1
|
Yuan H, Liu S, Yan R, Liu Z, Xu K, Huang D, Zhang N, Wu Y, Lan X, Yukawa Y, Wu J. AtR8 lncRNA integrates WRKY46 into ABA signaling to regulate seed and seeding growth in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109732. [PMID: 40118010 DOI: 10.1016/j.plaphy.2025.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Seed germination plays a vital role in ensuring plant survival under unfavorable conditions. Abscisic acid (ABA) signaling is important for integrating environmental information to regulate seed germination. Despite the identification of numerous regulatory factors in ABA signaling pathways during seed germination, the transcriptional regulatory mechanisms influencing ABA signaling remain largely uncharacterized. Long non-coding RNAs (lncRNAs) have many physiological functions in diverse organisms. To date, only a few seed germination-related lncRNAs have been reported. The AtR8 lncRNA (259 nt) in Arabidopsis is transcribed by the RNA polymerase III. We previously determined that the AtR8 lncRNA affects the innate immunity of seedlings as well as hypocotyl elongation. It is also highly expressed in the germinating seeds and induced by ABA. In this study, its loss-of-function mutant (atr8) had incompletely formed siliques and seeds and a relatively low germination rate. The germination efficiency and primary root elongation were strongly affected by the ABA level. In addition, ABA signaling and AtEM6 expression were significantly induced in the atr8 mutant. Moreover, the AtEM6-overexpressing Arabidopsis plants and the atr8 mutant had similar ABA-dependent phenotypes. Genetic analyses clarified the relationship between AtR8 and AtEM6 during ABA signaling. The stress-dependent transcription of WRKY46 in the germinating atr8 seeds was significantly upregulated by ABA. AtEM6 expression increased in a wrky46 background. WRKY46 promoted AtEM6 expression by binding to the gene promoter W-boxes in a yeast one-hybrid assay. These results suggest the AtR8 lncRNA integrates WRKY46 into the ABA signaling pathway to regulate AtEM6 expression and influences seed germination and silique development in Arabidopsis. The study elucidated the mechanism of AtR8 lncRNA in regulating seed germination and seedling growth through mediate ABA signaling.
Collapse
Affiliation(s)
- Hongli Yuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Shengyi Liu
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 467-8501, Japan
| | - Rong Yan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, PR, Harbin, 150040, China
| | - Kai Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Di Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Nan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China; Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Ying Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| | - Yasushi Yukawa
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan.
| | - Juan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Xue R, Liu Y, Feng M, Huang Y, Zhao Y, Chen J, Li T, Zhong C, Ge W. Genome-wide characterization of PEBP genes in Mung bean (Vigna radiata L.) with functional analysis of VrFT1 in relation to photoperiod. Sci Rep 2024; 14:26413. [PMID: 39488543 PMCID: PMC11531570 DOI: 10.1038/s41598-024-73936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024] Open
Abstract
Mung bean (Vigna radiata L.), a widely cultivated legume, belongs to the Fabaceae family's Papilionoideae subfamily. Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plant species, their presence and function in mung bean remain largely unexplored. In this study, we identified seven VrPEBP genes from mung bean and classified them into four clades: FT, MFT, TFL and FT-like. Cis-regulatory element analysis revealed that VrPEBP genes may play a role in light, hormone, and stress responses. Quantitative real-time PCR (qRT-PCR) analysis indicated that VrPEBPs were constitutively expressed in various tissues. However, tissue-specific expression patterns were observed among VrPEBP genes. Under short-day (SD) conditions, VrFT1 and VrMFT1 exhibited significantly higher expression levels than under long-day (LD) conditions at 8 and 4 h, respectively. Conversely, VrTFL2 and VrTFL3 showed significantly higher expression levels under LD conditions compared to SD conditions at 8 and 12 h, respectively. The varied expression patterns of these genes under different photoperiod suggest their potential involvement in the photoperiodic regulation of flowering in mung bean. Additionally, phenotypic analysis of transgenic Arabidopsis plants overexpressing VrFT1 revealed higher expression levels under SD conditions and predicted its role in promoting flowering. These results provide valuable insights into the evolution and function of PEBP genes in mung bean and lay the foundation for further research on their regulatory mechanisms and potential applications in mung bean improvement.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yang Zhao
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Tao Li
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China.
