1
|
Joshna CR, Atugala DM, Espinoza DNDLT, Muench DG. Analysis of the root mRNA interactome from canola and rice: Crop species that span the eudicot-monocot boundary. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112525. [PMID: 40274193 DOI: 10.1016/j.plantsci.2025.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The advent of RNA interactome capture (RIC) has been important in characterizing the mRNA-binding proteomes (mRBPomes) of several eukaryotic taxa. To date, published plant poly(A)+ RIC studies have been restricted to Arabidopsis thaliana and specific to seedlings, suspension cell cultures, mesophyll protoplasts, leaves and embryos. The focus of this study was to expand RIC to root tissue in two crop species, the oilseed eudicot Brassica napus (canola) and the cereal monocot Oryza sativa (rice). The optimization and application of root RIC in these species resulted in the identification of 499 proteins and 334 proteins comprising the root mRBPomes of canola and rice, respectively, with 182 shared orthologous proteins between these two species. In both mRBPomes, approximately 80 % of captured proteins were linked to RNA biology, with RRM-containing proteins and ribosomal proteins among the most overrepresented protein groups. Consistent with trends observed in other RIC studies, novel RNA-binding proteins were captured that lacked known RNA-binding domains and included numerous metabolic enzymes. The root mRBPomes from canola and rice shared a high degree of similarity at the compositional level, as shown by a comparative analysis of orthologs predicted for captured proteins to the published Arabidopsis RIC-derived mRBPomes, as well as our Arabidopsis root mRBPome data presented here. This analysis also revealed that 46 proteins in the canola and rice root mRBPomes were unique when orthologs were compared to the published Arabidopsis RBPomes, including those identified recently using phase separation approach that identified proteins bound to all RNA types. The results from this research expands the plant mRBPome into root tissue using two crop species that span the eudicot-monocot clade boundary, and provides fundamental knowledge on RNA-binding protein function in post-transcriptional control of gene expression in crop species for possible future development of beneficial traits.
Collapse
Affiliation(s)
- Chris R Joshna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Dilini M Atugala
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | | | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada.
| |
Collapse
|
2
|
Natarajan S, Gehrke J, Pucker B. Mapping-based genome size estimation. BMC Genomics 2025; 26:482. [PMID: 40369445 PMCID: PMC12079912 DOI: 10.1186/s12864-025-11640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
While the size of chromosomes can be measured under a microscope, obtaining the exact size of a genome remains a challenge. Biochemical methods and k-mer distribution-based approaches allow only estimations. An alternative approach to estimate the genome size based on high contiguity assemblies and read mappings is presented here. Analyses of Arabidopsis thaliana and Beta vulgaris data sets are presented to show the impact of different parameters. Oryza sativa, Brachypodium distachyon, Solanum lycopersicum, Vitis vinifera, and Zea mays were also analyzed to demonstrate the broad applicability of this approach. Further, MGSE was also used to analyze Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans datasets to show its utility beyond plants. Mapping-based Genome Size Estimation (MGSE) and additional scripts are available on GitHub: https://github.com/bpucker/MGSE . MGSE predicts genome sizes based on short reads or long reads requiring a minimal coverage of 5-fold.
Collapse
Affiliation(s)
- Shakunthala Natarajan
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Mendelssohnstrasse 4, 38106, Braunschweig, Germany
- Molecular Plant Sciences, Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Jessica Gehrke
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Mendelssohnstrasse 4, 38106, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Mendelssohnstrasse 4, 38106, Braunschweig, Germany.
- Molecular Plant Sciences, Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Wang Z, Miao L, Tan K, Guo W, Xin B, Appels R, Jia J, Lai J, Lu F, Ni Z, Fu X, Sun Q, Chen J. Near-complete assembly and comprehensive annotation of the wheat Chinese Spring genome. MOLECULAR PLANT 2025; 18:892-907. [PMID: 39949061 DOI: 10.1016/j.molp.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
A complete reference genome assembly is crucial for biological research and genetic improvement. Owing to its large size and highly repetitive nature, there are numerous gaps in the globally used wheat Chinese Spring (CS) genome assembly. In this study, we generated a 14.46 Gb near-complete assembly of the CS genome, with a contig N50 of over 266 Mb and an overall base accuracy of 99.9963%. Among the 290 gaps that remained (26, 257, and 7 gaps from the A, B, and D subgenomes, respectively), 278 were extremely high-copy tandem repeats, whereas the remaining 12 were transposable-element-associated gaps. Four chromosome assemblies were completely gap-free, including chr1D, chr3D, chr4D, and chr5D. Extensive annotation of the near-complete genome revealed 151 405 high-confidence genes, of which 59 180 were newly annotated, including 7602 newly assembled genes. Except for the centromere of chr1B, which has a gap associated with superlong GAA repeat arrays, the centromeric sequences of all of the remaining 20 chromosomes were completely assembled. Our near-complete assembly revealed that the extent of tandem repeats, such as simple-sequence repeats, was highly uneven among different subgenomes. Similarly, the repeat compositions of the centromeres also varied among the three subgenomes. With the genome sequences of all six types of seed storage proteins (SSPs) fully assembled, the expression of ω-gliadin was found to be contributed entirely by the B subgenome, whereas the expression of the other five types of SSPs was most abundant from the D subgenome. The near-complete CS genome will serve as a valuable resource for genomic and functional genomic research and breeding of wheat as well as its related species.
Collapse
Affiliation(s)
- Zijian Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Beibei Xin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China
| | - Rudi Appels
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Fei Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Xiangdong Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China; State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Jian Chen
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (Ministry of Education), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Wu Q, Yang M, Yang Y, Iqbal A, Zhou L. Assessment of bisulfite sequencing alignment tools for whole genome analysis in plants. Int J Biol Macromol 2025; 305:140940. [PMID: 39952492 DOI: 10.1016/j.ijbiomac.2025.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
DNA methylation, a key component of epigenetic regulation, is essential for preserving normal cellular functions, supporting plant growth, and facilitating development and responses to stress. Whole genome bisulfite sequencing (WGBS) is the definitive method for studying DNA methylation and is extensively used in functional genomics research across both animal and plant species. While various analysis tools have been created for WGBS, a thorough evaluation of their performance in analyzing plant data remains lacking. This study provides a comprehensive assessment of six widely used alignment methods (Abismal, Bismark-his2, BSSeeker2-bwt2-local, BSSeeker2-bwt2-e2e, Bismark-bwt2-e2e, and BSMAP) across four DNA methylation analysis tools. The evaluation encompassed aspects such as runtime efficiency, memory resource utilization, alignment quality, and identification of methylation sites by analyzing DNA methylation data from three major crops: Arabidopsis thaliana, Oryza sativa, and Glycine max. The results indicated that although BSMAP required larger memory requirements, it exhibited higher efficiency in terms of running speed, particularly when dealing with large-scale genomic data. Furthermore, BSMAP showed excellent performance in alignment quality and identification of methylated sites, ensuring the reliability and precision of the results. The study highlights the importance of researchers carefully selecting alignment tools and considering factors like available computational resources, specific research needs, and the balance between processing speed and memory usage. This work offers valuable analytical guidance for scientists engaged in DNA methylation studies plants, contributing to improved research efficiency and result reliability. 1 t holds significant scientific importance for a deeper analysis of DNA methylation in plant biology.
