1
|
Ding J, Ji C, Wang C, Wang S, Ding G, Shi L, Xu F, Cai H. OsMYB67 Knockout Promotes Rice Heading and Yield by Facilitating Copper Distribution in Panicles. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230315 DOI: 10.1111/pce.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Copper (Cu) is an essential micronutrient required for rice flowering and seed setting. Here, we identified that Cu-induced R2R3-MYB transcription factor, OsMYB67, acts as a negative regulator that controls rice heading and yield production by affecting Cu distribution in panicles. OsMYB67 was constitutively expressed, with the highest expression in the roots. OsMYB67 knockout did not affect plant growth, but significantly increased Cu concentrations in roots, shoots, and xylem sap at the seedling stage. At the reproductive stage, OsMYB67 mutants displayed an early heading phenotype, with significantly increased Cu distribution in panicles but decreased Cu distribution in leaves, whereas OsMYB67-overexpressing plants showed the opposite result. In addition, higher grain yield and Cu concentrations in seeds were observed in OsMYB67 mutants compared to the wild-type. The results of Y1H, transient co-expression, EMSA, in situ RT-PCR, and RT-qPCR showed that OsMYB67 directly binds to the promoter region of OsHMA9 and upregulates its expression. Significantly increased Cu concentrations were also observed in the roots, shoots, and seeds of oshma9 mutants, consistent with the results observed in OsMYB67 mutants. Interestingly, dramatically higher expression levels of OsATX1 and OsYSL16 were observed in the OsMYB67 mutants, which may contribute to the increased Cu distribution in the panicles.
Collapse
Affiliation(s)
- Jingli Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chenchen Ji
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Research Center of Microelement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Zulfiqar S, Gu R, Liu Y, Zhang Y. From genes to traits: maximizing phosphorus utilization efficiency in crop plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1527547. [PMID: 40265110 PMCID: PMC12011862 DOI: 10.3389/fpls.2025.1527547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorus (P) is a critical macronutrient for plant growth, but its limited availability requires efficient utilization strategies. The excessive use of P fertilizers leads to low phosphorus utilization efficiency (PUE), causing severe environmental impacts and speeding up the exhaustion of P mineral reserves. Plants respond to inorganic phosphate (Pi) deficiency through complex signaling pathways that trigger changes in gene expression, root architecture, and metabolic pathways to enhance P acquisition and utilization efficiency. By exploring the interplay between genetic regulators and microorganisms, cultivars with superior PUE traits can be developed, which will ensure agricultural resilience and productivity in the face of depleting global P reserves. We highlight the synergistic interaction between genetic regulators and microorganisms to boost PUE as well as recent advancements in unraveling molecular mechanisms governing P homeostasis in plants, emphasizing the urgency to improve plant traits for improved P utilization.
Collapse
Affiliation(s)
- Sumer Zulfiqar
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ran Gu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yan Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaowei Zhang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
3
|
Zhu C, Chen Q, Guo L, Deng S, Zhang W, Cheng S, Cong X, Xu F. Genome-wide identification of MYB gene family and exploration of selenium metabolism-related candidates in paper mulberry (Broussonetia papyrifera). PLANT CELL REPORTS 2025; 44:84. [PMID: 40128436 DOI: 10.1007/s00299-025-03468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Genome-wide identified 144 MYB family members in B. papyrifera. Integrated correlation analysis and target gene-binding motif prediction indicate that BpMYB135 is vital in regulating selenium metabolism. Selenium is an essential micronutrient for maintaining the health of humans and animals. Broussonetia papyrifera, a forage tree with high nutritional value, exhibits a remarkable ability to accumulate selenium. Although previous studies have preliminarily unfolded the molecular mechanisms underlying selenium accumulation, the roles of transcription factors in regulating selenium uptake and transformation remain poorly understood. This study used various strategies including bioinformatic, physiological, and molecular experiments to explore candidates regarding Se metabolism. Briefly, 144 MYB transcription factor family members were identified and classified into four types (R1, R2R3, R1R2R3, and R4), with phylogenetic analysis further dividing them into 58 subfamilies. The promoters of those BpMYBs contain numerous cis-acting elements associated with plant growth, development, and stress response. qRT-PCR assay confirmed 8 of 15 BpMYBs exhibit a remarkable correlation with selenium content at the threshold absolute value of 0.5. Additionally, foliar application of exogenous abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) reveals different response patterns of BpMYBs. The subcellular localization assay simultaneously verifies that the candidate BpMYB135 functions within the nucleus. Overall, this funding highlights the potential regulatory mechanisms of selenium metabolism in B. papyrifera, providing a foundation for improving its forage value through genetic modification.