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China.
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China.
| |
Collapse
|
3
|
Zhou C, Liu H, Wang H, Niu S, El-Kassaby YA, Li W. Deciphering the Role of SVP-Like Genes and Their Key Regulation Networks During Reproductive Cone Development in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257299 DOI: 10.1111/pce.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Reproductive development plays an essential role in the perpetuation of genetic material and environmental adaptation. In angiosperms, the Short Vegetative Phase (SVP) serves as a flowering repressor, influencing the development of floral organs. In this study, heterologous transformation of Arabidopsis thaliana with SVP-like genes (PtSVL1 and PtSVL2) derived from Pinus tabuliformis significantly impacted stamen formation and pollen fertility, without altering flowering time. Gene co-expression networks revealed that SVP-like and SOC1-like genes function as key coregulatory transcription factors during the initial stages of cone development in P. tabuliformis. Interestingly, the regulatory module of SOC1 regulated by SVP in angiosperms is absent in conifers and conifer SVP-like exercises its function in a form that is physically bound to SOC1-like. Furthermore, combining the yeast one-hybrid scanning with co-expression network analysis, revealed that SPLs and TPSs were the principal downstream target genes of PtSVL1. Notably, the PtSPL16 promoter is positively regulated by PtSVL1, and overexpression of PtSPL16 results in delayed flowering in Arabidopsis, suggesting that the PtSVL1-PtSPL16 module plays a crucial role in regulating reproductive development in conifers. Collectively, these findings enhance our understanding of the roles of SVP-like genes in conifers and the key regulatory networks centred on PtSVL1 during reproductive cone development.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongmei Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
6
|
Huang Y, Guo J, Sun D, Guo Z, Zheng Z, Wang P, Hong Y, Liu H. Phosphatidyl Ethanolamine Binding Protein FLOWERING LOCUS T-like 12 ( OsFTL12) Regulates the Rice Heading Date under Different Day-Length Conditions. Int J Mol Sci 2024; 25:1449. [PMID: 38338728 PMCID: PMC10855395 DOI: 10.3390/ijms25031449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Plant FLOWERING LOCUS T-Like (FTL) genes often redundantly duplicate on chromosomes and functionally diverge to modulate reproductive traits. Rice harbors thirteen FTL genes, the functions of which are still not clear, except for the Hd3a and RFT genes. Here, we identified the molecular detail of OsFTL12 in rice reproductive stage. OsFTL12 encoding protein contained PEBP domain and localized into the nucleus, which transcripts specifically expressed in the shoot and leaf blade with high abundance. Further GUS-staining results show the OsFTL12 promoter activity highly expressed in the leaf and stem. OsFTL12 knock-out concurrently exhibited early flowering phenotype under the short- and long-day conditions as compared with wild-type and over-expression plants, which independently regulates flowering without an involved Hd1/Hd3a and Ehd1/RFT pathway. Further, an AT-hook protein OsATH1 was identified to act as upstream regulator of OsFTL12, as the knock-out OsATH1 elevated the OsFTL12 expression by modifying Histone H3 acetylation abundance. According to the dissection of OsFTL12 molecular functions, our study expanded the roles intellectual function of OsFTL12 in the mediating of a rice heading date.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (J.G.)
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.H.); (J.G.)
