1
|
Yan P, Wang Y, Cui J, Liu M, Zhu Y, Ma F, Liu Y, Lan D, Dong S, Hu Z, Niu F, Liu Y, Zhang X, He S, Hu J, Yuan X, Li Y, Yang J, Cao L, Luo X. OsMAPKKK5 affects brassinosteroid signal transduction via phosphorylating OsBSK1-1 and regulates rice plant architecture and yield. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1798-1813. [PMID: 39967024 PMCID: PMC12018843 DOI: 10.1111/pbi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Improving plant architecture and increasing yields are the main goals of rice breeders. However, yield is a complex trait influenced by many yield-related traits. Identifying and characterizing important genes in the coordinated network regulating complex rice traits and their interactions is conducive to cultivating high-yielding rice varieties. In this study, we determined that the interaction between mitogen-activated protein kinase kinase kinase5 (OsMAPKKK5) and brassinosteroid-signalling kinase1-1 (OsBSK1-1) regulates yield-related traits in rice. Specifically, OsMAPKKK5 phosphorylates OsBSK1-1, which enhances the interaction between these two proteins, but adversely affects the OsBSK1-1-OsBRI1 (BR insensitive1) and OsBSK1-1-OsPPKL1 (protein phosphatase with two Kelch-like domains) interactions. Additionally, OsMAPKKK5 disrupts brassinosteroid signal transduction, which prevents OsBZR1 (brassinazole-resistant1) from efficiently entering the nucleus, thereby negatively modulating its function as a transcription factor regulating downstream effector genes, ultimately adversely affecting plant architecture and yield. This study revealed the relationship between the MAPK cascade and the regulatory effects of brassinosteroid on the rice grain yield involves OsMAPKKK5 and OsBSK1-1. The study data may be important for future investigations on the rice yield-regulating molecular network.
Collapse
Affiliation(s)
- Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yahui Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Yang Liu
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shicong He
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yizhen Li
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| |
Collapse
|
2
|
Jin X, Fu L, Chen C, Liu J, Liu Y, Zhang W, Li X, Liu C, Bu Q, Tian X. OsBSK3 and OsBSK2 regulate grain size and leaf angle via MAPK signaling pathway in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:104. [PMID: 40254664 DOI: 10.1007/s00122-025-04889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Grain size and leaf angle are key agronomic traits that determine the final yield. OsBSKs (BRASSINOSTEROID-SIGNALING KINASES) and OsMAPKs (MITOGEN ACTIVATED PROTEIN KINASE) are known to play essential roles in plant growth, development, and stress responses. However, the potential crosstalk between these pathways and their specific roles in regulating grain size and leaf angle remain largely unexplored in rice. Here, we characterized that OsBSKs regulate grain size and leaf angle in rice, and among these, OsBSK2 and OsBSK3 may play more critical roles. The grain size and leaf angle in osbsk3 and osbsk2 mutants are significantly smaller, whereas the OsBSK3-overexpressing lines (OsBSK3-OEs) exhibit considerably larger grain size and leaf angle compared to the others. Furthermore, both OsBSK3 and OsBSK2 interact with OsMKKK10, indirectly activating OsMAPK6 in plant cells. Notably, mutations in MAPK cascade components, such as smg2-1 (an osmkkk10 mutant), smg1-1 (an osmkk4 mutant), and dsg1 (an osmapk6 mutant), resulted in significantly reduced leaf angles. Moreover, these mutations were able to rescue the increased grain size and leaf angle observed in OsBSK3 overexpression lines. Additionally, we also identified OsWRKY53 as a potential downstream target of the OsBSKs-OsMKKK10-OsMKK4-OsMAPK6 cascade in the regulation of grain size and leaf angle. Taken together, the above results not only highlight the essential and specific roles of OsBSK3 and OsBSK2 in regulating rice grain size and leaf angle, but also reveal the mechanism which OsBSK3/OsBSK2 mediate MAPK cascade to regulate rice grain size and leaf angle.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linli Fu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Chunxiao Chen
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
3
|
Li C, Wang K, Lei C, Zou Y, Yang S, Xiang F, Li M, Zheng Y. β-Aminobutyric acid-induced resistance in postharvest peach fruit involves interaction between the MAPK cascade and SNARE13 protein in the salicylic acid-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1202-1229. [PMID: 39495671 DOI: 10.1093/jxb/erae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024]
Abstract
The inducer β-aminobutyric acid (BABA) participates in the immune response in various plants. However, the specific mitogen-activated protein kinase (MAPK) cascade involved in BABA-induced resistance (BABA-IR) has not yet been elucidated. Here, peach (Prunus persica) fruits treated with the BABA exhibited pattern-triggered immunity defense against Rhizopus stolonifer, accompanied by the generation of reactive oxygen species and activation of a MAPK cascade. Transcriptome sequencing suggested that a total of 15 MAPK kinase kinase (PpMAPKKK)/MAPK kinase (PpMAPKK)/PpMAPK genes were involved in BABA-IR in peach fruit. Further qRT-PCR analysis showed that the transcript profiles of PpMAPKKK3, PpMAPKK5, and PpMAPK1 were elevated. Subsequently, yeast two-hybrid, luciferase complementation imaging, pull-down, and in vitro phosphorylation assays were conducted to characterize the complete MAPK cascade (PpMAPKKK3-PpMAPKK5-PpMAPK1) involved in peach fruit. Moreover, the downstream events of MAPK1 include the involvement of SNARE13 and the corresponding NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-responsive defense. Single silencing of MAPKKK3, MAPKK5, or MAPK1 and double silencing of MAPKKK3 and MAPKK5 or MAPKK5 and MAPK1 resulted in enhanced susceptibility to the fungus R. stolonifer in mutants and attenuated salicylic acid (SA)-dependent defense gene expression. In contrast, the homologous or heterologous overexpression of PpSNARE13 in peach fruit or Arabidopsis led to an enhanced SA pool and elevated expression of pathogenesis related (PR) genes. Reciprocally, the ppsnare13cas9 mutants were generally compromised in the priming of SA-dependent resistance. Therefore, the MAPKKK3-MAPKK5-MAPK1 cascade contributed to pattern-triggered immunity signal transduction in BABA-elicited peach fruit, by combination with downstream events such as SNARE13, NPR1, and SA-dependent signaling.