Collapse
Affiliation(s)
- Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mengdi Yang
- Qionghai Tropical Crops Service Center, Qionghai 571400, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
5
|
Li R, Lei C, Zhang Q, Guo X, Cui X, Wang X, Li X, Gao J. Pan-Genome-Based Characterization of the SRS Transcription Factor Family in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2025; 14:1257. [PMID: 40284145 PMCID: PMC12030303 DOI: 10.3390/plants14081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The Short Internodes-Related Sequence (SRS) family, a class of plant-specific transcription factors crucial for diverse biological processes, was systematically investigated in foxtail millet using pan-genome data from 110 core germplasm resources as well as two high-quality genomes (xm and Yu1). We identified SRS members and analyzed their intra-species distribution patterns, including copy number variation (CNV) and interchromosomal translocations. A novel standardized nomenclature (Accession_SiSRSN[.n]_xDy or xTy) was proposed to unify gene family nomenclature, enabling the direct visualization of member number variation across germplasms and the identification of core/variable members while highlighting chromosomal translocations. Focusing on the two high-quality genomes, both harboring six core SRS members, we performed whole-genome collinearity analysis with Arabidopsis, rice, maize, soybean, and green foxtail. Ka/Ks analysis of collinear gene pairs revealed purifying selection acting on SiSRS genes. Promoter analysis identified abundant stress-responsive cis-elements. Among core members, the xm_SiSRS5 gene exhibited the highest expression during vegetative growth but showed significant downregulation under drought and salt stress, suggesting its role as a key negative regulator in abiotic stress responses. This study demonstrates the utility of pan-genomics in resolving gene family dynamics and establishes SiSRS5 as a critical target for stress tolerance engineering in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xukai Li
- Shanxi Hou Ji Laboratory, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (R.L.); (C.L.); (Q.Z.); (X.G.); (X.C.); (X.W.)
| | - Jianhua Gao
- Shanxi Hou Ji Laboratory, College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (R.L.); (C.L.); (Q.Z.); (X.G.); (X.C.); (X.W.)
| |
Collapse
|
6
|
Ma L, Zeng X, Wang J, Xiong H, Yu Y, Liu H, Yang QY, Yang R, Yang X. Telomere-to-telomere gapless genome assembly of Triplophysa yaopeizhii. Sci Data 2025; 12:597. [PMID: 40210914 PMCID: PMC11985934 DOI: 10.1038/s41597-025-04943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The genus Triplophysa exhibits remarkable adaptability to the unique environment found at the Qinghai-Tibet Plateau (QTP). Higher quality genomes are helpful to the study of the adaptability to the extreme environment in the plateau. This study utilized PacBio HiFi, Ultra-long ONT, and Hi-C sequencing of Triplophysa yaopeizhii to construct the first telomere-to-telomere (T2T) gapless genome assembly of the genus Triplophysa. The genome size is 671.58 Mb, with a contig N50 length of 26.04 Mb. The sequences were anchored onto 25 chromosomes with all centromeres and telomeres. Furthermore, 293.98 Mb (43.77%) of repetitive sequences and 26,487 protein-coding genes were identified. Comparative analyses with the genomes of closely related species demonstrated high completeness, continuity, and accuracy of the genome. The genomic quality was further substantiated by the QV of 31.82 with 96.60% of BUSCO. This study provides a valuable genetic resource of the genus Triplophysa and serves as an essential reference for elucidating the adaptive genetic mechanisms of plateau fish to the high altitude.
Collapse
Affiliation(s)
- Li Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixiao Wang
- Yebatan Branch of Huadian Jinshajiang Upstream Hydropower Development Co., Ltd., Ganzi, 627153, China
| | - Hao Xiong
- Yebatan Branch of Huadian Jinshajiang Upstream Hydropower Development Co., Ltd., Ganzi, 627153, China
| | - Yongyao Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiping Liu
- College of Fisheries, Southwest University, Chongqing, 402460, China
| | - Qing-Yong Yang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruibin Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuefen Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Sijacic P, Holder DH, Silver BD, Krall EG, Willett CG, Foroozani M, Deal RB. Replacement of Arabidopsis H2A.Z with human H2A.Z orthologs reveals extensive functional conservation and limited importance of the N-terminal tail sequence for Arabidopsis development. Genetics 2025:iyaf065. [PMID: 40179256 DOI: 10.1093/genetics/iyaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
The incorporation of histone variants, distinct paralogs of core histones, into chromatin affects all DNA-templated processes in the cell, including the regulation of transcription. In recent years, much research has been focused on H2A.Z, an evolutionarily conserved H2A variant found in all eukaryotes. In order to investigate the functional conservation of H2A.Z histones during eukaryotic evolution we transformed h2a.z deficient Arabidopsis thaliana plants with each of the three human H2A.Z variants to assess their ability to rescue the mutant defects. We discovered that human H2A.Z.1 and H2A.Z.2.1 fully complement the phenotypic abnormalities of h2a.z plants despite significant divergence in the N-terminal tail sequences of Arabidopsis and human H2A.Zs. In contrast, the brain-specific splice variant H2A.Z.2.2 has a dominant-negative effect in wild-type plants, mimicking an H2A.Z deficiency phenotype. Furthermore, human H2A.Z.1 almost completely re-establishes normal H2A.Z chromatin occupancy in h2a.z plants and restores the expression of more than 84% of misexpressed genes. Finally, we used a series of N-terminal tail truncations of Arabidopsis HTA11 to reveal that the N-terminal tail of Arabidopsis H2A.Z is not necessary for normal plant development under optimal growth conditions but does play an important role in mounting proper abiotic stress responses.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Brianna D Silver
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Ellen G Krall
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Courtney G Willett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Liu D, Wang M, Gent JI, Sun P, Dawe RK, Umen J. Two CENH3 paralogs in the green alga Chlamydomonas reinhardtii have a redundantly essential function and associate with ZeppL-LINE1 elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70153. [PMID: 40289909 DOI: 10.1111/tpj.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Centromeres in eukaryotes are defined by the presence of histone H3 variant CENP-A/CENH3. Chlamydomonas encodes two predicted CENH3 paralogs, CENH3.1 and CENH3.2, that have not been previously characterized. We generated peptide antibodies to unique N-terminal epitopes for each of the two predicted Chlamydomonas CENH3 paralogs as well as an antibody against a shared CENH3 epitope. All three CENH3 antibodies recognized proteins of the expected size on immunoblots and had punctate nuclear immunofluorescence staining patterns. These results are consistent with both paralogs being expressed and localized to centromeres. CRISPR-Cas9-mediated insertional mutagenesis was used to generate predicted null mutations in either CENH3.1 or CENH3.2. Single mutants were viable but cenh3.1 cenh3.2 double mutants were not recovered, confirming that the function of CENH3 is essential. We sequenced and assembled two chromosome-scale Chlamydomonas genomes from strains CC-400 and UL-1690 (a derivative of CC-1690) with complete centromere sequences for 17/17 and 14/17 chromosomes respectively, enabling us to compare centromere evolution across four isolates with near complete assemblies. These data revealed significant changes across isolates between homologous centromeres including mobility and degeneration of ZeppL-LINE1 (ZeppL) transposons that comprise the major centromere repeat sequence in Chlamydomonas. We used cleavage under targets and tagmentation (CUT&Tag) to purify and map CENH3-bound genomic sequences and found enrichment of CENH3-binding almost exclusively at predicted centromere regions. An interesting exception was chromosome 2 in UL-1690, which had enrichment at its genetically mapped centromere repeat region as well as a second, distal location, centered around a single recently acquired ZeppL insertion. The CENH3-bound regions of the 17 Chlamydomonas centromeres ranged from 63.5 kb (average lower estimate) to 175 kb (average upper estimate). The relatively small size of its centromeres suggests that Chlamydomonas may be a useful organism for testing and deploying artificial chromosome technologies.