| | - Dayuan Sun
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Zhenhua Guo
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, China;
| | - Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, IA 50011-1051, USA;
| | - Ping Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu 610066, China;
| | - Yanbin Hong
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
7
|
Nielsen M, Menon G, Zhao Y, Mateo-Bonmati E, Wolff P, Zhou S, Howard M, Dean C. COOLAIR and PRC2 function in parallel to silence FLC during vernalization. Proc Natl Acad Sci U S A 2024; 121:e2311474121. [PMID: 38236739 PMCID: PMC10823242 DOI: 10.1073/pnas.2311474121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Noncoding transcription induces chromatin changes that can mediate environmental responsiveness, but the causes and consequences of these mechanisms are still unclear. Here, we investigate how antisense transcription (termed COOLAIR) interfaces with Polycomb Repressive Complex 2 (PRC2) silencing during winter-induced epigenetic regulation of Arabidopsis FLOWERING LOCUS C (FLC). We use genetic and chromatin analyses on lines ineffective or hyperactive for the antisense pathway in combination with computational modeling to define the mechanisms underlying FLC repression. Our results show that FLC is silenced through pathways that function with different dynamics: a COOLAIR transcription-mediated pathway capable of fast response and in parallel a slow PRC2 switching mechanism that maintains each allele in an epigenetically silenced state. Components of both the COOLAIR and PRC2 pathways are regulated by a common transcriptional regulator (NTL8), which accumulates by reduced dilution due to slow growth at low temperature. The parallel activities of the regulatory steps, and their control by temperature-dependent growth dynamics, create a flexible system for registering widely fluctuating natural temperature conditions that change year on year, and yet ensure robust epigenetic silencing of FLC.
Collapse
Affiliation(s)
- Mathias Nielsen
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Govind Menon
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Yusheng Zhao
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Eduardo Mateo-Bonmati
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Philip Wolff
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Shaoli Zhou
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
8
|
Zhu P, Dean C. Reply to: Cold induction of nuclear FRIGIDA condensation in Arabidopsis. Nature 2023; 619:E33-E37. [PMID: 37438593 DOI: 10.1038/s41586-023-06190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
9
|
Zhang Z, Luo X, Yang Y, He Y. Cold induction of nuclear FRIGIDA condensation in Arabidopsis. Nature 2023; 619:E27-E32. [PMID: 37438599 DOI: 10.1038/s41586-023-06189-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/10/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
10
|
Jeon M, Jeong G, Yang Y, Luo X, Jeong D, Kyung J, Hyun Y, He Y, Lee I. Vernalization-triggered expression of the antisense transcript COOLAIR is mediated by CBF genes. eLife 2023; 12:84594. [PMID: 36722843 PMCID: PMC10036118 DOI: 10.7554/elife.84594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.
Collapse
Affiliation(s)
- Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
He Y, Chen W, Tan J, Luo X, Zhou Y, Gong X, Yao J, Zhuang C, Jiang D. Rice CENTRORADIALIS 2 regulates seed germination and salt tolerance via ABA-mediated pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4245-4259. [PMID: 36181524 DOI: 10.1007/s00122-022-04215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
A FT/TFL1 subfamily gene, rice CENTRORADIALIS 2, also known as RCN1, regulates seed germination and increase salt tolerance via ABA-mediated pathway. The ABA synthesis and metabolism related genes were changed relative expression levels. Seed germination is a complex biological process that is affected by many factors. Although a number of germination-related genes have been reported, the molecular mechanism of germination regulation has not yet been fully elucidated. Here, we reported that the rice OsCEN2 gene can negatively regulate seed germination. The germination speed of OsCEN2-RNAi seeds was significantly faster while that of OsCEN2-overexpression (OE) seeds was slower than that of the wild type (WT). The results of qRT-PCR showed that the OsCEN2 expression was increased in the early stage of seed germination. Exogenous application of abscisic acid (ABA) on seeds and seedlings showed that OsCEN2-OE seeds and seedlings were highly sensitive to ABA during germination and post-germination growth, respectively. The determination of endogenous ABA content in seeds also showed that the ABA content of OsCEN2-RNAi seeds was lower, while that of OsCEN2-OE seeds was higher. Moreover, the transgenic plants changed salt tolerance because of the altered ABA level. In addition, differences were also observed in the expression of genes related to ABA synthesis and metabolism in the seeds of OsCEN2-transgenic lines. This study reveals that OsCEN2 regulates the germination speed by affecting the content of ABA during seed germination and provides a theoretical basis for research on rice direct seeding.