Collapse
Affiliation(s)
- Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jing Zhou, 434025, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Zhang M, Wang Y, Wu Q, Sun Y, Zhao C, Ge M, Zhou L, Zhang T, Zhang W, Qian Y, Ruan L, Zhao H. Time-course transcriptomic analysis reveals transcription factors involved in modulating nitrogen sensibility in maize. J Genet Genomics 2025; 52:400-410. [PMID: 39395686 DOI: 10.1016/j.jgg.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Nitrogen (N) serves both as a vital macronutrient and a signaling molecule for plants. Unveiling key regulators involved in N metabolism helps dissect the mechanisms underlying N metabolism, which is essential for developing maize with high N use efficiency. Two maize lines, B73 and Ki11, show differential chlorate and low-N tolerance. Time-course transcriptomic analysis reveals that the expression of N utilization genes (NUGs) in B73 and Ki11 have distinct responsive patterns to nitrate variation. By the coexpression networks, significant differences in the number of N response modules and regulatory networks of transcription factors (TFs) are revealed between B73 and Ki11. There are 23 unique TFs in B73 and 41 unique TFs in Ki11. MADS26 is a unique TF in the B73 N response network, with different expression levels and N response patterns in B73 and Ki11. Overexpression of MADS26 enhances the sensitivity to chlorate and the utilization of nitrate in maize, at least partially explaining the differential chlorate tolerance and low-N sensitivity between B73 and Ki11. The findings in this work provide unique insights and promising candidates for maize breeding to reduce unnecessary N overuse.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuancong Wang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Qi Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yangming Sun
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Chenxu Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wei Zhang
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Yiliang Qian
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Long Ruan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Han Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
5
|
Wang S, Ye H, Yang C, Zhang Y, Pu J, Ren Y, Xie K, Wang L, Zeng D, He H, Ji H, Herrera-Estrella LR, Xu G, Chen A. OsNLP3 and OsPHR2 orchestrate direct and mycorrhizal pathways for nitrate uptake by regulating NAR2.1-NRT2s complexes in rice. Proc Natl Acad Sci U S A 2025; 122:e2416345122. [PMID: 39964711 PMCID: PMC11874573 DOI: 10.1073/pnas.2416345122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Nitrogen (N) is the most important essential nutrient required by plants. Most land plants have evolved two N uptake pathways, a direct root pathway and a symbiotic pathway, via association with arbuscular mycorrhizal (AM) fungi. However, the interaction between the two pathways is ambiguous. Here, we report that OsNAR2.1-OsNRT2s, the nitrate (NO3-) transporter complexes with crucial roles in direct NO3- uptake, are also recruited for symbiotic NO3- uptake. OsNAR2.1 and OsNRT2.1/2.2 are coregulated by NIN-like protein 3 (OsNLP3), a key regulator in NO3- signaling, and OsPHR2, a major regulator of phosphate starvation responses. More importantly, AM symbiosis induces expression of OsNAR2.1-OsNRT2s, OsNLP3, and OsSPX4, encoding an intracellular Pi sensor, in arbuscular-containing cells, but weakens their expression in the epidermis. OsNAR2.1 and OsNLP3 can activate both mycorrhizal NO3- uptake and mycorrhization efficiency. Overall, we demonstrate that OsNLP3 and OsPHR2 orchestrate the direct and mycorrhizal NO3- uptake pathways by regulating the NAR2.1-NRT2s complexes in rice.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Jiawen Pu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Kun Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Dechao Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Haoqiang He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Haoyan Ji
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Luis Rafael Herrera-Estrella
