi Zhiyong
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Guo Yaxuan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Wang Yuanyuan
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yan Xiang
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Guo Xu
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Lei Zhenhong
- Shanxi Zhendong Pharmaceutical (China), Changzhi, 047000, China
| | - Niu Jingping
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Liang Jianping
- College Of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, China.
- Shanxi Key Laboratory of Chinese Veterinary Medicine Modernization, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Li Zhenyu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
32
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
33
|
Zheng SH, Diao YC, Du J, Li JT, Zhao S, Liu MJ, Lin HC, Zeng Y, Wang JY. Genomics and resequencing of Fagopyrum dibotrys from different geographic regions reveals species evolution and genetic diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1380157. [PMID: 38919820 PMCID: PMC11196786 DOI: 10.3389/fpls.2024.1380157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Fagopyrum dibotrys, belonging to the family Polygonaceae and genus Fagopyrum, is used in traditional Chinese medicine and is rich in beneficial components, such as flavonoids. As its abundant medicinal value has become increasingly recognized, its excessive development poses a considerable challenge to wild germplasm resources, necessitating artificial cultivation and domestication. Considering these factors, a high-quality genome of F. dibotrys was assembled and the evolutionary relationships within Caryophyllales were compared, based on which 58 individual samples of F. dibotrys were re-sequenced. We found that the samples could be categorized into three purebred populations and regions distributed at distinct elevations. Our varieties were cultivated from the parental populations of the subpopulation in central Yunnan. F. dibotrys is speculated to have originated in the high-altitude Tibetan Plateau region, and that its combination with flavonoids can protect plants against ultraviolet radiation; this infers a subpopulation with a high accumulation of flavonoids. This study assembled a high-quality genome and provided a theoretical foundation for the future introduction, domestication, and development of cultivated varieties of F. dibotrys.
Collapse
Affiliation(s)
- Si-hao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Yong-chao Diao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jin-tong Li
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Sha Zhao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Mei-juan Liu
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Hui-cai Lin
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Yan Zeng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Ji-yong Wang
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| |
Collapse
|
34
|
Zhao H, Hu M, Fang Y, Yao Y, Zhao J, Mao Y, Wang T, Wu H, Li C, Li H, Wu Q. Regulatory Module FtMYB5/6-FtGBF1- FtUFGT163 Promotes Rutin Biosynthesis in Tartary Buckwheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12630-12640. [PMID: 38779919 DOI: 10.1021/acs.jafc.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.
Collapse
Affiliation(s)
- Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Mufan Hu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yue Fang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yingjun Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Tao Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, Guizhou 550001, People's Republic of China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| |
Collapse
|
35
|
Fu R, Zhu Y, Liu Y, Yang Z, Lu R, Qiu Y, Lascoux M, Li P, Chen J. Shared xerophytic genes and their re-use in local adaptation to aridity in the desert plant Gymnocarpos przewalskii. Mol Ecol 2024; 33:e17380. [PMID: 38745400 DOI: 10.1111/mec.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
In order to thrive and survive, plant species need to combine stability in the long term and rapid response to environmental challenges in the short term. The former would be reflected by parallel or convergent adaptation across species, and the latter by pronounced local adaptation among populations of the same species. In the present study, we generated a high-quality genome and re-sequenced 177 individuals for Gymnocarpos przewalskii, an important desert plant species from North-West China, to detect local adaptation. We first focus on ancient adaptation to aridity at the molecular level by comparing the genomic data of 15 species that vary in their ability to withstand aridity. We found that a total of 118 genes were shared across xerophytic species but absent from non-xerophytic species. Of the 65 found in G. przewalskii, 63 were under purifying selection and two under positive selection. We then focused on local adaptation. Up to 20% of the G. przewalskii genome showed signatures of local adaptation to aridity during population divergence. Thirteen of the selected shared xerophytic genes were reused in local adaptation after population differentiation. Hence, only about 20% of the genes shared and specific to xerophytic species and associated with adaptation to aridity were later recruited for local adaptation in G. przewalskii.