Collapse
Affiliation(s)
- Dianyi Liu
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - Mingyu Wang
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Peipei Sun
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| | - R Kelly Dawe
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, Missouri, 63132, USA
| |
Collapse
|
9
|
Liu S, Li K, Dai X, Qin G, Lu D, Gao Z, Li X, Song B, Bian J, Ren D, Liu Y, Chen X, Xu Y, Liu W, Yang C, Liu X, Chen S, Li J, Li B, He H, Deng XW. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat Genet 2025; 57:1008-1020. [PMID: 40195562 PMCID: PMC11985340 DOI: 10.1038/s41588-025-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
The complete assembly of vast and complex plant genomes, like the hexaploid wheat genome, remains challenging. Here we present CS-IAAS, a comprehensive telomere-to-telomere (T2T) gap-free Triticum aestivum L. genome, encompassing 14.51 billion base pairs and featuring all 21 centromeres and 42 telomeres. Annotation revealed 90.8 Mb additional centromeric satellite arrays and 5,611 rDNA units. Genome-wide rearrangements, centromeric elements, transposable element expansion and segmental duplications were deciphered during tetraploidization and hexaploidization, providing a comprehensive understanding of wheat subgenome evolution. Among them, transposable element insertions during hexaploidization greatly influenced gene expression balances, thus increasing the genome plasticity of transcriptional levels. Additionally, we generated 163,329 full-length cDNA sequences and proteomic data that helped annotate 141,035 high-confidence protein-coding genes. The complete T2T reference genome (CS-IAAS), along with its transcriptome and proteome, represents a significant step in our understanding of wheat genome complexity and provides insights for future wheat research and breeding.
Collapse
Affiliation(s)
- Shoucheng Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiuru Dai
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dongdong Lu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaopeng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bolong Song
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianxin Bian
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Da Ren
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yongqi Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaofeng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yunbi Xu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Weimin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chen Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaoqin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jian Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bosheng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Medhi U, Chaliha C, Singh A, Nath BK, Kalita E. Third generation sequencing transforming plant genome research: Current trends and challenges. Gene 2025; 940:149187. [PMID: 39724994 DOI: 10.1016/j.gene.2024.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
In recent years, third-generation sequencing (TGS) technologies have transformed genomics and transcriptomics research, providing novel opportunities for significant discoveries. The long-read sequencing platforms, with their unique advantages over next-generation sequencing (NGS), including a definitive protocol, reduced operational time, and real-time sequencing, possess the potential to transform plant genomics. TGS optimizes and enhances the efficiency of data analysis by removing the necessity for time-consuming assembly tools. The current review examines the development and application of bioinformatics tools for data analysis and annotation, driven by the rapid advancement of TGS platforms like Oxford Nanopore Technologies and Pacific Biosciences. Transcriptome analysis utilizing TGS has been extensively employed to elucidate complex plant transcriptomes and genomes, particularly those characterized by high frequencies of duplicated genomes and repetitive sequences. As a result, current methodologies that allow for generating transcriptomes and comprehensive whole-genome sequences of complex plant genomes employing tailored hybrid sequencing techniques that integrate NGS and TGS technologies have been emphasized herein. This paper, thus, articulates a vision for a future in which TGS effectively addresses the challenges faced in plant research, offering a comprehensive understanding of its advantages, applications, limitations, and promising prospects.
Collapse
Affiliation(s)
- Upasana Medhi
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Chayanika Chaliha
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences-CAU Imphal, Umiam, Meghalaya, 793104, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Bikash K Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
11
|
Sun Y, Yuan T. Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii. Int J Biol Macromol 2025; 297:139879. [PMID: 39818398 DOI: 10.1016/j.ijbiomac.2025.139879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.Y.Hong) harbored 45 PlGRAS genes, which are categorized into eight subfamilies. These genes are distributed across chromosomes 1 through 5, with their encoded proteins exhibiting variation in physicochemical properties. The promoter regions of the Paeonia ludlowii GRAS genes are enriched with cis-acting elements associated with growth and development, hormonal responses, and light signaling, among others. Among these genes, we have pinpointed PlGRAS22, which bears the closest resemblance to the AtLAS gene in Arabidopsis. Notably, this gene exhibits heightened expression levels within the LAS subfamily across a range of tissues, and it demonstrates an exceptionally robust response to treatments with exogenous gibberellins and cytokinins. The subdued expression of TRV2-PlGRAS22 within the flower buds of the Paeonia ludlowii has resulted in a diminished development of axillary bud primordia. Intriguingly, overexpression of PlGRAS22 in Arabidopsis led to an increase in the number of branches, highlighting its potential role in developmental processes. Furthermore, through the use of luciferase and yeast one-hybrid assays, we have demonstrated that PlGRAS22 interacts with the SPL transcription factor PlSPL3. The comprehensive analysis presented in this study lays a solid foundation for future investigations into the functional roles of Paeonia ludlowii GRAS genes and elucidates the underlying mechanisms governing growth and development in this species.
Collapse
Affiliation(s)
- Yue Sun
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China
| | - Tao Yuan
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China.
| |
Collapse
|
12
|
Li W, Wang Y, Liu J, He Q, Zhou Y, Li M, Liu N, Liang H, Yun Y, Gong Z, Du H. A gap-free complete genome assembly of oat and OatOmics, a multi-omics database. MOLECULAR PLANT 2025; 18:179-182. [PMID: 39780493 DOI: 10.1016/j.molp.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Affiliation(s)
- Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071000, China
| | - Yue Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Minghao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071000, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Yange Yun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071000, China.
| |
Collapse
|
13
|
Wang Y, Hao X, Chen C, Wang H, Gao P, Yang X, Dong X, Qin H, Li M, Hou S, Jian J, Chang J, Wu J, Mu Z. Telomere-to-telomere genome of common bean (Phaseolus vulgaris L., YP4). Gigascience 2025; 14:giaf001. [PMID: 40366866 PMCID: PMC12077395 DOI: 10.1093/gigascience/giaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/06/2024] [Accepted: 12/27/2024] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Common bean is a significant grain legume in human diets. However, the lack of a complete reference genome for common beans has hindered efforts to improve agronomic cultivars. FINDINGS Herein, we present the first telomere-to-telomere (T2T) genome assembly of common bean (Phaseolus vulgaris L., YP4) using PacBio High-Fidelity reads, ONT ultra-long sequencing, and Hi-C technologies. The assembly resulted in a genome size of 560.30 Mb with an N50 of 55.11 Mb, exhibiting high completeness and accuracy (BUSCO score: 99.5%, quality value (QV): 54.86). The sequences were anchored into 11 chromosomes, with 20 of 22 telomeres identified, leading to the formation of 9 T2T pseudomolecules. Furthermore, we identified repetitive elements accounting for 61.20% of the genome and predicted 29,925 protein-coding genes. Phylogenetic analysis suggested an estimated divergence time of approximately 11.6 million years ago between P. vulgaris and Vigna angularis. Comparative genome analysis revealed the expanded gene families and variations between YP4 and G19833 associated with defense response. CONCLUSIONS The T2T reference genome and genomic insights presented here are crucial for future genetic studies not only in common bean but also in other legumes.