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX79409
- Unidad de Genomica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanjautao36618, Mexico
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Department of Plant Nutrition, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Department of Plant Nutrition, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
6
|
Liu B, Xu W, Niu Y, Li Q, Cao B, Qi J, Zhao Y, Zhou Y, Song L, Cui D, Liu Z, Xin M, Yao Y, You M, Ni Z, Sun Q, Xing J. TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun 2025; 16:1683. [PMID: 39956820 PMCID: PMC11830803 DOI: 10.1038/s41467-025-57008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
High crop yields require adequate nutrients, particularly nitrate (N) and phosphorus (P). Identifying regulators for efficient N-P utilization is critical in wheat. To explore N-P interactions, we analyze root transcriptomes under varying N-P supplies and identify TaTCP6 as a potential regulator. Nitrate-stimulated TaTCP6 directly triggers the expression of genes related to nitrogen utilization. TaTCP6 competes with TaSPX1/4 for the release of TaPHR2, and also interacts with TaPHR2 to enhance the transactivation capacity of downstream genes. Thus, through the dual roles of TaTCP6, the TCP6-SPX-PHR2 module activates the expression of phosphorus starvation response (PSR) genes. Inhibiting TaTCP6 reduces N and P absorption, negatively impacting yield, while overexpressing TaTCP6 increases grain yield. Notably, overexpression of TaSPX1 suppresses nitrogen utilization genes, especially under low phosphorus conditions. In conclusion, our findings highlight the role of TaTCP6 in coordinating N and P utilization and propose a strategy to reduce fertilizer inputs for sustainable agriculture.
Collapse
Affiliation(s)
- Bin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Yanxiao Niu
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Qiuyuan Li
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Beilu Cao
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Jingyi Qi
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Yilan Zhou
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Long Song
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Dongkai Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Mingshan You
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding (MOE),Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Laurent F, Bartsch SM, Shukla A, Rico-Resendiz F, Couto D, Fuchs C, Nicolet J, Loubéry S, Jessen HJ, Fiedler D, Hothorn M. Inositol pyrophosphate catabolism by three families of phosphatases regulates plant growth and development. PLoS Genet 2024; 20:e1011468. [PMID: 39531477 DOI: 10.1371/journal.pgen.1011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular levels are precisely regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks harbor phosphatase domains that hydrolyze PP-InsPs. Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSPs) and NUDIX phosphatases (NUDTs) are also involved in PP-InsP degradation. Here, we analyze the relative contributions of the three different phosphatase families to plant PP-InsP catabolism. We report the biochemical characterization of inositol pyrophosphate phosphatases from Arabidopsis and Marchantia polymorpha. Overexpression of different PFA-DSP and NUDT enzymes affects PP-InsP levels and leads to stunted growth phenotypes in Arabidopsis. nudt17/18/21 knock-out mutants have altered PP-InsP pools and gene expression patterns, but no apparent growth defects. In contrast, Marchantia polymorpha Mppfa-dsp1ge, Mpnudt1ge and Mpvip1ge mutants display severe growth and developmental phenotypes and associated changes in cellular PP-InsP levels. Analysis of Mppfa-dsp1geand Mpvip1ge mutants supports a role for PP-InsPs in Marchantia phosphate signaling, and additional functions in nitrate homeostasis and cell wall biogenesis. Simultaneous elimination of two phosphatase activities enhanced the observed growth phenotypes. Taken together, PPIP5K, PFA-DSP and NUDT inositol pyrophosphate phosphatases regulate growth and development by collectively shaping plant PP-InsP pools.