Collapse
Affiliation(s)
- Ruirui Fu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Aral, China
| | - Ruisen Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yingxiong Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Zhao J, Sun L, Wang L, Xiang K, Xiao Y, Li C, Wu H, Zhao H, Wu Q. Enhancing rutin accumulation in Tartary buckwheat through a novel flavonoid transporter protein FtABCC2. Int J Biol Macromol 2024; 270:132314. [PMID: 38740160 DOI: 10.1016/j.ijbiomac.2024.132314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an annual coarse cereal from the Polygonaceae family, known for its high content of flavonoid compounds, particularly rutin. But so far, the mechanisms of the flavonoid transport and storage in Tartary buckwheat (TB) remain largely unexplored. This study focuses on ATP-binding cassette transporters subfamily C (ABCC) members, which are crucial for the biosynthesis and transport of flavonoids in plants. The evolutionary and expression pattern analyses of the ABCC genes in TB identified an ABCC protein gene, FtABCC2, that is highly correlated with rutin synthesis. Subcellular localization analysis revealed that FtABCC2 protein is specifically localized to the vacuole membrane. Heterologous expression of FtABCC2 in Saccharomyces cerevisiae confirmed that its transport ability of flavonoid glycosides such as rutin and isoquercetin, but not the aglycones such as quercetin and dihydroquercetin. Overexpression of FtABCC2 in TB hairy root lines resulted in a significant increase in total flavonoid and rutin content (P < 0.01). Analysis of the FtABCC2 promoter revealed potential cis-acting elements responsive to hormones, cold stress, mechanical injury and light stress. Overall, this study demonstrates that FtABCC2 can efficiently facilitate the transport of rutin into vacuoles, thereby enhancing flavonoids accumulation. These findings suggest that FtABCC2 is a promising candidate for molecular-assisted breeding aimed at developing high-flavonoid TB varieties.
Collapse
Affiliation(s)
- Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Lei Sun
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Kai Xiang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Yao Xiao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
37
|
Liu Y, Guan C, Chen Y, Shi Y, Long O, Lin H, Zhang K, Zhou M. Evolutionary analysis of MADS-box genes in buckwheat species and functional study of FdMADS28 in flavonoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108637. [PMID: 38670031 DOI: 10.1016/j.plaphy.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.
Collapse
Affiliation(s)
- Yang Liu
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaonan Guan
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Chen
- College of Agriculture, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, Gao Y, Huang X, He J, Zhao H, Lu X, Xiao Y, Cheng J, Ruan J, Georgiev MI, Fernie AR, Zhou M. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1206-1223. [PMID: 38062934 PMCID: PMC11022807 DOI: 10.1111/pbi.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 04/18/2024]
Abstract
Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.
Collapse
Affiliation(s)
- Dili Lai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fan
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yuanfen Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Jiayue He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yawen Xiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | | | - Jingjun Ruan
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of MicrobiologyBulgarian Academy of SciencesPlovdivBulgaria
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
- Department of Molecular PhysiologyMax‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
39
|
Yang W, Duan H, Yu K, Hou S, Kang Y, Wang X, Hao J, Liu L, Zhang Y, Luo L, Zhao Y, Zhang J, Lan C, Wang N, Zhang X, Tang J, Zhao Q, Sun Z, Zhang X. Integrative Dissection of Lignin Composition in Tartary Buckwheat Seed Hulls for Enhanced Dehulling Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400916. [PMID: 38520733 PMCID: PMC11132045 DOI: 10.1002/advs.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Indexed: 03/25/2024]
Abstract
The rigid hull encasing Tartary buckwheat seeds necessitates a laborious dehulling process before flour milling, resulting in considerable nutrient loss. Investigation of lignin composition is pivotal in understanding the structural properties of tartary buckwheat seeds hulls, as lignin is key determinant of rigidity in plant cell walls, thus directly impacting the dehulling process. Here, the lignin composition of seed hulls from 274 Tartary buckwheat accessions is analyzed, unveiling a unique lignin chemotype primarily consisting of G lignin, a common feature in gymnosperms. Furthermore, the hardness of the seed hull showed a strong negative correlation with the S lignin content. Genome-wide detection of selective sweeps uncovered that genes governing the biosynthesis of S lignin, specifically two caffeic acid O-methyltransferases (COMTs) and one ferulate 5-hydroxylases, are selected during domestication. This likely contributed to the increased S lignin content and decreased hardness of seed hulls from more domesticated varieties. Genome-wide association studies identified robust associations between FtCOMT1 and the accumulation of S lignin in seed hull. Transgenic Arabidopsis comt1 plants expressing FtCOMT1 successfully reinstated S lignin content, confirming its conserved function across plant species. These findings provide valuable metabolic and genetic insights for the potential redesign of Tartary buckwheat seed hulls.