Collapse
Affiliation(s)
- Yan Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Xiaopeng Hao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | | | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Peng Gao
- BGI Genomics, Shenzhen 518083, China
| | | | - Xue Dong
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Sen Hou
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | | | - Jianwu Chang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100089, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China
| |
Collapse
|
14
|
Zhu W, Qian J, Hou Y, Tembrock LR, Nie L, Hsu YF, Xiang Y, Zou Y, Wu Z. The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in Arabidopsis thaliana. PLANT DIVERSITY 2025; 47:127-135. [PMID: 40041566 PMCID: PMC11873582 DOI: 10.1016/j.pld.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 03/06/2025]
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in the replication, recombination and repair processes of organellar DNA molecules. In Arabidopsis thaliana, SSBs are encoded by a small family of two genes (SSB1 and SSB2). However, the functional divergence of these two SSB copies in plants remains largely unknown, and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete. In this study, phylogenetic, gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants. Based on accurate long-read sequencing results, ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes. Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
Collapse
Affiliation(s)
- Weidong Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Qian
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yingke Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
15
|
Plačková K, Bureš P, Lysak MA, Zedek F. Centromere drive may propel the evolution of chromosome and genome size in plants. ANNALS OF BOTANY 2024; 134:1067-1076. [PMID: 39196767 PMCID: PMC11687628 DOI: 10.1093/aob/mcae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS We analysed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potentially also influencing the process of post-polyploid diploidization. We propose a model which in a single framework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.
Collapse
Affiliation(s)
- Klára Plačková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Martin A Lysak
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
16
|
Liu K, Li X, Wang C, Han Y, Zhu Z, Li B. Genome-wide identification and characterization of the LRX gene family in grapevine (Vitis vinifera L.) and functional characterization of VvLRX7 in plant salt response. BMC Genomics 2024; 25:1155. [PMID: 39614156 DOI: 10.1186/s12864-024-11087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Leucine-rich repeat (LRR) extensins (LRXs), which are cell wall-localized chimeric extensin proteins, are essential for the development of plants and their resistance to stress. Despite the significance of these genes, an extensive genome-wide analysis of the LRX gene family in grapevine (Vitis vinifera L.) is lacking. RESULTS We here detected 14 grapevine LRX genes and classified them into four groups through phylogenetic analysis. Then, their physiological and biochemical properties and gene/protein structures were analyzed. According to synteny analysis, tandem and segmental duplications have appreciably affected the expansion of the grapevine LRX gene family. On investigating tissue-specific expression profiles and cis-regulatory elements, we observed that VvLRXs likely serve as regulators of both the growth of grapevines and their responses to various environmental stresses. Salt stress treatments induced the expression of several VvLRXs, and VvLRX7 expression was the most significantly upregulated. Furthermore, VvLRX7 expression was positively correlated with the salt tolerance of grape rootstocks. VvLRX7 overexpression in Arabidopsis markedly enhanced its salt tolerance. CONCLUSION This study provides a general understanding of the characteristics and evolution of the LRX gene family in grapevine. VvLRX7 may function as a positive regulator of plant's response to salt stress. These findings offer a basis for future studies on the function of grapevine LRXs and their role in improving salt stress tolerance in grapevine.
Collapse
Affiliation(s)
- Kai Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Xiujie Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Chaoping Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Yan Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Ziguo Zhu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China.
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China.
| |
Collapse
|
17
|
Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, Mo DX, Zhao LM, Wang ZX, Wang YC, He-Hua EE, Bai WL, Han D, Dou XT, Ren YL, Dingkao R, Chen HL, Ye Y, Du HD, Zhao ZQ, Wang XJ, Jia SG, Liu ZH, Li MH. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nat Commun 2024; 15:10041. [PMID: 39567477 PMCID: PMC11579321 DOI: 10.1038/s41467-024-54188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
A complete goat (Capra hircus) reference genome enhances analyses of genetic variation, thus providing insights into domestication and selection in goats and related species. Here, we assemble a telomere-to-telomere (T2T) gap-free genome (2.86 Gb) from a cashmere goat (T2T-goat1.0), including a Y chromosome of 20.96 Mb. With a base accuracy of >99.999%, T2T-goat1.0 corrects numerous genome-wide structural and base errors in previous assemblies and adds 288.5 Mb of previously unresolved regions and 446 newly assembled genes to the reference genome. We sequence the genomes of five representative goat breeds for PacBio reads, and use T2T-goat1.0 as a reference to identify a total of 63,417 structural variations (SVs) with up to 4711 (7.42%) in the previously unresolved regions. T2T-goat1.0 was applied in population analyses of global wild and domestic goats, which revealed 32,419 SVs and 25,397,794 SNPs, including 870 SVs and 545,026 SNPs in the previously unresolved regions. Also, our analyses reveal a set of selective variants and genes associated with domestication (e.g., NKG2D and ABCC4) and cashmere traits (e.g., ABCC4 and ASIP).
Collapse
Affiliation(s)
- Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Northern Agriculture and Animal Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong-Yan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhi-Xin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Chuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - EEr He-Hua
- Institute of Animal Science, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wen-Lin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Han
- Modern Agricultural Production Base Construction Engineering Center of Liaoning Province, Liaoyang, China
| | - Xing-Tang Dou
- Liaoning Province Liaoning Cashmere Goat Original Breeding Farm Co., Ltd., Liaoyang, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | | | | | - Yong Ye
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Hai-Dong Du
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Zhan-Qiang Zhao
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Xi-Jun Wang
- Jiaxiang Animal Husbandry and Veterinary Development Center, Jining, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Zhi-Hong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Yu Z, Shen Y, Sun Y, Xu Z, Zheng F, Shen X. Systematic Survey and Analysis Reveal Jasmonate ZIM-Domain Gene Family in Coix lacryma-jobi Under High Temperature. PLANTS (BASEL, SWITZERLAND) 2024; 13:3230. [PMID: 39599439 PMCID: PMC11598564 DOI: 10.3390/plants13223230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Jasmonate ZIM-domain (JAZ) acts as the repressor of the JA signaling pathway and plays a significant role in stress-inducible defense, hormone crosstalk, and the regulation of the growth-defense tradeoff. The aim of this study is to systematically survey and analyze the JAZ gene family in Coix lacryma-jobi and unveil its expression profiles in diverse organs under high-temperature stress using transcriptome. The results identified a total of 20 JAZ family proteins randomly mapped on four chromosomes and encoding 159-409 amino acids. They were clustered into six groups and were mainly located in the nucleus. The conserved motifs, gene composition, and secondary structure of ClJAZ members within the same subtribes were similar. Multitudinous cis-regulating elements employed in hormone responsiveness and stress responsiveness were displayed before the promoter sequences of ClJAZ1-ClJAZ20. ClJAZ1-ClJAZ20 were differentially distributed across diverse organs (the roots, shoots, leaves, kernels, glumes, and flowers), exposed to high-temperature stresses, and treated using ABA or MeJA. A total of 29115 DEGs were identified under heat stress, which were mainly involved in biological regulation and the metabolic process. Intriguingly, ClJAZ15 was highly expressed in the leaves of C. lacryma-jobi, down-regulated by MeJA, but up-regulated by heat stress and ABA, inferring that ClJAZ15 might be associated with ABA-inducible heat stress. The results laid a foundation for in-depth study of the role of ClJAZ family genes in C. lacryma-jobi.