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiting Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Juhong Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xixiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjin Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoting Gong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Xu H, Guo X, Hao Y, Lu G, Li D, Lu J, Zhang T. Genome-wide characterization of PEBP gene family in Perilla frutescens and PfFT1 promotes flowering time in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1026696. [PMID: 36466292 PMCID: PMC9716100 DOI: 10.3389/fpls.2022.1026696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Phosphatidylethanolamine-binding proteins (PEBP) family plays important roles in regulating plant flowering time and morphogenesis. However, geneme-wide identification and functional analysis of PEBP genes in the rigorous short-day plant Perilla frutescens (PfPEBP) have not been studied. In this study, 10 PfPEBP were identified and divided into three subfamilies based on their phylogenetic relationships: FT-like, TFL1-like and MFT-like. Gene structure analysis showed that all PfPEBP genes contain 4 exons and 3 introns. Motifs DPDxP and GIHR essential for anion-binding activity are highly conserved in PfPEBP. A large number of light-responsive elements were detected in promoter regions of PfPEBP. Gene expression of PfFT1 exhibited a diurnal rhythm. It was highly expressed in leaves under the short-day photoperiod, but higher in flowers and seeds under the long-day photoperiod. Overexpression of PfFT1 in Arabidopsis thaliana not only promoted early flowering of Col-0 or Ler, but also rescued the late flowering phenotype of ft-1 mutant. We concluded that PfFT1 promotes early flowering by regulating the expression of flowering-related genes AtAP1, AtLFY, AtFUL and AtSOC1. In conclusion, our results provided valuable information for elucidating the functions of PfPEBP in P. frutescens and shed light on the promoting effect of PfFT1 on flowering.
Collapse
Affiliation(s)
| | | | - Youjin Hao
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | | | | | | | | |
Collapse
|
13
|
Zhang D, Chen Q, Zhang X, Lin L, Cai M, Cai W, Liu Y, Xiang L, Sun M, Yu X, Li Y. Effects of low temperature on flowering and the expression of related genes in Loropetalum chinense var. rubrum. FRONTIERS IN PLANT SCIENCE 2022; 13:1000160. [PMID: 36457526 PMCID: PMC9705732 DOI: 10.3389/fpls.2022.1000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Loropetalum chinense var. rubrum blooms 2-3 times a year, among which the autumn flowering period has great potential for exploitation, but the number of flowers in the autumn flowering period is much smaller than that in the spring flowering period. METHODS Using 'Hei Zhenzhu' and 'Xiangnong Xiangyun' as experimental materials, the winter growth environment of L. chinense var. rubrum in Changsha, Hunan Province was simulated by setting a low temperature of 6-10°C in an artificial climate chamber to investigate the effect of winter low temperature on the flowering traits and related gene expression of L. chinense var. rubrum. RESULTS The results showed that after 45 days of low temperature culture and a subsequent period of 25°C greenhouse culture, flower buds and flowers started to appear on days 24 and 33 of 25°C greenhouse culture for 'Hei Zhenzhu', and flower buds and flowers started to appear on days 21 and 33 of 25°C greenhouse culture for 'Xiangnong Xiangyun'. The absolute growth rate of buds showed a 'Up-Down' pattern during the 7-28 days of low temperature culture; the chlorophyll fluorescence decay rate (Rfd) of both materials showed a 'Down-Up-Down' pattern during this period. The non-photochemical quenching coefficient (NPQ) showed the same trend as Rfd, and the photochemical quenching coefficient (QP) fluctuated above and below 0.05. The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually increased after the beginning of low temperature culture, reaching the highest expression on day 14 and day 28, respectively, and the expression of both in the experimental group was higher than that in the control group. The expressions of FLC, SVP and TFL1 similar genes all decreased gradually with low temperature culture, among which the expressions of FLC similar genes and TFL1 similar genes in the experimental group were extremely significantly lower than those in the control group; in the experimental group, the expressions of GA3 similar genes were all extremely significantly higher than those in the control group, and the expressions all increased with the increase of low temperature culture time. DISCUSSION We found that the high expression of gibberellin genes may play an important role in the process of low temperature promotion of L. chinense var. rubrum flowering, and in the future, it may be possible to regulate L. chinense var. rubrum flowering by simply spraying exogenous gibberellin instead of the promotion effect of low temperature.