Collapse
Affiliation(s)
- Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Siyu Hou
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
- Houji Lab of Shanxi ProvinceTaiyuan030031China
| | - Yifan Kang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jiongyu Hao
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
| | - Longlong Liu
- Center for Agricultural Genetic Resources ResearchShanxi Agricultural UniversityTaiyuan030031China
| | - Yin Zhang
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
| | - Laifu Luo
- Key Laboratory of Plant Carbon Capture and CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Yunjun Zhao
- Key Laboratory of Plant Carbon Capture and CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Nan Wang
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsKey Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic GenomicsGuangdong Provincial Key Laboratory of Synthetic GenomicsKey Laboratory of Quantitative Synthetic BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhaoxia Sun
- College of AgricultureShanxi Agricultural UniversityTaigu030801China
- Houji Lab of Shanxi ProvinceTaiyuan030031China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
40
|
Zhang X, Kong J, Yu L, Wang A, Yang Y, Li X, Wang J. Functional characterization of Fagopyrum tataricum ZIP gene family as a metal ion transporter. FRONTIERS IN PLANT SCIENCE 2024; 15:1373066. [PMID: 38693928 PMCID: PMC11062324 DOI: 10.3389/fpls.2024.1373066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
The zinc/iron-regulated transporter-like proteins (ZIP) family acts as an important transporter for divalent metal cations such as Zn, Fe, Mn, Cu, and even Cd. However, their condition is unclear in Tartary buckwheat (Fagopyrum tataricum). Here, 13 ZIP proteins were identified and were predicted to be mostly plasma membrane-localized. The transient expressions of FtZIP2 and FtZIP6 in tobacco confirmed the prediction. Multiple sequence alignment analysis of FtZIP proteins revealed that most of them had 8 putative transmembrane (TM) domains and a variable region rich in histidine residues between TM3 and TM4, indicating the reliable affinity to metal ions. Gene expression analysis by qRT-PCR showed that FtZIP genes were markedly different in different organs, such as roots, stems, leaves, flowers, fruits and seeds. However, in seedlings, the relative expression of FtZIP10 was notably induced under the CdCl2 treatment, while excessive Zn2+, Fe2+, Mn2+ and Cd2+ increased the transcript of FtZIP5 or FtZIP13, in comparison to normal conditions. Complementation of yeast mutants with the FtZIP family genes demonstrate that FtZIP7/10/12 transport Zn, FtZIP5/6/7/9/10/11 transport Fe, FtZIP12 transports Mn and FtZIP2/3/4/7 transport Cd. Our data suggest that FtZIP proteins have conserved functions of transportation of metal ions but with distinct spatial expression levels.
Collapse
Affiliation(s)
- Xinrong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lingzhi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Anhu Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang College, Xichang, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L, Zhou T, Feng L, Wang X. A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum. BMC PLANT BIOLOGY 2024; 24:261. [PMID: 38594606 PMCID: PMC11005207 DOI: 10.1186/s12870-024-04972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
42
|
Sacchi B, Humphries Z, Kružlicová J, Bodláková M, Pyne C, Choudhury BI, Gong Y, Bačovský V, Hobza R, Barrett SCH, Wright SI. Phased Assembly of Neo-Sex Chromosomes Reveals Extensive Y Degeneration and Rapid Genome Evolution in Rumex hastatulus. Mol Biol Evol 2024; 41:msae074. [PMID: 38606901 PMCID: PMC11057207 DOI: 10.1093/molbev/msae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.