Collapse
Affiliation(s)
- Zhenming Yu
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
| | - Yufeng Shen
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
| | - Yiming Sun
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
| | - Zhangting Xu
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
| | - Feixiong Zheng
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
| | - Xiaoxia Shen
- School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.S.); (Y.S.); (Z.X.); (F.Z.)
- Songyang Institute, Zhejiang Chinese Medical University, Lishui 323400, China
| |
Collapse
|
19
|
Lu D, Liu C, Ji W, Xia R, Li S, Liu Y, Liu N, Liu Y, Deng XW, Li B. Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly. MOLECULAR PLANT 2024; 17:1773-1786. [PMID: 39420560 DOI: 10.1016/j.molp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.
Collapse
Affiliation(s)
- Dongdong Lu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Caijuan Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Wenjun Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Ruiyan Xia
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Shanshan Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yanxia Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Naixu Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yongqi Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Bosheng Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
20
|
Yu H, Wang S, Wang L, Wu W, Xu W, Wu S, Li X, Xu W, Huang Z, Lin Y, Wang H. Pan-genomic characterization and structural variant analysis reveal insights into spore development and species diversity in Ganoderma. Microb Genom 2024; 10:001328. [PMID: 39565084 PMCID: PMC11897173 DOI: 10.1099/mgen.0.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Understanding the genomic diversity and functional implications of Ganoderma species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of Ganoderma spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all Ganoderma strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the MSH4 gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of Ganoderma, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.
Collapse
Affiliation(s)
- Hang Yu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
| | - Shasha Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Lina Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weixin Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Shuisheng Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Xiaoyan Li
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zehao Huang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Yu Lin
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
21
|
Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, Xie Z, Yang S, Zhao Q, Wang Z, Yang Y, Pan J, Li H, Wang J, Wang C, Rieseberg LH, Zhang S, Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. PLANT COMMUNICATIONS 2024; 5:101000. [PMID: 38859586 PMCID: PMC11574287 DOI: 10.1016/j.xplc.2024.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.
Collapse
Affiliation(s)
- Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lanqing Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaijie Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhihua Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qifeng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zewen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuhang Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahui Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxiang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shutian Tao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
22
|
Mishra S, Srivastava AK, Khan AW, Tran LSP, Nguyen HT. The era of panomics-driven gene discovery in plants. TRENDS IN PLANT SCIENCE 2024; 29:995-1005. [PMID: 38658292 DOI: 10.1016/j.tplants.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Panomics is an approach to integrate multiple 'omics' datasets, generated using different individuals or natural variations. Considering their diverse phenotypic spectrum, the phenome is inherently associated with panomics-based science, which is further combined with genomics, transcriptomics, metabolomics, and other omics techniques, either independently or collectively. Panomics has been accelerated through recent technological advancements in the field of genomics that enable the detection of population-wide structural variations (SVs) and hence offer unprecedented insights into the genetic variations contributing to important agronomic traits. The present review provides the recent trends of panomics-driven gene discovery toward various traits related to plant development, stress tolerance, accumulation of specialized metabolites, and domestication/dedomestication. In addition, the success stories are highlighted in the broader context of enhancing crop productivity.
Collapse
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - Aamir W Khan
- Division of Plant Science and Technology and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
24
|
Kileeg Z, Wang P, Mott GA. Chromosome-Scale Assembly and Annotation of Eight Arabidopsis thaliana Ecotypes. Genome Biol Evol 2024; 16:evae169. [PMID: 39101619 PMCID: PMC11327923 DOI: 10.1093/gbe/evae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The plant Arabidopsis thaliana is a model system used by researchers through much of plant research. Recent efforts have focused on discovering the genomic variation found in naturally occurring ecotypes isolated from around the world. These ecotypes have come from diverse climates and therefore have faced and adapted to a variety of abiotic and biotic stressors. The sequencing and comparative analysis of these genomes can offer insight into the adaptive strategies of plants. While there are a large number of ecotype genome sequences available, the majority were created using short-read technology. Mapping of short-reads containing structural variation to a reference genome bereft of that variation leads to incorrect mapping of those reads, resulting in a loss of genetic information and introduction of false heterozygosity. For this reason, long-read de novo sequencing of genomes is required to resolve structural variation events. In this article, we sequenced the genomes of eight natural variants of A. thaliana using nanopore sequencing. This resulted in highly contiguous assemblies with >95% of the genome contained within five contigs. The sequencing results from this study include five ecotypes from relict and African populations, an area of untapped genetic diversity. With this study, we increase the knowledge of diversity we have across A. thaliana ecotypes and contribute to ongoing production of an A. thaliana pan-genome.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - G Adam Mott
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Li M, Chen C, Wang H, Qin H, Hou S, Yang X, Jian J, Gao P, Liu M, Mu Z. Telomere-to-telomere genome assembly of sorghum. Sci Data 2024; 11:835. [PMID: 39095379 PMCID: PMC11297213 DOI: 10.1038/s41597-024-03664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
"Cuohu Bazi" (CHBZ) is an ancient sorghum variety collected from the fields of China, known for its agronomic traits like dwarf stature, early maturation. In this study, we present the first telomere-to-telomere (T2T) and gap-free genome assembly of CHBZ using PacBio HiFi reads, Oxford Nanopore Technologies, and Hi-C data. The assembled genome comprises 724.85 Mb, effectively resolving all 3,913 gaps that were present in the previous sorghum BTx623 reference genome. Notably, the T2T assembly captures 10 centromeres and all 20 telomeres, providing strong support for their integrity. This assembly is of high quality in terms of contiguity (contig N50: 71.1 Mb), completeness (BUSCO score: 99.01%, k-mer completeness: 98.88%), and correctness (QV: 61.60). Repetitive sequences accounted for 70.41% of the genome and a total of 32,855 protein-coding genes have been annotated. Furthermore, 161 CHBZ-specific presence/absence variants genes have been identified when comparing to BTx623 genome. This study provides valuable insights for future research on sorghum genetics, genomics, and evolutionary history.