Collapse
Affiliation(s)
- Chunhong Li
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Kaituo Wang
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Yanyu Zou
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Sisi Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
- College of Food, Shenyang Agricultural University, Shenyang 110866 Liaoning, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| |
Collapse
|
4
|
Can H, Dogan I, Tabanli F, Uras ME, Hocaoglu-Ozyigit A, Ozyigit II. Genome-wide screening of mitogen-activated protein kinase (MAPK) gene family and expression profile under heavy metal stress in Solanum lycopersicum. Biotechnol Lett 2025; 47:27. [PMID: 39969695 DOI: 10.1007/s10529-025-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/03/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
MAPKs are one of the essential signal transduction complexes which are responsible for the perception of abiotic stress and for the producing of related transcripts for responding to abiotic stress. For systematical analyzes of the mitogen-activated protein (MAP) kinase gene families and their expression profiles in Solanum lycopersicum L. exposed to diverse heavy metal stresses, 17 SlMAPK genes were studied in comparison with their 159 orthologs from various plant species. The result of phylogenetic analysis revealed that SlMAPKs were divided into four different subgroups (A, B, C, and D) based on their nucleic acid and protein sequence alignments. SlMAPKs including A, B and C group had lower molecular weights and more hydrophobic structures than D group SlMAPKs, while possible extra phosphorylation sites predicted in D-group SLMAPKs. 24 cis regulating elements such as Box 4, TATA-box, ABRE and CAAT-box were detected in their upstream parts of DNA sequences. Also, it was determined that SlMAPKs show interactions with important proteins such as Guanine nucleotide-binding protein beta subunit, heterotrimeric G-protein, protein phosphatase 2C and HY5. The results from our gene expression analyzes, significant increases were found in the expressions of the selected SLMAPK gene with applications of a range of increasing heavy metal concentrations (e.g., by the application of the 400 mM Ni + Pb exposure, a 16-fold increase in the expression of SlMAPK gene was noted). Overall, SlMAPK genes and proteins known were re-evaluated, and the SlMAPKs interactions with some other important proteins were observed. Also, some predictions about the extra phosphorylation sites of SlMAPKs having effects on their functions were done. In addition, the expression levels of SlMAPK genes were monitored under different levels of heavy metal stress exposures.
Collapse
Affiliation(s)
- Hasan Can
- Eregli Faculty of Agriculture, Necmettin Erbakan University, 42310, Konya, Turkey.
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Sciences, 54400, Sakarya, Turkey
| | - Fatih Tabanli
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Halic University, 34060, Eyupsultan, Istanbul, Turkey
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Kadikoy, Istanbul, Turkey
| |
Collapse
|
5
|
Han Y, Sun T, Tang Y, Yang M, Gao W, Wang L, Sui C. Root rot in medicinal plants: a review of extensive research progress. FRONTIERS IN PLANT SCIENCE 2025; 15:1504370. [PMID: 39963361 PMCID: PMC11830675 DOI: 10.3389/fpls.2024.1504370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025]
Abstract
Root rot is a general term for soil-borne diseases that cause the necrosis and decay of underground plant parts. It has a wide host range and occurs in various types of plants, including crops, horticultural crops and medicinal plants. Due to the fact that medicinal plants generally have a long growth cycle and are primarily the root and rhizome herbs. This results in root rot causing more serious damage in medicinal plant cultivation than in other plants. Infected medicinal plants have shrivel or yellowed leaves, rotting rhizomes, and even death of the entire plant, resulting in a sharp decline in yield or even total crop failure, but also seriously reduce the commercial specifications and effective ingredient content of medicinal plants. The pathogens of root rot are complex and diverse, and Fusarium fungi have been reported as the most widespread pathogen. With the expansion of medicinal plant cultivation, root rot has occurred frequently in many medicinal plants such as Araliaceae, Fabaceae, Ranunculaceae, and Solanaceae and other medicinal plants. This article reviews recent research progress on root rot in medicinal plants, covering various aspects such as disease characteristics, occurrence, pathogen species, damage to medicinal plants, disease mechanisms, control measures, and genetic factors. The aim is to provide reference for better control of root rot of medicinal plants.
Collapse
Affiliation(s)
- Yu Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
- School of Pharmacy, Heilongjiang Jiamusi University, Jiamusi, China
| | - Tianqi Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Yuman Tang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Min Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| | - Lihong Wang
- School of Pharmacy, Heilongjiang Jiamusi University, Jiamusi, China
| | - Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, China
| |
Collapse
|
6
|
Feng J, Zhong X, Huang X, Li Z, Zhang X, Zhong W, Yang X, Zhou G, Zhang T, Chen S. Rice Stripe Mosaic Virus Encoded P6 Interacts with Heading Protein OsHAPL1 to Promote Viral Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:318-328. [PMID: 39718463 DOI: 10.1021/acs.jafc.4c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Rice stripe mosaic virus (RSMV) is the sole cytoplasmic rhabdovirus documented in naturally infected rice plants. It encodes P6, which induces delayed heading and reduces yield in infected rice plants. P6 of RSMV interacts with OsHAPL1, facilitating the interaction between OsHAPL1 and DTH8, resulting in delayed rice heading under long day conditions. Additionally, OsHAPL1 plays a dual role in RSMV infection by positively influencing viral infection while negatively regulating the expression of defense signal genes. These findings elucidate a novel molecular mechanism through which a virus manipulates the host defense system to enhance viral infection and transmission, shedding new light on the crosstalk between rice heading and disease resistance pathways.
Collapse
Affiliation(s)
- Jialin Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xinyi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ziying Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xishan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weihua Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Siping Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Lu L, Fang J, Xia N, Zhang J, Diao Z, Wang X, Liu Y, Tang D, Li S. Phosphorylation of the transcription factor OsNAC29 by OsMAPK3 activates diterpenoid genes to promote rice immunity. THE PLANT CELL 2024; 37:koae320. [PMID: 39665688 DOI: 10.1093/plcell/koae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Well-conserved mitogen-activated protein kinase (MAPK) cascades are essential for orchestrating of a wide range of cellular processes in plants, including defense responses against pathogen attack. NAC transcription factors (TFs) play important roles in plant immunity, but their targets and how they are regulated remain largely unknown. Here, we identified the TF OsNAC29 as a key component of a MAPK signaling pathway involved in rice (Oryza sativa) disease resistance. OsNAC29 binds directly to CACGTG motifs in the promoters of OsTPS28 and OsCYP71Z2, which are crucial for the biosynthesis of the phytoalexin 5,10-diketo-casbene and consequently rice blast resistance. OsNAC29 positively regulates rice blast resistance by promoting the expression of of OsTPS28 and OsCYP71Z2, and the function of OsNAC29 is genetically dependent on OsCYP71Z2 and OsTPS28. Furthermore, OsNAC29 interacts with OsRACK1A and OsMAPK3/6 to form an immune complex; OsMAPK3 phosphorylates OsNAC29 at Thr304 to prevent its proteasome-mediated degradation and promote its function against rice blast fungus. Phosphorylation of OsNAC29 at Thr304 is induced upon Magnaporthe oryzae infection and chitin treatment. Our data demonstrate the positive role of the OsMAPK3-OsNAC29-OsTPS28/OsCYP71Z2 module in rice blast resistance, providing insights into the molecular regulatory network and fine-tuning of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Fang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Gonçalves Dias M, Doss B, Rawat A, Siegel KR, Mahathanthrige T, Sklenar J, Rodriguez Gallo MC, Derbyshire P, Dharmasena T, Cameron E, Uhrig RG, Zipfel C, Menke FLH, Monaghan J. Subfamily C7 Raf-like kinases MRK1, RAF26, and RAF39 regulate immune homeostasis and stomatal opening in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2278-2294. [PMID: 39449177 PMCID: PMC11579443 DOI: 10.1111/nph.20198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The calcium-dependent protein kinase CPK28 regulates several stress pathways in multiple plant species. Here, we aimed to discover CPK28-associated proteins in Arabidopsis thaliana. We used affinity-based proteomics and identified several potential CPK28 binding partners, including the C7 Raf-like kinases MRK1, RAF26, and RAF39. We used biochemistry, genetics, and physiological assays to gain insight into their function. We define redundant roles for these kinases in stomatal opening, immune-triggered reactive oxygen species (ROS) production, and resistance to a bacterial pathogen. We report that CPK28 associates with and trans-phosphorylates RAF26 and RAF39, and that MRK1, RAF26, and RAF39 are active kinases that localize to endomembranes. Although Raf-like kinases share some features with mitogen-activated protein kinase kinase kinases (MKKKs), we found that MRK1, RAF26, and RAF39 are unable to trans-phosphorylate any of the 10 Arabidopsis mitogen-activated protein kinase kinases (MKKs). Overall, our study suggests that C7 Raf-like kinases associate with and are phosphorylated by CPK28, function redundantly in stomatal opening and immunity, and possess substrate specificities distinct from canonical MKKKs.