Collapse
Affiliation(s)
- Damao Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Qianru Chen
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xia Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wenqi Cai
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yang Liu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Lili Xiang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaoying Yu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yanlin Li
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
- Kunpeng Institute of Modern Agriculture, Foshan, China
| |
Collapse
|
14
|
Zhong C, Li Z, Cheng Y, Zhang H, Liu Y, Wang X, Jiang C, Zhao X, Zhao S, Wang J, Zhang H, Liu X, Yu H. Comparative Genomic and Expression Analysis Insight into Evolutionary Characteristics of PEBP Genes in Cultivated Peanuts and Their Roles in Floral Induction. Int J Mol Sci 2022; 23:ijms232012429. [PMID: 36293287 PMCID: PMC9604132 DOI: 10.3390/ijms232012429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.
Collapse
|
15
|
BnGF14-2c Positively Regulates Flowering via the Vernalization Pathway in Semi-Winter Rapeseed. PLANTS 2022; 11:plants11172312. [PMID: 36079694 PMCID: PMC9460199 DOI: 10.3390/plants11172312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
14-3-3s are general regulatory factors (GF14s or GRFs) involved in a variety of physiological regulations in plants, including the control of flowering time. However, there are poorly relevant reports in rapeseed so far. In this study, we identified a homologous 14-3-3 gene BnGF14-2c (AtGRF2_Like in Brassica napus) in rapeseed based on bioinformatic analysis by using the sequences of the flowering-related 14-3-3s in other plant species. Then, we found that overexpression of BnGF14-2c in the semi-winter rapeseed “93275” promoted flowering without vernalization. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation analysis indicated that BnGF14-2c may interact with two vernalization-related flowering regulators BnFT.A02 and BnFLC.A10., respectively. qPCR analysis showed that the expression of BnFT (AtFT_Like) was increased and the expression of two selected vernalization-related genes were reduced in the overexpression transgenic plants. Further investigation on subcellular localization demonstrated that BnGF14-2c localized in the nucleus and cytoplasm. The results of RNA-seq analysis and GUS staining indicated that BnGF14-2c is ubiquitously expressed except for mature seed coat. In general, the interaction of 14-3-3 and FLC was firstly documented in this study, indicating BnGF14-2c may act as a positive regulator of flowering in rapeseed, which is worthy for more in-depth exploration.
Collapse
|
16
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
18
|
Zheng Y, Gao Z, Luo L, Wang Y, Chen Q, Yang Y, Kong X, Yang Y. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa. Gene 2021; 796-797:145790. [PMID: 34175395 DOI: 10.1016/j.gene.2021.145790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Yan Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zean Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yonggang Wang
- Agricultural Technology Extension Center of Zhaoyang District, Zhaotong 657000, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
19
|
Liu Z, Zou Y, Dong X, Wei J, Xu C, Mi W, Xu M, Fang X, Cao X, Zheng G, Mi C. Germinating seed can sense low temperature for the floral transition and vernalization of winter rapeseed (Brassica rapa). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110900. [PMID: 33902859 DOI: 10.1016/j.plantsci.2021.110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The hybrid production of winter rapeseed is limited by the difficult vernalization processes. Thus, floral regulation of winter rapeseed parental lines cannot be executed through selection of sowing time during hybrid production. Therefore, in this study, strong winter rapeseed was used as the material to analyse the floral transition mechanism of germinating seed vernalization. Results demonstrated that germinating seeds could sense low temperatures and complete vernalization following a low temperature treatment for 56.5 d with a 100 % vernalization rate. The regression equation between vernalization rate (y) and vernalization treatment days (x) was determined as y = 0.019x - 0.0765 (R² = 0.8529). When the vernalization treatment time was prolonged, the vernalization rate and fruiting ability increased rapidly, and variations were observed in the membrane lipid oxidation and physiological characteristics. Furthermore, at the prolonged treatment time of 10-50 d, the salicylic acid (SA) content continued to decrease, with values significantly lower than those of the control. SA content is significantly positively correlated with the level of BrFLC transcription and a significantly negatively correlated with the vernalization rate of germinating seeds. Moreover, the expressions of genes associated with SA biosynthesis, SA signal transduction, the flowering key negative regulators were suppressed and that of positive regulators were promoted during vernalization. These results suggest that SA as a floral repressor is involved in the regulation of the vernalization process of winter rapeseed germination seeds. In addition, SA may be related to the counting dosage of vernalization.