Collapse
Affiliation(s)
- Florian Laurent
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M Bartsch
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anuj Shukla
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Felix Rico-Resendiz
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Daniel Couto
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Christelle Fuchs
- Plant Imaging Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Joël Nicolet
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Hothorn
- Structural Biology Laboratory, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Pélissier PM, Parizot B, Jia L, De Knijf A, Goossens V, Gantet P, Champion A, Audenaert D, Xuan W, Beeckman T, Motte H. Nitrate and ammonium, the yin and yang of nitrogen uptake: a time-course transcriptomic study in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1343073. [PMID: 39246813 PMCID: PMC11377263 DOI: 10.3389/fpls.2024.1343073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Nitrogen is an essential nutrient for plants and a major determinant of plant growth and crop yield. Plants acquire nitrogen mainly in the form of nitrate and ammonium. Both nitrogen sources affect plant responses and signaling pathways in a different way, but these signaling pathways interact, complicating the study of nitrogen responses. Extensive transcriptome analyses and the construction of gene regulatory networks, mainly in response to nitrate, have significantly advanced our understanding of nitrogen signaling and responses in model plants and crops. In this study, we aimed to generate a more comprehensive gene regulatory network for the major crop, rice, by incorporating the interactions between ammonium and nitrate. To achieve this, we assessed transcriptome changes in rice roots and shoots over an extensive time course under single or combined applications of the two nitrogen sources. This dataset enabled us to construct a holistic co-expression network and identify potential key regulators of nitrogen responses. Next to known transcription factors, we identified multiple new candidates, including the transcription factors OsRLI and OsEIL1, which we demonstrated to induce the primary nitrate-responsive genes OsNRT1.1b and OsNIR1. Our network thus serves as a valuable resource to obtain novel insights in nitrogen signaling.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Letian Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vera Goossens
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Antony Champion
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Dominique Audenaert
- Center for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
- VIB Screening Core, Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
10
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
11
|
Fang X, Yang D, Deng L, Zhang Y, Lin Z, Zhou J, Chen Z, Ma X, Guo M, Lu Z, Ma L. Phosphorus uptake, transport, and signaling in woody and model plants. FORESTRY RESEARCH 2024; 4:e017. [PMID: 39524430 PMCID: PMC11524236 DOI: 10.48130/forres-0024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P), a critical macronutrient for plant growth and reproduction, is primarily acquired and translocated in the form of inorganic phosphate (Pi) by roots. Pi deficiency is widespread in many natural ecosystems, including forest plantations, due to its slow movement and easy fixation in soils. Plants have evolved complex and delicate regulation mechanisms on molecular and physiological levels to cope with Pi deficiency. Over the past two decades, extensive research has been performed to decipher the underlying molecular mechanisms that regulate the Pi starvation responses (PSR) in plants. This review highlights the prospects of Pi uptake, transport, and signaling in woody plants based on the backbone of model and crop plants. In addition, this review also highlights the interactions between phosphorus and other mineral nutrients such as Nitrogen (N) and Iron (Fe). Finally, this review discusses the challenges and potential future directions of Pi research in woody plants, including characterizing the woody-specific regulatory mechanisms of Pi signaling and evaluating the regulatory roles of Pi on woody-specific traits such as wood formation and ultimately generating high Phosphorus Use Efficiency (PUE) woody plants.
Collapse
Affiliation(s)
- Xingyan Fang
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Deming Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Lichuan Deng
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Yaxin Zhang
- College of Landscape Architecture, Guangdong Eco-engineering Polytechinic, Guangzhou 510520, Guangdong Province, PR China
| | - Zhiyong Lin
- Fujian Academy of Forestry, Fuzhou 350012, Fujian Province, PR China
| | - Jingjing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Zhichang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Xiangqing Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaohua Lu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Liuyin Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| |
Collapse
|
12
|
Nussaume L, Kanno S. Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. JOURNAL OF PLANT RESEARCH 2024; 137:297-306. [PMID: 38517656 DOI: 10.1007/s10265-024-01533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.