Collapse
Affiliation(s)
| | - Bassem Doss
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - Anamika Rawat
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | | | | | - Jan Sklenar
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Emma Cameron
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - R. Glen Uhrig
- Department of Biological SciencesUniversity of AlbertaEdmontonABT6G 2E9Canada
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
- Institute of Plant and Microbial Biology and Zurich‐Basel Plant Science CenterUniversity of ZurichZurich8008Switzerland
| | - Frank L. H. Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | - Jacqueline Monaghan
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
9
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
10
|
Lu L, Zhang J, Zheng X, Xia N, Diao Z, Wang X, Chen Z, Tang D, Li S. OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated transcriptional regulation of immune-related genes. PLANT, CELL & ENVIRONMENT 2024; 47:3712-3731. [PMID: 38770581 DOI: 10.1111/pce.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling cascades are functionally important signalling modules in eukaryotes. Transcriptome reprogramming of immune-related genes is a key process in plant immunity. Emerging evidence shows that plant MAPK cascade is associated with processing (P)-body components and contributes to transcriptome reprogramming of immune-related genes. However, it remains largely unknown how this process is regulated. Here, we show that OsMPK12, which is induced by Magnaporthe oryzae infection, positively regulates rice blast resistance. Further analysis revealed that OsMPK12 directly interacts with enhancer of mRNA decapping protein 4 (OsEDC4), a P-body-located protein, and recruits OsEDC4 to where OsMPK12 is enriched. Importantly, OsEDC4 directly interacts with two decapping complex members OsDCP1 and OsDCP2, indicating that OsEDC4 is a subunit of the mRNA decapping complex. Additionally, we found that OsEDC4 positively regulates rice blast resistance by regulating expression of immune-related genes and maintaining proper mRNA levels of some negatively-regulated genes. And OsMPK12 and OsEDC4 are also involved in rice growth and development regulation. Taken together, our data demonstrate that OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated mRNA decay of immune-related genes, providing new insight into not only the new role of the MAPK signalling cascade, but also posttranscriptional regulation of immune-related genes.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingxing Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Mi X, Li W, Chen C, Xu H, Wang G, Jin X, Zhang D, Guo W. GhMPK9-GhRAF39_1-GhWRKY40a Regulates the GhERF1b- and GhABF2-Mediated Pathways to Increase Cotton Disease Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404400. [PMID: 38845189 PMCID: PMC11304259 DOI: 10.1002/advs.202404400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Indexed: 08/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascade is the center of plant signal transduction system that amplify immune signals into cellular responses by phosphorylating diverse substrates. The MAPK cascade consisting of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs is well characterized in plants, in which Raf-like kinases are generally regarded as MAPKKKs. However, it is rarely reported that Raf-like MAPKKKs function as middle regulators to link MAPK and its downstream transcription factors in plant immunity. Verticillium wilt, caused by the soil-borne vascular fungus Verticillium dahliae, is a serious disease in many plants, including cotton. The previous studies showed that GhMPK9 (a MAPK) is involved in the response to Verticillium wilt. Here, the Raf-like kinase GhRAF39_1 is reported as helper regulates the phosphorylation of WRKY transcription factor GhWRKY40a by GhMPK9. The phosphorylated GhWRKY40a can further activate the transcription of GhERF1b to up-regulate defense-related genes while inhibit the transcription of GhABF2 to regulate the stomatal opening, thus improving the resistance to Verticillium wilt in cotton. This study reveals a new signaling module of GhMPK9-GhRAF39_1-GhWRKY40a to regulate GhERF1b- and GhABF2-mediated defense responses, which triggers plant defense against Verticillium wilt.
Collapse
Affiliation(s)
- Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chuan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
12
|
Singh R. CRISPRing EDR1: Harmonizing grapevine defense and growth dynamics. PLANT PHYSIOLOGY 2024; 195:1762-1764. [PMID: 38518280 PMCID: PMC11213246 DOI: 10.1093/plphys/kiae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Affiliation(s)
- Ritu Singh
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Plant Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Yu XN, Guo Y, Yang Q, Yu H, Lu MJ, Zhao L, Jin ZS, Xu XN, Feng JY, Wen YQ. Chimeric mutations in grapevine ENHANCED DISEASE RESISTANCE1 improve resistance to powdery mildew without growth penalty. PLANT PHYSIOLOGY 2024; 195:1995-2015. [PMID: 38507576 DOI: 10.1093/plphys/kiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.
Collapse
Affiliation(s)
- Xue-Na Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Qianling Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Haiyan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Meng-Jiao Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Zhuo-Shuai Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xiang-Nan Xu
- Institute of Plant Nutrition, Resource and Environment, Beijing Academy of Agriculture and Forestry Sciences, Shuguanghuayuan Mid Road 9, Haidian District, Beijing 100097, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
15
|
Bai C, Wang GJ, Feng XH, Gao Q, Wang WQ, Xu R, Guo SJ, Shen SY, Ma M, Lin WH, Liu CM, Li Y, Song XJ. OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate. Nat Commun 2024; 15:4300. [PMID: 38773134 PMCID: PMC11109111 DOI: 10.1038/s41467-024-48786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.