Collapse
Affiliation(s)
- Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | | | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Sen Hou
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | | | | | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| |
Collapse
|
26
|
Sijacic P, Holder DH, Krall EG, Willett CG, Foroozani M, Deal RB. Replacement of Arabidopsis H2A.Z with human H2A.Z orthologs reveals extensive functional conservation and limited importance of the N-terminal tail sequence for Arabidopsis development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565555. [PMID: 37961174 PMCID: PMC10635141 DOI: 10.1101/2023.11.03.565555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The incorporation of histone variants, distinct paralogs of core histones, into chromatin affects all DNA-templated processes in the cell, including the regulation of transcription. In recent years, much research has been focused on H2A.Z, an evolutionarily conserved H2A variant found in all eukaryotes. In order to investigate the functional conservation of H2A.Z histones during eukaryotic evolution we transformed h2a.z deficient plants with each of the three human H2A.Z variants to assess their ability to rescue the mutant defects. We discovered that human H2A.Z.1 and H2A.Z.2.1 fully complement the phenotypic abnormalities of h2a.z plants despite significant divergence in the N-terminal tail sequences of Arabidopsis and human H2A.Zs. In contrast, the brain-specific splice variant H2A.Z.2.2 has a dominant-negative effect in wild-type plants, mimicking an H2A.Z deficiency phenotype. Furthermore, H2A.Z.1 almost completely re-establishes normal H2A.Z chromatin occupancy in h2a.z plants and restores the expression of more than 84% of misexpressed genes. Finally, we used a series of N-terminal tail truncations of Arabidopsis HTA11 to reveal that the N-terminal tail of Arabidopsis H2A.Z is not necessary for normal plant development but does play an important role in mounting proper environmental stress responses.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| | - Dylan H. Holder
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Ellen G. Krall
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Courtney G. Willett
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | | | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
27
|
Li Z, Zhu Z, Qian K, Tang B, Han B, Zhong Z, Fu T, Zhou P, Stukenbrock EH, Martin FM, Yuan Z. Intraspecific diploidization of a halophyte root fungus drives heterosis. Nat Commun 2024; 15:5872. [PMID: 38997287 PMCID: PMC11245560 DOI: 10.1038/s41467-024-49468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.
Collapse
Affiliation(s)
- Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Zhiyong Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Nanjing Forestry University, Nanjing, 100071, China
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, 224002, China
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Zhenhui Zhong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Tao Fu
- Shenzhen Zhuoyun Haizhi Medical Research Center Co., Ltd, Shenzhen, 518063, China
| | - Peng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118, Kiel, Germany
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Francis M Martin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganisms, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
28
|
Yang T, Cai Y, Huang T, Yang D, Yang X, Yin X, Zhang C, Yang Y, Yang Y. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. HORTICULTURE RESEARCH 2024; 11:uhae119. [PMID: 38966866 PMCID: PMC11220182 DOI: 10.1093/hr/uhae119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/14/2024] [Indexed: 07/06/2024]
Abstract
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.
Collapse
Affiliation(s)
- Tianyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
29
|
Wang Y, Zhou F, Li Y, Yu X, Wang Y, Zhao Q, Feng X, Chen J, Lou Q. Characterization of the CsCENH3 protein and centromeric DNA profiles reveal the structures of centromeres in cucumber. HORTICULTURE RESEARCH 2024; 11:uhae127. [PMID: 38966863 PMCID: PMC11220175 DOI: 10.1093/hr/uhae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
Centromeres in eukaryotes mediate the accurate segregation of chromosomes during cell division. They serve as essential functional units of chromosomes and play a core role in the process of genome evolution. Centromeres are composed of satellite repeats and highly repetitive centromeric retrotransposons (CRs), which vary greatly even among closely related species. Cucumber (Cucumis sativus) is a globally cultivated and economically important vegetable and the only species in the Cucumis genus with seven pairs of chromosomes. Therefore, studying the centromeres of the Cucumis subgenus may yield valuable insights into its genome structure and evolution. Using chromatin immunoprecipitation (ChIP) techniques, we isolated centromeric DNA from cucumber reference line 9930. Our investigation into cucumber centromeres uncovered the centromeric satellite sequence, designated as CentCs, and the prevalence of Ty1/Copia long terminal repeat retrotransposons. In addition, active genes were identified in the CsCENH3 nucleosome regions with low transcription levels. To the best of our knowledge, this is the first time that characterization of centromeres has been achieved in cucumber. Meanwhile, our results on the distribution of CentCs and CsCRs in the subgenus Cucumis indicate that the content of centromeric repeats in the wild variants was significantly reduced compared with the cultivated cucumber. The results provide evidence for centromeric DNA amplification that occurred during the domestication process from wild to cultivated cucumber. Furthermore, these findings may offer new information for enhancing our understanding of phylogenetic relationships in the Cucumis genus.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Fang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yangang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Xianbo Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
30
|
Wang H, Wang J, Chen C, Chen L, Li M, Qin H, Tian X, Hou S, Yang X, Jian J, Gao P, Wang L, Qiao Z, Mu Z. A complete reference genome of broomcorn millet. Sci Data 2024; 11:657. [PMID: 38906866 PMCID: PMC11192726 DOI: 10.1038/s41597-024-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Broomcorn millet (Panicum miliaceum L.), known for its traits of drought resistance, adaptability to poor soil, short growth period, and high photosynthetic efficiency as a C4 plant, represents one of the earliest domesticated crops globally. This study reports the telomere-to-telomere (T2T) gap-free reference genome for broomcorn millet (AJ8) using PacBio high-fidelity (HiFi) long reads, Oxford Nanopore long-read technologies and high-throughput chromosome conformation capture (Hi-C) sequencing data. The size of AJ8 genome was approximately 834.7 Mb, anchored onto 18 pseudo-chromosomes. Notably, 18 centromeres and 36 telomeres were obtained. The assembled genome showed high quality in terms of completeness (BUSCO score: 99.6%, QV: 61.7, LAI value: 20.4). In addition, 63,678 protein-coding genes and 433.8 Mb (~52.0%) repetitive sequences were identified. The complete reference genome for broomcorn millet provides a valuable resource for genetic studies and breeding of this important cereal crop.
Collapse
Affiliation(s)
- Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | - Ling Chen
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Sen Hou
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | | | | | - Lun Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| |
Collapse
|
31
|
Niu S, Li Q. From haploid to reference: a new milestone in poplar genomics. FORESTRY RESEARCH 2024; 4:e020. [PMID: 39524425 PMCID: PMC11524230 DOI: 10.48130/forres-0024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Shihui Niu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
32
|
Chen W, Wang X, Sun J, Wang X, Zhu Z, Ayhan DH, Yi S, Yan M, Zhang L, Meng T, Mu Y, Li J, Meng D, Bian J, Wang K, Wang L, Chen S, Chen R, Jin J, Li B, Zhang X, Deng XW, He H, Guo L. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat Commun 2024; 15:4295. [PMID: 38769327 PMCID: PMC11106260 DOI: 10.1038/s41467-024-48643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.
Collapse
Affiliation(s)
- Weikai Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xiangfeng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Zhangsheng Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shu Yi
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ming Yan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Lili Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 262500, China
| | - Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Yu Mu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jun Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Dian Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ke Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ruidong Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jingyun Jin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| |
Collapse
|
33
|
Hu J, Wang Z, Liang F, Liu SL, Ye K, Wang DP. NextPolish2: A Repeat-aware Polishing Tool for Genomes Assembled Using HiFi Long Reads. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad009. [PMID: 38862426 PMCID: PMC12016036 DOI: 10.1093/gpbjnl/qzad009] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 06/13/2024]
Abstract
The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.