Collapse
Affiliation(s)
- Zigang Liu
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ya Zou
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaoyun Dong
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiaping Wei
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chunmei Xu
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wenbo Mi
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Mingxia Xu
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xinling Fang
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaodong Cao
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Guoqiang Zheng
- Gansu Provincial Key Laboratory of Aridland Crop Scienes/College of Agromomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chao Mi
- Yunnan Agricultural University, Kunming 650000, China.
| |
Collapse
|
20
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
21
|
Zhao Y, Zhu P, Hepworth J, Bloomer R, Antoniou-Kourounioti RL, Doughty J, Heckmann A, Xu C, Yang H, Dean C. Natural temperature fluctuations promote COOLAIR regulation of FLC. Genes Dev 2021; 35:888-898. [PMID: 33985972 PMCID: PMC8168555 DOI: 10.1101/gad.348362.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
In this study, Zhao et al. set out to characterize how plants respond to cold through regulation of FLC expression. Using genetics and genomics approaches, the authors reveal how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival. Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC. Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.
Collapse
Affiliation(s)
- Yusheng Zhao
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Rebecca Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Jade Doughty
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Amelie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Congyao Xu
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hongchun Yang
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
22
|
Hu R, Xiao J, Zhang Q, Gu T, Chang J, Yang G, He G. A light-regulated gene, TaLWD1L-A, affects flowering time in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110623. [PMID: 32900433 DOI: 10.1016/j.plantsci.2020.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Flowering time is an important agronomic trait that greatly influences plant architecture and grain yield in cereal crops. The present study identified a light-regulated gene, TaLWD1L-A, from hexaploid wheat that encodes a WD40 domain-containing protein. TaLWD1L-A was localized in the nucleus. Phenotypic analysis demonstrated that TaLWD1L-A overexpression in transgenic wheat led to an obvious early flowering phenotype. Upregulation of the floral activator gene TaFT1 caused the early flowering phenotype in transgenic wheat plants. TaLWD1L-A also affected the expression of circadian clock genes, including TaTOC1, TaLHY, TaPRR59, TaPRR73 and TaPRR95, and indirectly regulated the expression of the TaFT1 in transgenic plants by affecting the expression of vernalization-related genes TaVRN1 and TaVRN2 and photoperiod-related genes TaPpd-1 and TaGI. The early flowering phenotype in TaLWD1L-A-overexpressing transgenic lines led to a relatively shorter phenotype and yield reduction. Our results revealed that TaLWD1L-A affected the expression of circadian clock-related genes and played an important role in wheat flowering regulation by influencing the expression of genes related to vernalization and photoperiod pathways.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
23
|
Xi Y, Park SR, Kim DH, Kim ED, Sung S. Transcriptome and epigenome analyses of vernalization in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1490-1502. [PMID: 32412129 PMCID: PMC7434698 DOI: 10.1111/tpj.14817] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
Vernalization accelerates flowering after prolonged winter cold. Transcriptional and epigenetic changes are known to be involved in the regulation of the vernalization response. Despite intensive applications of next-generation sequencing in diverse aspects of plant research, genome-wide transcriptome and epigenome profiling during the vernalization response has not been conducted. In this work, to our knowledge, we present the first comprehensive analyses of transcriptomic and epigenomic dynamics during the vernalization process in Arabidopsis thaliana. Six major clusters of genes exhibiting distinctive features were identified. Temporary changes in histone H3K4me3 levels were observed that likely coordinate photosynthesis and prevent oxidative damage during cold exposure. In addition, vernalization induced a stable accumulation of H3K27me3 over genes encoding many development-related transcription factors, which resulted in either inhibition of transcription or a bivalent status of the genes. Lastly, FLC-like and VIN3-like genes were identified that appear to be novel components of the vernalization pathway.