Collapse
Affiliation(s)
- Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao-Jie Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Ran Xu
- Sanya Nanfan Research, Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou, 570288, China
| | - Su-Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Yan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hui Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhai Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Wu G, Wang W. Recent advances in understanding the role of two mitogen-activated protein kinase cascades in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2256-2265. [PMID: 38241698 DOI: 10.1093/jxb/erae020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The mitogen-activated protein kinase (MAPK/MPK) cascade is an important intercellular signaling module that regulates plant growth, development, reproduction, and responses to biotic and abiotic stresses. A MAPK cascade usually consists of a MAPK kinase kinase (MAPKKK/MEKK), a MAPK kinase (MAPKK/MKK/MEK), and a MAPK. The well-characterized MAPK cascades in plant immunity to date are the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade. Recently, major breakthroughs have been made in understanding the molecular mechanisms associated with the regulation of immune signaling by both of these MAPK cascades. In this review, we highlight the most recent advances in understanding the role of both MAPK cascades in activating plant defense and in suppressing or fine-tuning immune signaling. We also discuss the molecular mechanisms by which plants stabilize and maintain the activation of MAPK cascades during immune signaling. Based on this review, we reveal the complexity and importance of the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade, which are tightly controlled by their interacting partners or substrates, in plant immunity.
Collapse
Affiliation(s)
- Guangheng Wu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Chen L, Xiao J, Li Y, Song Y, Liu J, Zhou Q, Sun T, Wang HB, Liu B. The Raf-like MAPKKKs STY8, STY17, and STY46 negatively regulate Botrytis cinerea resistance by limiting MKK7 protein accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1503-1516. [PMID: 38059690 DOI: 10.1111/tpj.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Plant diseases, which seriously damage crop production, are in most cases caused by fungal pathogens. In this study, we found that the Raf-like MAPKKKs STY8 (SERINE/THREONINE/TYROSINE KINASE 8), STY17, and STY46 negatively regulate resistance to the fungal pathogen Botrytis cinerea through jasmonate response in Arabidopsis. Moreover, STY8/STY17/STY46 homologs negatively contribute to chitin signaling. We further identified MKK7 as the MAPKK component interacting with STY8/STY17/STY46 homologs. MKK7 positively contributes to resistance to B. cinerea and chitin signaling. Furthermore, we found that STY8/STY17/STY46 homologs negatively affect the accumulation of MKK7, in accordance with the opposite roles of MKK7 and STY8/STY17/STY46 homologs in defense against B. cinerea. These results provide new insights into the mechanisms precisely regulating plant immunity via Raf-like MAPKKKs.
Collapse
Affiliation(s)
- Lijuan Chen
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640, Guangzhou, People's Republic of China
| | - Jiahui Xiao
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - You Li
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuxiao Song
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qi Zhou
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Sun
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hong-Bin Wang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, People's Republic of China
| | - Bing Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
18
|
Yang Z, Zhu Z, Guo Y, Lan J, Zhang J, Chen S, Dou S, Yang M, Li L, Liu G. OsMKK1 is a novel element that positively regulates the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae in rice. PLANT CELL REPORTS 2024; 43:31. [PMID: 38195905 DOI: 10.1007/s00299-023-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.
Collapse
Affiliation(s)
- ZeXi Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zheng Zhu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yalu Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Jinping Lan
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jianshuo Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuo Chen
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shijuan Dou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liyun Li
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Guozhen Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
19
|
Wang W, Chen S, Zhong G, Gao C, Zhang Q, Tang D. MITOGEN-ACTIVATED PROTEIN KINASE3 enhances disease resistance of edr1 mutants by phosphorylating MAPKKK5. PLANT PHYSIOLOGY 2023; 194:578-591. [PMID: 37638889 DOI: 10.1093/plphys/kiad472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are key signaling modules that regulate plant immunity. ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like MAPK kinase kinase (MAPKKK) that negatively regulates plant defense in Arabidopsis (Arabidopsis thaliana). The enhanced resistance of edr1 requires MAPK KINASE4 (MKK4), MKK5, and MPK3. Although the edr1 mutant displays higher MPK3/6 activation, the mechanism by which plants increase MAPK cascade activation remains elusive. Our previous study showed that MAPKKK5 is phosphorylated at the Ser-90 residue in edr1 mutants. In this study, we demonstrated that the enhanced disease resistance of edr1 required MAPKKK5. Phospho-dead MAPKKK5S90A partially impaired the resistance of edr1, and the expression of phospho-mimetic MAPKKK5S90D in mapkkk5-2 resulted in enhanced resistance to the powdery mildew Golovinomyces cichoracearum strain UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) strain DC3000. Thus, Ser-90 phosphorylation in MAPKKK5 appears to play a crucial role in disease resistance. However, MAPKKK5-triggered cell death was not suppressed by EDR1. Furthermore, activated MPK3 phosphorylated the N terminus of MAPKKK5, and Ser-90 was one of the phosphorylated sites. Ser-90 phosphorylation increased MAPKKK5 stability, and EDR1 might negatively regulate MAPK cascade activation by suppressing the MPK3-mediated feedback regulation of MAPKKK5. Taken together, these results indicate that MPK3 phosphorylates MAPKKK5 to enhance MAPK cascade activation and disease resistance in edr1 mutants.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuling Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qin Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Wang Y, Li W, Qu J, Li F, Du W, Weng J. Genome-Wide Characterization of the Maize ( Zea mays L.) WRKY Transcription Factor Family and Their Responses to Ustilago maydis. Int J Mol Sci 2023; 24:14916. [PMID: 37834371 PMCID: PMC10573107 DOI: 10.3390/ijms241914916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.