Collapse
Affiliation(s)
- Bianca Sacchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Zoë Humphries
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Markéta Bodláková
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Cassandre Pyne
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Biology, Queen’s University, Kingston, Canada
| | - Yunchen Gong
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Zure D, David Kuo HW, Drizo A. Insights of phytoremediation mechanisms for viruses based on in-vitro, in-vivo and in-silico assessments of selected herbal plants. CHEMOSPHERE 2024; 351:141101. [PMID: 38171396 DOI: 10.1016/j.chemosphere.2023.141101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/24/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
Waterborne pathogenic viruses present unrelenting challenges to the global health and wastewater treatment industry. Phytoremediation offers promising solutions for wastewater treatment through plant-based technologies. This study investigated antiviral mechanisms in-vivo using bacteriophages MS2 and T4 as surrogates for effective herbs screened in-vitro from three embryophytes (Ocimum basilicum, Mentha sp., Plectranthus amboinicus), two macrophytes (Eichhornia crassipes, Pistia stratiotes) and a perennial grass (Cyperus rotundas). In-silico virtual screening predicted antiviral phytochemicals for further antiviral potency assessment. Results suggested in-vitro antiviral activities of embryophytes and macrophytes were higher (43-62%) than grass (21-26%). O. basilicum (OB, 57-62%) and P. stratiotes (PS, 59-60%) exhibited the highest antiviral activities. In-vivo tests showed notable virus reduction (>60%) in culture solution, attributed to rhizofiltration (66-74%) and phytoinactivation/phytodegradation (63-84%). In-silico analysis identified rutin as a primary antiviral phytochemical for MS2 (-9.7 kcal/mol) and T4 (-10.9 kcal/mol), correlating with dose-response inactivation (∼58-62%). In-vivo tests suggested additional phytocompounds may contribute to viral inactivation, presenting new opportunities for herb-based wastewater treatment solutions. Consequently, this study not only demonstrates the antiviral capabilities of OB and PS but also introduces an innovative approach for addressing viral contaminants in water.
Collapse
Affiliation(s)
- Diaiti Zure
- Department of Environmental Science and Engineering
| | | | - Aleksandra Drizo
- Sustainable Science and Management Program, Tunghai University, Taiwan
| |
Collapse
|
44
|
Wang L, Zhao J, Mao Y, Liu L, Li C, Wu H, Zhao H, Wu Q. Tartary buckwheat rutin: Accumulation, metabolic pathways, regulation mechanisms, and biofortification strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108503. [PMID: 38484679 DOI: 10.1016/j.plaphy.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Yuanbin Mao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, China.
| |
Collapse
|
45
|
Lei W, Zhu H, Cao M, Zhang F, Lai Q, Lu S, Dong W, Sun J, Ru D. From genomics to metabolomics: Deciphering sanguinarine biosynthesis in Dicranostigma leptopodum. Int J Biol Macromol 2024; 257:128727. [PMID: 38092109 DOI: 10.1016/j.ijbiomac.2023.128727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Dicranostigma leptopodum (Maxim) Fedde (DLF) is a renowned medicinal plant in China, known to be rich in alkaloids. However, the unavailability of a reference genome has impeded investigation into its plant metabolism and genetic breeding potential. Here we present a high-quality chromosomal-level genome assembly for DLF, derived using a combination of Nanopore long-read sequencing, Illumina short-read sequencing and Hi-C technologies. Our assembly genome spans a size of 621.81 Mb with an impressive contig N50 of 93.04 Mb. We show that the species-specific whole-genome duplication (WGD) of DLF and Papaver somniferum corresponded to two rounds of WGDs of Papaver setigerum. Furthermore, we integrated comprehensive homology searching, gene family analyses and construction of a gene-to-metabolite network. These efforts led to the discovery of co-expressed transcription factors, including NAC and bZIP, alongside sanguinarine (SAN) pathway genes CYP719 (CFS and SPS). Notably, we identified P6H as a promising gene for enhancing SAN production. By providing the first reference genome for Dicranostigma, our study confirms the genomic underpinning of SAN biosynthesis and establishes a foundation for advancing functional genomic research on Papaveraceae species. Our findings underscore the pivotal role of high-quality genome assemblies in elucidating genetic variations underlying the evolutionary origin of secondary metabolites.
Collapse
Affiliation(s)
- Weixiao Lei
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Man Cao
- Gansu Pharmacovigilance Center, Lanzhou 730070, China
| | - Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shengming Lu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Yin Y, Qiao S, Kang Z, Luo F, Bian Q, Cao G, Zhao G, Wu Z, Yang G, Wang Y, Yang Y. Transcriptome and Metabolome Analyses Reflect the Molecular Mechanism of Drought Tolerance in Sweet Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:351. [PMID: 38337884 PMCID: PMC10857618 DOI: 10.3390/plants13030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most widely cultivated crops in the world, with outstanding stress tolerance, but drought stress can lead to a significant decrease in its yield. To reveal the response mechanism of sweet potato to drought stress, an integrated physiological, transcriptome and metabolome investigations were conducted in the leaves of two sweet potato varieties, drought-tolerant zhenghong23 (Z23) and a more sensitive variety, jinong432 (J432). The results for the physiological indexes of drought showed that the peroxidase (POD) and superoxide dismutase (SOD) activities of Z23 were 3.68 and 1.21 times higher than those of J432 under severe drought, while Z23 had a higher antioxidant capacity. Transcriptome and metabolome analysis showed the importance of the amino acid metabolism, respiratory metabolism, and antioxidant systems in drought tolerance. In Z23, amino acids such as asparagine participated in energy production during drought by providing substrates for the citrate cycle (TCA cycle) and glycolysis (EMP). A stronger respiratory metabolism ability could better maintain the energy supply level under drought stress. Drought stress also activated the expression of the genes encoding to antioxidant enzymes and the biosynthesis of flavonoids such as rutin, resulting in improved tolerance to drought. This study provides new insights into the molecular mechanisms of drought tolerance in sweet potato.