Collapse
Affiliation(s)
- Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint‑Paul Lez Durance, France.
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, 1-1-1, Furocho, Chikusaku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
13
|
Singh K, Gupta S, Singh AP. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112024. [PMID: 38325661 DOI: 10.1016/j.plantsci.2024.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Kratika Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
14
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
15
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
16
|
Kun Yuan, Zhang H, Yu C, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. MOLECULAR PLANT 2023; 16:1811-1831. [PMID: 37794682 DOI: 10.1016/j.molp.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.
Collapse
Affiliation(s)
- Kun Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoji Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ertao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Sun Q, Zhang P, Zhao Z, Sun X, Liu X, Zhang H, Jiang W. Maize Genotypes Sensitive and Tolerant to Low Phosphorus Levels Exhibit Different Transcriptome Profiles under Talaromyces purpurogenus Symbiosis and Low-Phosphorous Stress. Int J Mol Sci 2023; 24:11941. [PMID: 37569319 PMCID: PMC10418897 DOI: 10.3390/ijms241511941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Talaromyces purpurogenus, an endophytic fungus, exhibits beneficial effects on plants during plant-fungus interactions. However, the molecular mechanisms underlying plants' responses to T. purpurogenus under low-phosphorous (P) stress are not fully understood. In this study, we investigated the transcriptomic changes in maize with low-P-sensitive (31778) and -tolerant (CCM454) genotypes under low-P stress and its symbiotic interaction with T. purpurogenus. Its colonization enhanced plant growth and facilitated P uptake, particularly in 31778. Transcriptome sequencing revealed that 135 DEGs from CCM454 and 389 from 31778 were identified, and that only 6 DEGs were common. This suggested that CCM454 and 31778 exhibited distinct molecular responses to T. purpurogenus inoculation. GO and KEGG analysis revealed that DEGs in 31778 were associated with nicotianamine biosynthesis, organic acid metabolic process, inorganic anion transport, biosynthesis of various secondary metabolites and nitrogen metabolism. In CCM454, DEGs were associated with anthocyanin biosynthesis, diterpenoid biosynthesis and metabolic process. After T. purpurogenus inoculation, the genes associated with phosphate transporter, phosphatase, peroxidase and high-affinity nitrate transporter were upregulated in 31778, whereas AP2-EREBP-transcription factors were detected at significantly higher levels in CCM454. This study provided insights on the molecular mechanisms underlying plant-endophytic fungus symbiosis and low-P stress in maize with low-P-sensitive and -tolerant genotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Jiang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Q.S.); (P.Z.); (Z.Z.); (X.S.); (X.L.); (H.Z.)
| |
Collapse
|
18
|
Xie B, Chen Y, Zhang Y, An X, Li X, Yang A, Kang G, Zhou J, Cheng C. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of apple dwarfing rootstock root morphogenesis under nitrogen and/or phosphorus deficient conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1120777. [PMID: 37404544 PMCID: PMC10315683 DOI: 10.3389/fpls.2023.1120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
Nitrogen (N) and phosphorus (P) are essential phytomacronutrients, and deficiencies in these two elements limit growth and yield in apple (Malus domestica Borkh.). The rootstock plays a key role in the nutrient uptake and environmental adaptation of apple. The objective of this study was to investigate the effects of N and/or P deficiency on hydroponically-grown dwarfing rootstock 'M9-T337' seedlings, particularly the roots, by performing an integrated physiological, transcriptomics-, and metabolomics-based analyses. Compared to N and P sufficiency, N and/or P deficiency inhibited aboveground growth, increased the partitioning of total N and total P in roots, enhanced the total number of tips, length, volume, and surface area of roots, and improved the root-to-shoot ratio. P and/or N deficiency inhibited NO3 - influx into roots, and H+ pumps played a important role in the response to P and/or N deficiency. Conjoint analysis of differentially expressed genes and differentially accumulated metabolites in roots revealed that N and/or P deficiency altered the biosynthesis of cell wall components such as cellulose, hemicellulose, lignin, and pectin. The expression of MdEXPA4 and MdEXLB1, two cell wall expansin genes, were shown to be induced by N and/or P deficiency. Overexpression of MdEXPA4 enhanced root development and improved tolerance to N and/or P deficiency in transgenic Arabidopsis thaliana plants. In addition, overexpression of MdEXLB1 in transgenic Solanum lycopersicum seedlings increased the root surface area and promoted acquisition of N and P, thereby facilitating plant growth and adaptation to N and/or P deficiency. Collectively, these results provided a reference for improving root architecture in dwarfing rootstock and furthering our understanding of integration between N and P signaling pathways.