Collapse
Affiliation(s)
- Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wangshu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Fenghai Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| |
Collapse
|
21
|
Xu L, Meng Y, Liu R, Xiao Y, Wang Y, Huang L. Inhibitory effects of Bacillus vallismortis T27 against apple Valsa canker caused by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105564. [PMID: 37666597 DOI: 10.1016/j.pestbp.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Apple Valsa canker caused by the pathogenic fungus Valsa mali, are one of the most destructive diseases of woody plants worldwide. One rhizosphere microbe strain, designated as T27 and subsequently identified as Bacillus vallismortis based on morphological and phylogenetic analyses, was studied as a potential biocontrol agent. Inoculation assay showed the B. vallismortis T27 suppressed the mycelial growth of V. mali with 81.33% antifungal effect on dual culture plates and caused hyphal deformities, wrinkles. The T27 fermentation broth significantly suppress the fungi's ability to acidify the surrounding environment. The addition of T27 cell-free supernatant (CFS) caused the pH of the fungal culture medium to increase from 3.60 to 5.10. B. vallismortis T27 showed the presence of Surfactin, IturinA and Bacilysin antimicrobial biosynthetic genes by the PCR assay. In addition, the B. vallismortis T27 was able to promote plant growth by producing siderophores and solubilizing phosphorus. The application of 2% fermentation broth of T27 resulted in a significant increase of 55.99% in the height of tomato plants and a 33.03% increase in the fresh weight of tomatoes. Under laboratory and field conditions, the B. vallismortis T27 exhibited strong antifungal activities on detached twigs and intact plants. The treatment of T27 resulted in a 35.9% reduction in lesion area on detached twigs. Furthermore, when applied to intact plants, T27 demonstrated a scar healing rate of 85.7%, surpassing the 77.8% observed in the treatment with tebuconazole. Comparative transcriptome analysis showed down-regulation of the genes associated with the fungal cell wall and cell membrane's synthesis and composition during V. mali treated with the B. vallismortis T27. In addition, gene transcription level analysis under treatment with B. vallismortis T27 revealed a significant increase in the expression levels of genes associated with diterpene biosynthesis, alanine, aspartic acid and glutamate metabolism, and plant hormone signaling in the apple, consistent with qRT-PCR and RNA-seq results. In this study, B. vallismortis T27 isolated from rhizosphere soil and identified as a novel biological control agent against apple Valsa canker. It exhibited effectively control over Valsa canker through multiple mechanisms, including disrupting the fungal cell membrane structure, altering the fungal growth environment, activating the plant MAPK pathway, and inducing upregulation of plant terpene biosynthetic genes. These findings highlight the potential of B. vallismortis T27 as a promising and multifaceted approach for managing apple Valsa canker.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingzhu Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
22
|
Wu T, Bi Y, Yu Y, Zhou Z, Yuan B, Ding X, Zhang Q, Chen X, Yang H, Liu H, Chu Z. Activated Expression of Rice DMR6-like Gene OsS3H Partially Explores the Susceptibility to Bacterial Leaf Streak Mediated by Knock-Out OsF3H04g. Int J Mol Sci 2023; 24:13263. [PMID: 37686066 PMCID: PMC10487387 DOI: 10.3390/ijms241713263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS) in rice. Furthermore, all four homologs of rice DMR6-like proteins were identified to predominantly carry the enzyme activity of SA 5-hydroxylase (S5H), negatively regulate rice broad-spectrum resistance, and cause the loss of function of these OsDMR6s, leading to increased resistance to rice blast and bacterial blight (BB). Here, we curiously found that an OsF3H04g knock-out mutant created by T-DNA insertion, osf3h04g, was remarkedly susceptible to BLS and BB and showed an extreme reduction in SA content. OsF3H04g knock-out rice lines produced by gene-editing were mildly susceptible to BLS and reduced content of SA. To explore the susceptibility mechanism in OsF3H04g loss-of-function rice lines, transcriptome sequencing revealed that another homolog, OsS3H, had induced expression in the loss-of-function OsF3H04g rice lines. Furthermore, we confirmed that a great induction of OsS3H downstream and genomically adjacent to OsF3H04g in osf3h04g was primarily related to the inserted T-DNA carrying quadruple enhancer elements of 35S, while a slight induction was caused by an unknown mechanism in gene-editing lines. Then, we found that the overexpression of OsS3H increased rice susceptibility to BLS, while gene-editing mediated the loss-of-function OsS3H enhanced rice resistance to BLS. However, the knock-out of both OsF3H04g and OsS3H by gene-editing only neutralized rice resistance to BLS. Thus, we concluded that the knock-out of OsF3H04g activated the expression of the OsS3H, partially participating in the susceptibility to BLS in rice.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.W.); (Q.Z.)
| | - Yunya Bi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Zhou Zhou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (H.L.)
| | - Qingxia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.W.); (Q.Z.)
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (H.L.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.B.); (Y.Y.); (Z.Z.); (X.C.)
| |
Collapse
|
23
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
24
|
Huo WQ, Zhang ZQ, Ren ZY, Zhao JJ, Song CX, Wang XX, Pei XY, Liu YG, He KL, Zhang F, Li XY, Li W, Yang DG, Ma XF. Unraveling genomic regions and candidate genes for multiple disease resistance in upland cotton using meta-QTL analysis. Heliyon 2023; 9:e18731. [PMID: 37576216 PMCID: PMC10412778 DOI: 10.1016/j.heliyon.2023.e18731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.
Collapse
Affiliation(s)
- Wen-Qi Huo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi-Qiang Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Ying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jun-Jie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Cheng-Xiang Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xing-Xing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Yu Pei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Gai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun-Lun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xin-Yang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dai-Gang Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiong-Feng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
25
|
Wang S, Han S, Zhou X, Zhao C, Guo L, Zhang J, Liu F, Huo Q, Zhao W, Guo Z, Chen X. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. THE PLANT CELL 2023; 35:2391-2412. [PMID: 36869655 DOI: 10.1093/plcell/koad064] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xiangui Zhou
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changjiang Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Lina Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junqi Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fei Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qixin Huo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Zhong G, Chen Y, Liu S, Gao C, Chen R, Wang Z, Wang W, Tang D. EDR1 associates with its homologs to synergistically regulate plant immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111619. [PMID: 36737004 DOI: 10.1016/j.plantsci.2023.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1), a Raf-like mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK), is a negative regulator of resistance. There are three homologs, RAF3/4/5, of EDR1 in Arabidopsis. However, the roles of RAF3/4/5 in resistance and their functional link with EDR1 in plant immunity remain unclear. Here, we showed that the raf3/4/5 triple mutant displayed wild-type-like phenotypes to the powdery mildew pathogen Golovinomyces cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000. However, the edr1 raf3/4/5 quadruple mutant exhibited enhanced resistance to G. cichoracearum UCSC1 and Pto DC3000 compared to edr1. Consistently, MPK3/6 kinase activity was more highly activated in edr1 raf3/4/5 than that in edr1. Moreover, the enhanced resistance of edr1 raf3/4/5 required SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), an isochorismate synthase required for salicylic acid (SA) synthesis. Additionally, unlike EDR1, RAF3/4/5 weakly and indirectly associated with MKK4/5, and EDR1 was directly associated with RAF3/4/5. Taken together, these data indicate that EDR1 associates with RAF3/4/5, and they may function together to synergistically suppress MAPK cascades activation, which reveal the complexity and importance of Raf-like MAPKKKs in plant immunity regulation.