Collapse
|
24
|
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. MOLECULAR PLANT 2020; 13:544-564. [PMID: 32068158 DOI: 10.1016/j.molp.2020.02.004] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/19/2023]
Abstract
Temperature is a key factor governing the growth and development, distribution, and seasonal behavior of plants. The entire plant life cycle is affected by environmental temperatures. Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions, a response termed thermomorphogenesis. When exposed to chilling or moist chilling low temperatures, flowering or seed germination is accelerated in some plant species; these processes are known as vernalization and cold stratification, respectively. Interestingly, once many temperate plants are exposed to chilling temperatures for some time, they can acquire the ability to resist freezing stress, a process termed cold acclimation. In the face of global climate change, heat stress has emerged as a frequent challenge, which adversely affects plant growth and development. In this review, we summarize and discuss recent progress in dissecting the molecular mechanisms regulating plant thermomorphogenesis, vernalization, and responses to extreme temperatures. We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev 2020; 34:446-461. [PMID: 32001513 PMCID: PMC7050481 DOI: 10.1101/gad.333245.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.
Collapse
Affiliation(s)
- Julia I Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peijin Li
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
26
|
He Y, Chen T, Zeng X. Genetic and Epigenetic Understanding of the Seasonal Timing of Flowering. PLANT COMMUNICATIONS 2020; 1:100008. [PMID: 33404547 PMCID: PMC7747966 DOI: 10.1016/j.xplc.2019.100008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The developmental transition to flowering in many plants is timed by changing seasons, which enables plants to flower at a season that is favorable for seed production. Many plants grown at high latitudes perceive the seasonal cues of changing day length and/or winter cold (prolonged cold exposure), to regulate the expression of flowering-regulatory genes through the photoperiod pathway and/or vernalization pathway, and thus align flowering with a particular season. Recent studies in the model flowering plant Arabidopsis thaliana have revealed that diverse transcription factors engage various chromatin modifiers to regulate several key flowering-regulatory genes including FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) in response to seasonal signals. Here, we summarize the current understanding of molecular and chromatin-regulatory or epigenetic mechanisms underlying the vernalization response and photoperiodic control of flowering in Arabidopsis. Moreover, the conservation and divergence of regulatory mechanisms for seasonal flowering in crops and other plants are briefly discussed.
Collapse
|
27
|
Kennedy A, Geuten K. The Role of FLOWERING LOCUS C Relatives in Cereals. FRONTIERS IN PLANT SCIENCE 2020; 11:617340. [PMID: 33414801 PMCID: PMC7783157 DOI: 10.3389/fpls.2020.617340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 05/12/2023]
Abstract
FLOWERING LOCUS C (FLC) is one of the best characterized genes in plant research and is integral to vernalization-dependent flowering time regulation. Yet, despite the abundance of information on this gene and its relatives in Arabidopsis thaliana, the role FLC genes play in other species, in particular cereal crops and temperate grasses, remains elusive. This has been due in part to the comparative reduced availability of bioinformatic and mutant resources in cereals but also on the dominant effect in cereals of the VERNALIZATION (VRN) genes on the developmental process most associated with FLC in Arabidopsis. The strong effect of the VRN genes has led researchers to believe that the entire process of vernalization must have evolved separately in Arabidopsis and cereals. Yet, since the confirmation of the existence of FLC-like genes in monocots, new light has been shed on the roles these genes play in both vernalization and other mechanisms to fine tune development in response to specific environmental conditions. Comparisons of FLC gene function and their genetic and epigenetic regulation can now be made between Arabidopsis and cereals and how they overlap and diversify is coming into focus. With the advancement of genome editing techniques, further study on these genes is becoming increasingly easier, enabling us to investigate just how essential FLC-like genes are to modulating flowering time behavior in cereals.
Collapse
|
28
|
LncRNAs are cool regulators in cold exposure in plants. SCIENCE CHINA-LIFE SCIENCES 2019; 62:978-981. [PMID: 31175565 DOI: 10.1007/s11427-019-9575-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
29
|
Qi HD, Lin Y, Ren QP, Wang YY, Xiong F, Wang XL. RNA Splicing of FLC Modulates the Transition to Flowering. FRONTIERS IN PLANT SCIENCE 2019; 10:1625. [PMID: 31921267 PMCID: PMC6928127 DOI: 10.3389/fpls.2019.01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
Collapse
Affiliation(s)
- Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yi Lin
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- *Correspondence: Xiu-Ling Wang,
| |
Collapse
|