Collapse
Affiliation(s)
- Bin Xie
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanhui Chen
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanzhen Zhang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Xiuhong An
- Research Center for Agricultural Engineering Technology of Mountain District of Hebei/Mountainous Areas Research Institute, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - An Yang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guodong Kang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jiangtao Zhou
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Cungang Cheng
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
19
|
Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1104-1119. [PMID: 36208118 DOI: 10.1111/pce.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a macronutrient required for plant growth and reproduction. Orthophosphate (Pi), the preferred P form for plant uptake, is easily fixed in the soil, making it unavailable to plants. Limited phosphate rock resources, low phosphate fertilizer use efficiency and high demands for green agriculture production make it important to clarify the molecular mechanisms underlying plant responses to P deficiency and to improve plant phosphate efficiency in crops. Over the past 20 years, tremendous progress has been made in understanding the regulatory mechanisms of the plant P starvation response. Here, we systematically review current research on the mechanisms of Pi acquisition, transport and distribution from the rhizosphere to the shoot; Pi redistribution and reuse during reproductive growth; and the molecular mechanisms of arbuscular mycorrhizal symbiosis in rice (Oryza sativa L.) under Pi deficiency. Furthermore, we discuss several strategies for boosting P utilization efficiency and yield in rice.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Li Y, Li Y, Yao X, Wen Y, Zhou Z, Lei W, Zhang D, Lin H. Nitrogen-inducible GLK1 modulates phosphate starvation response via the PHR1-dependent pathway. THE NEW PHYTOLOGIST 2022; 236:1871-1887. [PMID: 36111350 DOI: 10.1111/nph.18499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is a limiting nutrient for plant growth and productivity. Thus, a deep understanding of the molecular mechanisms of plants' response to phosphate starvation is significant when breeding crops with higher phosphorus-use efficiency. Here, we found that GARP-type transcription factor GLK1 acted as a positive regulator for phosphate-starvation response (PSR) via the PHR1-dependent pathway in Arabidopsis thaliana. GLK1 increased the transcription activity of PHR1 through the direct physical interaction and regulated the multiple responses to inorganic orthophosphate (Pi) starvation. Nitrogen (N) is a key factor in the regulation of PSR. We also found that the N status controlled the function of the GLK1-PHR1 signaling module under Pi-deficient (LP) conditions by regulating the accumulation of GLK1 and PHR1. Ultimately, we showed that the presence of GLK1 effectively promoted the protein accumulation of PHR1 at low N concentrations, and this action was helpful to maintain the activation of PSR. According to these findings, we establish the working model for GLK1 in PSR and propose that GLK1 mediates the interaction between N and P by influencing the effect of N on PHR1 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
22
|
Guo M, Zhang Y, Jia X, Wang X, Zhang Y, Liu J, Yang Q, Ruan W, Yi K. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. THE PLANT CELL 2022; 34:3319-3338. [PMID: 35640569 PMCID: PMC9421462 DOI: 10.1093/plcell/koac161] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/21/2022] [Indexed: 06/01/2023]
Abstract