Collapse
Affiliation(s)
- Guitao Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongming Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Simu Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Wu J, Liang X, Lin M, Lan Y, Xiang Y, Yan H. Comprehensive analysis of MAPK gene family in Populus trichocarpa and physiological characterization of PtMAPK3-1 in response to MeJA induction. PHYSIOLOGIA PLANTARUM 2023; 175:e13869. [PMID: 36723249 DOI: 10.1111/ppl.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in plant growth and development, as well as hormone and stress responses by signaling to eukaryotic cells, through MAPK cascade, the presence of various cues; thereby, regulating various responses. The MAPK cascade consists mainly of three gene families, MAPK, MAPKK, and MAPKKK, which activate downstream signaling pathways through sequential phosphorylation. Although the MAPK cascade gene family has been reported in several species, there is a lack of comprehensive analysis in poplar. We identified 21 MAPK genes, 11 MAPKK genes, and 104 MAPKKK genes in Populus trichocarpa. The phylogenetic classification was supported by conservative motif, gene structure and motif analysis. Whole genome duplication has an important role in the expansion of MAPK cascade genes. Analysis of promoter cis-elements and expression profiles indicates that MAPK cascade genes have important roles in plant growth and development, abiotic and biotic stresses, and phytohormone response. Expression profiling revealed a significant upregulation of PtMAPK3-1 expression in response to drought, salt and disease stresses. Poplar transiently overexpressing PtMAPK3-1 and treated with methyl jasmonic acid (MeJA) had higher catalase and peroxidase levels than non-overexpressing poplar. This work represents the first complete inventory of the MAPK cascade in P. trichocarpa, which reveals that PtMAPK3-1 is induced by the MeJA hormone and participates in the MeJA-induced enhancement of the antioxidant enzyme system.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Liang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
28
|
Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. THE NEW PHYTOLOGIST 2022; 236:249-265. [PMID: 35727190 DOI: 10.1111/nph.18329] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/09/2022] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors (TFs) are crucial regulators in response to pathogen infection. However, the regulatory mechanisms of WRKY TFs in response to Fusarium oxysporum f. sp. vasinfectum (Fov), the most devastating pathogen of cotton, remain unclear. Here, transcriptome sequencing indicated that the group IIc WRKY TF subfamily was the most important TF subfamily in response to Fov. Gain-of-function and loss-of-function analyses showed that group IIc WRKY TFs positively regulated cotton resistance to Fov. A series of chromatin immunoprecipitation sequencing, yeast one-hybrid assay and electrophoresis mobility shift assay experiments indicated that group IIc WRKY TFs directly bound to the promoter of GhMKK2 and regulated its expression. Importantly, a novel mitogen-activated protein kinase (MAPK) cascade composed of GhMKK2, GhNTF6 and GhMYC2 was identified. The functional analysis indicated that group IIc WRKY TFs induced the GhMKK2-GhNTF6 pathway to increase resistance to Fov by upregulating the GhMYC2-mediated expression of several flavonoid biosynthesis-related genes, which led to flavonoid accumulation. In conclusion, our study demonstrated a novel disease defense mechanism by which the WRKY-MAPK pathway promotes flavonoid biosynthesis to defend against pathogen infection. This pathway improves our understanding of the interaction mode between WRKY TFs and MAPK cascades in plant immunity and the vital role of plant flavonoids in pathogen defense.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
29
|
Yan J, Fang Y, Xue D. Advances in the Genetic Basis and Molecular Mechanism of Lesion Mimic Formation in Rice. PLANTS 2022; 11:plants11162169. [PMID: 36015472 PMCID: PMC9412831 DOI: 10.3390/plants11162169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.
Collapse
|
30
|
A Single Amino Acid Substitution in MIL1 Leads to Activation of Programmed Cell Death and Defense Responses in Rice. Int J Mol Sci 2022; 23:ijms23168853. [PMID: 36012116 PMCID: PMC9408282 DOI: 10.3390/ijms23168853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Lesion mimic mutants are an ideal model system for elucidating the molecular mechanisms of programmed cell death and defense responses in rice. In this study, we identified a lesion mimic mutant termed miner infection like 1-1 (mil1-1). The mil1-1 exhibited lesions on the leaves during development, and the chloroplasts of mil1-1 leaves were disrupted. Reactive oxygen species were found to accumulate in mil1-1 leaves. Cell death and DNA fragmentation were observed in mil1-1 leaves, indicating that the cells in the spots of mil1-1 leaves experienced programmed cell death. Most agronomic traits decreased in mil1-1, suggesting that the growth retardation in mil1-1 caused reduced per-plant grain yield. However, the mutation of MIL1 activated the expression of pathogen response genes and enhanced resistance to bacterial blight. The MIL1 gene was cloned using the positional cloning approach. A missense mutation 751 bp downstream of ATG was found in mil1-1. The defects of mil1-1 were able to be rescued by delivering a wild-type MIL1 gene into mil1-1. MIL1 encoded hydroperoxide lyase 3 (OsHPL3), and the expression of OsHPL3 was induced via hormone and abiotic stresses. Our findings provide insights into the roles of MIL1 in regulating programmed cell death, development, yield, and defense responses in rice.
Collapse
|
31
|
Ding ZH, Gao Q, Tong X, Xu WY, Ma L, Zhang ZJ, Wang Y, Wang XB. MAPKs trigger antiviral immunity by directly phosphorylating a rhabdovirus nucleoprotein in plants and insect vectors. THE PLANT CELL 2022; 34:3110-3127. [PMID: 35567529 PMCID: PMC9338794 DOI: 10.1093/plcell/koac143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.
Collapse
Affiliation(s)
- Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Shen W, Zhang X, Liu J, Tao K, Li C, Xiao S, Zhang W, Li J. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:991-1005. [PMID: 35068048 PMCID: PMC9055822 DOI: 10.1111/pbi.13781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Rice is a staple food crop worldwide, and its production is severely threatened by phloem-feeding insect herbivores, particularly the brown planthopper (BPH, Nilaparvata lugens), and destructive pathogens. Despite the identification of many BPH resistance genes, the molecular basis of rice resistance to BPH remains largely unclear. Here, we report that the plant elicitor peptide (Pep) signalling confers rice resistance to BPH. Both rice PEP RECEPTORs (PEPRs) and PRECURSORs of PEP (PROPEPs), particularly OsPROPEP3, were transcriptionally induced in leaf sheaths upon BPH infestation. Knockout of OsPEPRs impaired rice resistance to BPH, whereas exogenous application of OsPep3 improved the resistance. Hormone measurement and co-profiling of transcriptomics and metabolomics in OsPep3-treated rice leaf sheaths suggested potential contributions of jasmonic acid biosynthesis, lipid metabolism and phenylpropanoid metabolism to OsPep3-induced rice immunity. Moreover, OsPep3 elicitation also strengthened rice resistance to the fungal pathogen Magnaporthe oryzae and bacterial pathogen Xanthamonas oryzae pv. oryzae and provoked immune responses in wheat. Collectively, this work demonstrates a previously unappreciated importance of the Pep signalling in plants for combating piercing-sucking insect herbivores and promises exogenous application of OsPep3 as an eco-friendly immune stimulator in agriculture for crop protection against a broad spectrum of insect pests and pathogens.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xue Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jiuer Liu
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kehan Tao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Chong Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Shi Xiao
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenqing Zhang
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Li
- State Key Laboratory of BiocontrolGuangdong Provincial Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
33
|
Li L, Guo N, Feng Y, Duan M, Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836940. [PMID: 35498704 PMCID: PMC9047502 DOI: 10.3389/fpls.2022.836940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
Collapse
|
34
|
Li J, Deng F, Wang H, Qiang X, Meng Y, Shan W. The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2. MOLECULAR PLANT PATHOLOGY 2022; 23:530-542. [PMID: 34935273 PMCID: PMC8916217 DOI: 10.1111/mpp.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Oomycetes represent a unique group of plant pathogens that are phylogenetically distant from true fungi and cause significant crop losses and environmental damage. Understanding of the genetic basis of host plant susceptibility facilitates the development of novel disease resistance strategies. In this study, we report the identification of an Arabidopsis thaliana T-DNA mutant with enhanced resistance to Phytophthora parasitica with an insertion in the Raf-like mitogen-activated protein kinase kinase kinase gene Raf36. We generated additional raf36 mutants by CRISPR/Cas9 technology as well as Raf36 complementation and overexpression transformants, with consistent results of infection assays showing that Raf36 mediates Arabidopsis susceptibility to P. parasitica. Using a virus-induced gene silencing assay, we silenced Raf36 homologous genes in Nicotiana benthamiana and demonstrated by infection assays the conserved immune function of Raf36. Mutagenesis analyses indicated that the kinase activity of Raf36 is important for its immune function and interaction with MKK2, a MAPK kinase. By generating and analysing mkk2 mutants and MKK2 complementation and overexpression transformants, we found that MKK2 is a positive immune regulator in the response to P. parasitica infection. Furthermore, infection assay on mkk2 raf36 double mutant plants indicated that MKK2 is required for the raf36-conferred resistance to P. parasitica. Taken together, we identified a Raf-like kinase Raf36 as a novel plant susceptibility factor that functions upstream of MKK2 and directly targets it to negatively regulate plant resistance to P. parasitica.