Collapse
Affiliation(s)
- Jiang Hu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- GrandOmics Biosciences, Beijing 102206, China
| | - Zhuo Wang
- GrandOmics Biosciences, Beijing 102206, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing 102206, China
| | - Shan-Lin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | | |
Collapse
|
34
|
Lian Q, Huettel B, Walkemeier B, Mayjonade B, Lopez-Roques C, Gil L, Roux F, Schneeberger K, Mercier R. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. Nat Genet 2024; 56:982-991. [PMID: 38605175 PMCID: PMC11096106 DOI: 10.1038/s41588-024-01715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Although originally primarily a system for functional biology, Arabidopsis thaliana has, owing to its broad geographical distribution and adaptation to diverse environments, developed into a powerful model in population genomics. Here we present chromosome-level genome assemblies of 69 accessions from a global species range. We found that genomic colinearity is very conserved, even among geographically and genetically distant accessions. Along chromosome arms, megabase-scale rearrangements are rare and typically present only in a single accession. This indicates that the karyotype is quasi-fixed and that rearrangements in chromosome arms are counter-selected. Centromeric regions display higher structural dynamics, and divergences in core centromeres account for most of the genome size variations. Pan-genome analyses uncovered 32,986 distinct gene families, 60% being present in all accessions and 40% appearing to be dispensable, including 18% private to a single accession, indicating unexplored genic diversity. These 69 new Arabidopsis thaliana genome assemblies will empower future genetic research.
Collapse
Affiliation(s)
- Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck-Genome-centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Birgit Walkemeier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baptiste Mayjonade
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | - Lisa Gil
- INRAE, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany.
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
35
|
Xie L, Gong X, Yang K, Huang Y, Zhang S, Shen L, Sun Y, Wu D, Ye C, Zhu QH, Fan L. Technology-enabled great leap in deciphering plant genomes. NATURE PLANTS 2024; 10:551-566. [PMID: 38509222 DOI: 10.1038/s41477-024-01655-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Xiaojiao Gong
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Kun Yang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shiyu Zhang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Leti Shen
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Yanqing Sun
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China.
| |
Collapse
|
36
|
Chang X, He X, Li J, Liu Z, Pi R, Luo X, Wang R, Hu X, Lu S, Zhang X, Wang M. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. PLANT COMMUNICATIONS 2024; 5:100722. [PMID: 37742072 PMCID: PMC10873883 DOI: 10.1016/j.xplc.2023.100722] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.
Collapse
Affiliation(s)
- Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
37
|
Sun Z, Li S, Liu Y, Li W, Liu K, Cao X, Lin J, Wang H, Wang Q, Shao C. Telomere-to-telomere gapless genome assembly of the Chinese sea bass (Lateolabrax maculatus). Sci Data 2024; 11:175. [PMID: 38326339 PMCID: PMC10850130 DOI: 10.1038/s41597-024-02988-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Chinese sea bass (Lateolabrax maculatus) is a highly sought-after commercial seafood species in Asian regions due to its excellent nutritional value. With the rapid advancement of bioinformatics, higher standards for genome analysis compared to previously published reference genomes are now necessary. This study presents a gapless assembly of the Chinese sea bass genome, which has a length of 632.75 Mb. The sequences were assembled onto 24 chromosomes with a coverage of over 99% (626.61 Mb), and telomeres were detected on 34 chromosome ends. Analysis using Merqury indicated a high level of accuracy, with an average consensus quality value of 54.25. The ONT ultralong and PacBio HiFi data were aligned with the assembly using minimap2, resulting in a mapping rate of 99.9%. The study also identified repeating elements in 20.90% (132.25 Mb) of the genome and inferred 22,014 protein-coding genes. These results establish meaningful groundwork for exploring the evolution of the Chinese sea bass genome and advancing molecular breeding techniques.
Collapse
Affiliation(s)
- Zhilong Sun
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Yuyan Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Weijing Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Xuebin Cao
- Yantai Jinghai Marine Fisheries Co., Ltd, Yantai, 264000, China
| | - Jiliang Lin
- Yantai Jinghai Marine Fisheries Co., Ltd, Yantai, 264000, China
| | - Hongyan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
38
|
Fu MK, He YN, Yang XY, Tang X, Wang M, Dai WS. Genome-wide identification of the GRF family in sweet orange (Citrus sinensis) and functional analysis of the CsGRF04 in response to multiple abiotic stresses. BMC Genomics 2024; 25:37. [PMID: 38184538 PMCID: PMC10770916 DOI: 10.1186/s12864-023-09952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.
Collapse
Affiliation(s)
- Ming-Kang Fu
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Ying-Na He
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Yue Yang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Xi Tang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China
| | - Wen-Shan Dai
- College of Life Sciences, Gannan Normal University, National Navel Orange Engineering Research Center, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
39
|
Zhang C, Xie L, Yu H, Wang J, Chen Q, Wang H. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. MOLECULAR PLANT 2023; 16:1715-1718. [PMID: 37803825 DOI: 10.1016/j.molp.2023.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Affiliation(s)
- Chao Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China.
| |
Collapse
|
40
|
Fultz D, McKinlay A, Enganti R, Pikaard CS. Sequence and epigenetic landscapes of active and silent nucleolus organizer regions in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadj4509. [PMID: 37910609 PMCID: PMC10619934 DOI: 10.1126/sciadv.adj4509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Arabidopsis thaliana has two ribosomal RNA (rRNA) gene loci, nucleolus organizer regions NOR2 and NOR4, whose complete sequences are missing in current genome assemblies. Ultralong DNA sequences assembled using an unconventional approach yielded ~5.5- and 3.9-Mbp sequences for NOR2 and NOR4 in the reference strain, Col-0. The distinct rRNA gene subtype compositions of the NORs enabled the positional mapping of their active and inactive regions, using RNA sequencing to identify subtype-specific transcripts and DNA sequencing to identify subtypes associated with flow-sorted nucleoli. Comparisons of wild-type and silencing-defective plants revealed that most rRNA gene activity occurs in the central region of NOR4, whereas most, but not all, genes of NOR2 are epigenetically silenced. Intervals of low CG and CHG methylation overlap regions where gene activity and gene subtype homogenization are high. Collectively, the data reveal the genetic and epigenetic landscapes underlying nucleolar dominance (differential NOR activity) and implicate transcription as a driver of rRNA gene concerted evolution.
Collapse
Affiliation(s)
- Dalen Fultz
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Anastasia McKinlay
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Ramya Enganti
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Craig S. Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
41
|
Zeng T, He Z, He J, Lv W, Huang S, Li J, Zhu L, Wan S, Zhou W, Yang Z, Zhang Y, Luo C, He J, Wang C, Wang L. The telomere-to-telomere gap-free reference genome of wild blueberry ( Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. HORTICULTURE RESEARCH 2023; 10:uhad209. [PMID: 38023474 PMCID: PMC10681038 DOI: 10.1093/hr/uhad209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Zhijiao He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Jiefang He
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Shixiang Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawen Li
- School of Advanced Agricultural Sciences, Peking University, 100871 Beijing, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wan
- Wuhan Benagen Technology Co., Ltd, Wuhan 430070, China
| | - Wanfei Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengsong Yang
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Yatao Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Chong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawei He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Liu J, Liu F, Pan W. Improving the Completeness of Chromosome-Level Assembly by Recalling Sequences from Lost Contigs. Genes (Basel) 2023; 14:1926. [PMID: 37895275 PMCID: PMC10606404 DOI: 10.3390/genes14101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
For a long time, the construction of complete reference genomes for complex eukaryotic genomes has been hindered by the limitations of sequencing technologies. Recently, the Pacific Biosciences (PacBio) HiFi data and Oxford Nanopore Technologies (ONT) Ultra-Long data, leveraging their respective advantages in accuracy and length, have provided an opportunity for generating complete chromosome sequences. Nevertheless, for the majority of genomes, the chromosome-level assemblies generated using existing methods still miss a high proportion of sequences due to losing small contigs in the step of assembly and scaffolding. To address this shortcoming, in this paper, we propose a novel method that is able to identify and fill the gaps in the chromosome-level assembly by recalling the sequences in the lost small contigs. Experimental results on both real and simulated datasets demonstrate that this method is able to improve the completeness of the chromosome-level assembly.