Collapse
Affiliation(s)
- Yumeng Yin
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shouchen Qiao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Zhihe Kang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Feng Luo
- Henan Provincial Center of Seed Industry Development, Zhengzhou 450007, China;
| | - Qianqian Bian
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guozheng Cao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guorui Zhao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Zhihao Wu
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Guohong Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Yannan Wang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| | - Yufeng Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450002, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Z.K.); (Q.B.); (G.C.); (G.Z.); (Z.W.); (G.Y.)
| |
Collapse
|
47
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
48
|
Gan Y, Yu B, Liu R, Shu B, Liang Y, Zhao Y, Qiu Z, Yan S, Cao B. Systematic analysis of the UDP-glucosyltransferase family: discovery of a member involved in rutin biosynthesis in Solanum melongena. FRONTIERS IN PLANT SCIENCE 2023; 14:1310080. [PMID: 38197083 PMCID: PMC10774229 DOI: 10.3389/fpls.2023.1310080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Deng J, Wang L, Zhang L, Yang C, Huang J, Zhu L, Chen Q, Meng Z, Cai F, Shi T. Tartary Buckwheat ( Fagopyrum tataricum) FtTT8 Inhibits Anthocyanin Biosynthesis and Promotes Proanthocyanidin Biosynthesis. Int J Mol Sci 2023; 24:17368. [PMID: 38139196 PMCID: PMC10743629 DOI: 10.3390/ijms242417368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Taoxiong Shi
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550025, China; (J.D.); (L.W.); (L.Z.); (C.Y.); (J.H.); (L.Z.); (Q.C.); (Z.M.); (F.C.)
| |
Collapse
|
50
|
Rumyantseva NI, Valieva AI, Kostyukova YA, Ageeva MV. The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:4048. [PMID: 38068682 PMCID: PMC10707844 DOI: 10.3390/plants12234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Abstract
Vacuum infiltration-centrifugation (VIC) is the most reproducible technique for the isolation of apoplast washing fluid (AWF) from leaves, but its effectiveness depends on the infiltration-centrifugation conditions and the anatomical and physiological peculiarities of leaves. This study aimed to elaborate an optimal procedure for AWF isolation from the leaves of Tartary buckwheat grown in in vivo and in vitro conditions and reveal the leaf anatomical and physiological traits that could contribute to the effectiveness of AWF isolation. Here, it was demonstrated that leaves of buckwheat plants grown in vitro could be easier infiltrated, were less sensitive to higher forces of centrifugation (900× g and 1500× g), and produced more AWF yield and apoplastic protein content than in vivo leaves at the same forces of centrifugation (600× g and 900× g). The extensive study of the morphological, anatomical, and ultrastructural characteristics of buckwheat leaves grown in different conditions revealed that in vitro leaves exhibited significant plasticity in a number of interconnected morphological, anatomical, and physiological features, generally driven by high RH and low lighting; some of them, such as the reduced thickness and increased permeability of the cuticle of the epidermal cells, large intercellular spaces, increase in the size of stomata and in the area of stomatal pores, higher stomata index, drop in density, and area of calcium oxalate druses, are beneficial to the effectiveness of VIC. The size of stomata pores, which were almost twice as large in in vitro leaves as those in in vivo ones, was the main factor contributing to the isolation of AWF free of chlorophyll contamination. The opening of stomata pores by artificially created humid conditions reduced damage to the in vivo leaves and improved the VIC of them. For Fagopyrum species, this is the first study to develop a VIC technique for AWF isolation from leaves.
Collapse
Affiliation(s)
- Natalya I. Rumyantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
- Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Alfia I. Valieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Yulia A. Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Marina V. Ageeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| |
Collapse
|