Collapse
Affiliation(s)
- Jinfang Li
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Fengyan Deng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hongmei Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
35
|
Zhang M, Shi H, Li N, Wei N, Tian Y, Peng J, Chen X, Zhang L, Zhang M, Dong H. Aquaporin OsPIP2;2 links the H2O2 signal and a membrane-anchored transcription factor to promote plant defense. PLANT PHYSIOLOGY 2022; 188:2325-2341. [PMID: 34958388 PMCID: PMC8968290 DOI: 10.1093/plphys/kiab604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
To overcome pathogen infection, plants deploy a highly efficient innate immune system, which often uses hydrogen peroxide (H2O2), a versatile reactive oxygen species, to activate downstream defense responses. H2O2 is a potential substrate of aquaporins (AQPs), the membrane channels that facilitate the transport of small compounds across plasma membranes or organelle membranes. To date, however, the functional relationship between AQPs and H2O2 in plant immunity is largely undissected. Here, we report that the rice (Oryza sativa) AQP OsPIP2;2 transports pathogen-induced apoplastic H2O2 into the cytoplasm to intensify rice resistance against various pathogens. OsPIP2;2-transported H2O2 is required for microbial molecular pattern flg22 to activate the MAPK cascade and to induce the downstream defense responses. In response to flg22, OsPIP2;2 is phosphorylated at the serine residue S125, and therefore gains the ability to transport H2O2. Phosphorylated OsPIP2;2 also triggers the translocation of OsmaMYB, a membrane-anchored MYB transcription factor, into the plant cell nucleus to impart flg22-induced defense responses against pathogen infection. On the contrary, if OsPIP2;2 is not phosphorylated, OsmaMYB remains associated with the plasma membrane, and plant defense responses are no longer induced. These results suggest that OsPIP2;2 positively regulates plant innate immunity by mediating H2O2 transport into the plant cell and mediating the translocation of OsmaMYB from plasma membrane to nucleus.
Collapse
Affiliation(s)
- Mou Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Haotian Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ningning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Nana Wei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
| | | | | |
Collapse
|
36
|
Regulatory Mechanisms of Mitogen-Activated Protein Kinase Cascades in Plants: More than Sequential Phosphorylation. Int J Mol Sci 2022; 23:ijms23073572. [PMID: 35408932 PMCID: PMC8998894 DOI: 10.3390/ijms23073572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play crucial roles in almost all biological processes in plants. They transduce extracellular cues into cells, typically through linear and sequential phosphorylation and activation of members of the signaling cascades. However, accumulating data suggest various regulatory mechanisms of plant MAPK cascades in addition to the traditional phosphorylation pathway, in concert with their large numbers and coordinated roles in plant responses to complex ectocytic signals. Here, we highlight recent studies that describe the uncanonical mechanism of regulation of MAPK cascades, regarding the activation of each tier of the signaling cascades. More particularly, we discuss the unusual role for MAPK kinase kinases (MAPKKKs) in the regulation of MAPK cascades, as accumulating data suggest the non-MAPKKK function of many MAPKKKs. In addition, future work on the biochemical activation of MAPK members that needs attention will be discussed.
Collapse
|
37
|
Shen W, Feng Z, Hu K, Cao W, Li M, Ju R, Zhang Y, Chen Z, Zuo S. Tryptamine 5-Hydroxylase Is Required for Suppression of Cell Death and Uncontrolled Defense Activation in Rice. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.857760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lesion-mimic mutants are useful materials to dissect mechanisms controlling programmed cell death (PCD) and defense response in plants. Although dozens of lesion-mimic mutant genes have been identified in plants, the molecular mechanisms underlying PCD and defense response remain to be extensively elucidated. Here, we identified a rice lesion mimic mutant, named lesion mimic 42 (lm42), from an ethylmethylsulfone (EMS)-induced mutant population. The lm42 mutant displayed flame-red spots on the leaves and sheaths at the 3-leaf developmental stage and exhibited impaired photosynthetic capacity with decreased chlorophyll content and decomposed chloroplast thylakoids. The lesion development of lm42 was light- and temperature-dependent. We identified a single base mutation (T38A), changing a Leu to Gln, in the first exon of LOC_Os12g16720 (LM42), which encodes a tryptamine 5-hydroxylase, by map-based cloning. We carried out transgenic complementation to confirm that this mutation caused the lm42 phenotype. We further knocked out the LM42 gene by CRISPR/Cas9 to recreate the lm42 phenotype. LM42 is highly expressed in leaves, leaf sheaths and roots. Loss-of-function of LM42 activated expression of ROS-generating genes and inhibited expression of ROS-scavenging genes, leading to ROS accumulation and eventually cell death. Furthermore, its disruption induced expression of defense-response genes and enhanced host resistance to both fungal pathogen Magnaporthe oryzae and bacterial pathogen Xanthomonas oryzae pv. oryzae. Our transcriptomic data suggested that the way lm42 led to lesion-mimic was probably by affecting ribosome development. Overall, our results demonstrate that tryptamine 5-hydroxylase-coding gene LM42 is required for suppression of cell death and uncontrolled activation of defense responses in rice.