Collapse
Affiliation(s)
- Junyang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen 518120, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen 518120, China
| |
Collapse
|
43
|
Givnish TJ. Plant biology: Phylogenomics of mustards and their relatives. Curr Biol 2023; 33:R998-R1000. [PMID: 37816328 DOI: 10.1016/j.cub.2023.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A new nuclear phylogeny for the large family Brassicaceae opens the way for advanced comparative studies of adaptation, development, coevolution, hybridization, and diversification in this crucial group, which is the source for many of the genomic resources now used across the flowering plants.
Collapse
Affiliation(s)
- Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Kang M, Wu H, Liu H, Liu W, Zhu M, Han Y, Liu W, Chen C, Song Y, Tan L, Yin K, Zhao Y, Yan Z, Lou S, Zan Y, Liu J. The pan-genome and local adaptation of Arabidopsis thaliana. Nat Commun 2023; 14:6259. [PMID: 37802986 PMCID: PMC10558531 DOI: 10.1038/s41467-023-42029-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Arabidopsis thaliana serves as a model species for investigating various aspects of plant biology. However, the contribution of genomic structural variations (SVs) and their associate genes to the local adaptation of this widely distribute species remains unclear. Here, we de novo assemble chromosome-level genomes of 32 A. thaliana ecotypes and determine that variable genes expand the gene pool in different ecotypes and thus assist local adaptation. We develop a graph-based pan-genome and identify 61,332 SVs that overlap with 18,883 genes, some of which are highly involved in ecological adaptation of this species. For instance, we observe a specific 332 bp insertion in the promoter region of the HPCA1 gene in the Tibet-0 ecotype that enhances gene expression, thereby promotes adaptation to alpine environments. These findings augment our understanding of the molecular mechanisms underlying the local adaptation of A. thaliana across diverse habitats.
Collapse
Affiliation(s)
- Minghui Kang
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Haolin Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huanhuan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wenyu Liu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yu Han
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chunlin Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Song
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Luna Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kangqun Yin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yusen Zhao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhen Yan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shangling Lou
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266000, China.
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
45
|
Mo W, Shu Y, Liu B, Long Y, Li T, Cao X, Deng X, Zhai J. Single-molecule targeted accessibility and methylation sequencing of centromeres, telomeres and rDNAs in Arabidopsis. NATURE PLANTS 2023; 9:1439-1450. [PMID: 37599304 DOI: 10.1038/s41477-023-01498-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
The short read-length of next-generation sequencing makes it challenging to characterize highly repetitive regions (HRRs) such as centromeres, telomeres and ribosomal DNAs. Based on recent strategies that combined long-read sequencing and exogenous enzymatic labelling of open chromatin, we developed single-molecule targeted accessibility and methylation sequencing (STAM-seq) in plants by further integrating nanopore adaptive sampling to investigate the HRRs in wild-type Arabidopsis and DNA methylation mutants that are defective in CG- or non-CG methylation. We found that CEN180 repeats show higher chromatin accessibility and lower DNA methylation on their forward strand, individual rDNA units show a negative correlation between their DNA methylation and accessibility, and both accessibility and CHH methylation levels are lower at telomere compared to adjacent subtelomeric region. Moreover, DNA methylation-deficient mutants showed increased chromatin accessibility at HRRs, consistent with the role of DNA methylation in maintaining heterochromatic status in plants. STAM-seq can be applied to study accessibility and methylation of repetitive sequences across diverse plant species.
Collapse
Affiliation(s)
- Weipeng Mo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yi Shu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bo Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
46
|
Ma B, Wang H, Liu J, Chen L, Xia X, Wei W, Yang Z, Yuan J, Luo Y, He N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. HORTICULTURE RESEARCH 2023; 10:uhad111. [PMID: 37786730 PMCID: PMC10541557 DOI: 10.1093/hr/uhad111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 10/04/2023]
Abstract
Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Honghong Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jingchun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Xia
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhen Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| |
Collapse
|
47
|
Ma F, Wang Y, Su B, Zhao C, Yin D, Chen C, Yang Y, Wang C, Luo B, Wang H, Deng Y, Xu P, Yin G, Jian J, Liu K. Gap-free genome assembly of anadromous Coilia nasus. Sci Data 2023; 10:360. [PMID: 37280262 DOI: 10.1038/s41597-023-02278-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The Chinese tapertail anchovy, Coilia nasus, is a socioeconomically important anadromous fish that migrates from near ocean waters to freshwater to spawn every spring. The analysis of genomic architecture and information of C. nasus were hindered by the previously released versions of reference genomes with gaps. Here, we report the assembly of a chromosome-level gap-free genome of C. nasus by incorporating high-coverage and accurate long-read sequence data with multiple assembly strategies. All 24 chromosomes were assembled without gaps, representing the highest completeness and assembly quality. We assembled the genome with a size of 851.67 Mb and used BUSCO to estimate the completeness of the assembly as 92.5%. Using a combination of de novo prediction, protein homology and RNA-seq annotation, 21,900 genes were functionally annotated, representing 99.68% of the total predicted protein-coding genes. The availability of gap-free reference genomes for C. nasus will provide the opportunity for understanding genome structure and function, and will also lay a solid foundation for further management and conservation of this important species.
Collapse
Affiliation(s)
- Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yinping Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bixiu Su
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Chenxi Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Denghua Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chenhe Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bei Luo
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongqi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanmin Deng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
48
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
49
|
Zhang L, Liang J, Chen H, Zhang Z, Wu J, Wang X. A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1022-1032. [PMID: 36688739 PMCID: PMC10106856 DOI: 10.1111/pbi.14015] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 05/04/2023]
Abstract
Brassica rapa comprises many important cultivated vegetables and oil crops. However, Chiifu v3.0, the current B. rapa reference genome, still contains hundreds of gaps. Here, we presented a near-complete genome assembly of B. rapa Chiifu v4.0, which was 424.59 Mb with only two gaps, using Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C technologies. The new assembly contains 12 contigs, with a contig N50 of 38.26 Mb. Eight of the ten chromosomes were entirely reconstructed in a single contig from telomere to telomere. We found that the centromeres were mainly invaded by ALE and CRM long terminal repeats (LTRs). Moreover, there is a high divergence of centromere length and sequence among B. rapa genomes. We further found that centromeres are enriched for Copia invaded at 0.14 MYA on average, while pericentromeres are enriched for Gypsy LTRs invaded at 0.51 MYA on average. These results indicated the different invasion mechanisms of LTRs between the two structures. In addition, a novel repetitive sequence PCR630 was identified in the pericentromeres of B. rapa. Overall, the near-complete genome assembly, B. rapa Chiifu v4.0, offers valuable tools for genomic and genetic studies of Brassica species and provides new insights into the evolution of centromeres.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Haixu Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Zhicheng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
50
|
Sahu SK, Liu H. Long-read sequencing (method of the year 2022): The way forward for plant omics research. MOLECULAR PLANT 2023; 16:791-793. [PMID: 37056048 DOI: 10.1016/j.molp.2023.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|