Phosphate (Pi) limitation represents a primary constraint on crop production. To better cope with Pi deficiency stress, plants have evolved multiple adaptive mechanisms for phosphorus acquisition and utilization, including the alteration of growth and the activation of Pi starvation signaling. However, how these strategies are coordinated remains largely unknown. Here, we found that the alternative splicing (AS) of REGULATOR OF LEAF INCLINATION 1 (RLI1) in rice (Oryza sativa) produces two protein isoforms: RLI1a, containing MYB DNA binding domain and RLI1b, containing both MYB and coiled-coil (CC) domains. The absence of a CC domain in RLI1a enables it to activate broader target genes than RLI1b. RLI1a, but not RLI1b, regulates both brassinolide (BL) biosynthesis and signaling by directly activating BL-biosynthesis and signaling genes. Both RLI1a and RLI1b modulate Pi starvation signaling. RLI1 and PHOSPHATE STARVATION RESPONSE 2 function redundantly to regulate Pi starvation signaling and growth in response to Pi deficiency. Furthermore, the AS of RLI1-related genes to produce two isoforms for growth and Pi signaling is widely present in both dicots and monocots. Together, these findings indicate that the AS of RLI1 is an important and functionally conserved strategy to orchestrate Pi starvation signaling and growth to help plants adapt to Pi-limitation stress.
Collapse
Affiliation(s)
| | | | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Xueqing Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yibo Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Jifeng Liu
- Hebei Wotu Seed Co. Ltd., Handan 057550, China
| | | | | | - Keke Yi
- Author for correspondence: (K.Y.), (W.R.)
| |
Collapse
|
23
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
24
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
25
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
26
|
Chu C. Editorial Feature: Meet the PCP Editor-Chengcai Chu. PLANT & CELL PHYSIOLOGY 2021; 62:923-925. [PMID: 34197616 DOI: 10.1093/pcp/pcab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Chengcai Chu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Wang F, Yoshida H, Matsuoka M. Making the 'Green Revolution' Truly Green: Improving Crop Nitrogen Use Efficiency. PLANT & CELL PHYSIOLOGY 2021; 62:942-947. [PMID: 33836084 DOI: 10.1093/pcp/pcab051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Traditional breeding for high-yielding crops has mainly relied on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties, as dwarfism increases lodging resistance and allows for high nitrogen use, resulting in high grain yield. Although the adoption of semi-dwarf varieties in rice and wheat breeding brought big success to the 'Green Revolution' in the 20th century, it consequently increased the demand for nitrogen-based fertilizer, which causes severe threat to ecosystems and sustainable agriculture. To make the 'Green Revolution' truly green, it is necessary to develop new varieties with high nitrogen use efficiency (NUE). Under this demand, research on NUE, mainly for rice, has made great strides in the last decade. This mini-review focuses on three aspects of recent epoch-making findings on rice breeding for high NUE. The first one on 'NUE genes related to GA signaling' shows how promising it is to improve NUE in semi-dwarf Green Revolution varieties. The second aspect centers around the nitrate transporter1.1B, NRT1.1B; studies have revealed a nutrient signaling pathway through the discovery of the nitrate-NRT1.1B-SPX4-NLP3 cascade. The last one is based on the recent finding that the teosinte branched1, cycloidea, proliferating cell factor (TCP)-domain protein 19 underlies the genomic basis of geographical adaptation to soil nitrogen; OsTCP19 regulates the expression of a key transacting factor, DLT/SMOS2, which participates in the signaling of four different phytohormones, GA, auxin, brassinosteroid and strigolactone. Collectively, these breakthrough findings represent a significant step toward breeding high-NUE rice in the future.
Collapse
Affiliation(s)
- Fanmiao Wang
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Hideki Yoshida
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1248 Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1248 Japan
| |
Collapse
|
28
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|