Collapse
|
38
|
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep 2022; 23:e53817. [PMID: 35041234 PMCID: PMC8811656 DOI: 10.15252/embr.202153817] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.
Collapse
Affiliation(s)
- Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
39
|
Yu WQ, Li P, Yan FC, Zheng GP, Liu WZ, Lin WX, Wang Y, Luo ZQ. Protein Elicitor EsxA Induces Resistance to Seedling Blight and PR Genes Differential Transcription in Rice. RICE (NEW YORK, N.Y.) 2021; 14:91. [PMID: 34735664 PMCID: PMC8568749 DOI: 10.1186/s12284-021-00532-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Protein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, including the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein elicitor to control plant diseases.
Collapse
Affiliation(s)
- Wen Qing Yu
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
- Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Peng Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
| | - Feng Chao Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
| | - Gui Ping Zheng
- Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Wen Zhi Liu
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China.
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China.
| | - Wen Xi Lin
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| | - Yi Wang
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| | - Zhi Qing Luo
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| |
Collapse
|
40
|
Chen J, Wang L, Yang Z, Liu H, Chu C, Zhang Z, Zhang Q, Li X, Xiao J, Wang S, Yuan M. The rice Raf-like MAPKKK OsILA1 confers broad-spectrum resistance to bacterial blight by suppressing the OsMAPKK4-OsMAPK6 cascade. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1815-1842. [PMID: 34270159 DOI: 10.1111/jipb.13150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Mitogen-activated protein kinase kinase kinase (MAPKKK) are the first components of MAPK cascades, which play pivotal roles in signaling during plant development and physiological processes. The genome of rice encodes 75 MAPKKKs, of which 43 are Raf-like MAPKKKs. The functions and action modes of most of the Raf-like MAPKKKs, whether they function as bona fide MAPKKKs and which are their downstream MAPKKs, are largely unknown. Here, we identified the osmapkkk43 mutant, which conferred broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the destructive bacterial pathogen of rice. Oryza sativa (Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1 (OsILA1). Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4-OsMAPK6 cascade in rice-Xoo interactions. Unlike classical MAPKKKs, OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4, which possibly influenced the stability of OsMAPKK4. The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity. Taken together, our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4-OsMAPK6 cascade and is involved in rice-Xoo interactions.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanliang Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Wang P, Li J, Zhang Z, Zhang Q, Li X, Xiao J, Ma H, Wang S. OsVQ1 links rice immunity and flowering via interaction with a mitogen-activated protein kinase OsMPK6. PLANT CELL REPORTS 2021; 40:1989-1999. [PMID: 34368900 DOI: 10.1007/s00299-021-02766-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Knocking out OsVQ1 in rice released OsMPK6 for activation and in turn promoted H2O2 accumulation, which repressed the expression of flowering-promoting genes, thus delaying rice flowering but enhancing disease resistance. The valine-glutamine (VQ) protein family, which contains the conserved motif FxxxVQxLTG ("x" represents any amino acid), plays a crucial role in plant growth and immunity along with mitogen-activated protein kinase (MAPK) cascades. However, only a few rice VQ proteins have been functionally characterized, and the roles of the MAPK-VQ module in rice biological processes are not fully understood. Here, we investigated the role of OsVQ1 in rice disease resistance and the control of flowering time. The OsVQ1-knock out (KO) mutants exhibited increased resistance to Xanthomonas oryzae pathovars, accumulated high levels of hydrogen peroxide (H2O2), and showed a late flowering phenotype under natural long-day conditions, while the OsVQ1-overexpressing plants showed phenotypes similar to that of the wild type. Further studies revealed that OsVQ1 physically interacted with and inhibited OsMPK6 activity. In addition, OsVQ1 expression was downregulated by the pathogen-induced OsMPKK10.2-OsMPK6-OsWRKY45 cascade, suggesting a feedback loop between OsVQ1 and OsMPK6. Moreover, the OsVQ1-KO/osmpk6 double-mutant exhibited increased susceptibility to X. oryzae infection and showed an early flowering phenotype, which may partially be attributed to the reduced accumulation of H2O2 and the consequent up-expression of flowering-promoting genes. These results suggested that the OsVQ1-OsMPK6 module was involved in rice immunity and flowering.
Collapse
Affiliation(s)
- Peilun Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Xu J, Shang L, Wang J, Chen M, Fu X, He H, Wang Z, Zeng D, Zhu L, Hu J, Zhang C, Chen G, Gao Z, Zou W, Ren D, Dong G, Shen L, Zhang Q, Li Q, Guo L, Qian Q, Zhang G. The SEEDLING BIOMASS 1 allele from indica rice enhances yield performance under low-nitrogen environments. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1681-1683. [PMID: 34048114 PMCID: PMC8428826 DOI: 10.1111/pbi.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 05/06/2023]
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lianguang Shang
- Lingnan Laboratory of Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jiajia Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Minmin Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xue Fu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Huiying He
- Lingnan Laboratory of Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Zian Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Chao Zhang
- Lingnan Laboratory of Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Weiwei Zou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qiang Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qing Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
43
|
Li N, Yang Z, Li J, Xie W, Qin X, Kang Y, Zhang Q, Li X, Xiao J, Ma H, Wang S. Two VQ Proteins are Substrates of the OsMPKK6-OsMPK4 Cascade in Rice Defense Against Bacterial Blight. RICE (NEW YORK, N.Y.) 2021; 14:39. [PMID: 33913048 PMCID: PMC8081811 DOI: 10.1186/s12284-021-00483-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant-specific valine-glutamine (VQ) protein family with the conserved motif FxxxVQxLTG reportedly functions with the mitogen-activated protein kinase (MAPK) in plant immunity. However, the roles of VQ proteins in MAPK-mediated resistance to disease in rice remain largely unknown. RESULTS In this study, two rice VQ proteins OsVQ14 and OsVQ32 were newly identified to function as the signaling components of a MAPK cascade, OsMPKK6-OsMPK4, to regulate rice resistance to Xanthomonas oryzae pv. oryzae (Xoo). Both OsVQ14 and OsVQ32 positively regulated rice resistance to Xoo. In vitro and in vivo studies revealed that OsVQ14 and OsVQ32 physically interacted with and were phosphorylated by OsMPK4. OsMPK4 was highly phosphorylated in transgenic plants overexpressing OsMPKK6, which showed enhanced resistance to Xoo. Meanwhile, phosphorylated OsVQ14 and OsVQ32 were also markedly accumulated in OsMPKK6-overexpressing transgenic plants. CONCLUSIONS We discovered that OsVQ14 and OsVQ32 functioned as substrates of the OsMPKK6-OsMPK4 cascade to enhance rice resistance to Xoo, thereby defining a more complete signal transduction pathway for induced defenses.
Collapse
Affiliation(s)
- Na Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|