1
|
Yang Y, Huang H, Xin Z, Zhou C, Li H, Li T, Zhang A, Cheng M, Li X, Li G, Zhang K, Wang D. Functional characterization of TaWRKY254 in salt tolerance based on genome-wide analysis of the WRKY gene family in wheat core parent Zhou8425B. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112540. [PMID: 40320010 DOI: 10.1016/j.plantsci.2025.112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
The WRKY gene family plays a pivotal role in regulating plant growth, development, and stress responses. Zhou8425B, a core wheat parent in Chinese breeding programs known for its superior agronomic traits, remains underexplored in terms of its WRKY functional landscape. In this study, we identified 294 WRKY transcription factors in the Zhou8425B genome and conducted comprehensive bioinformatics analyses covering gene structure, protein properties, phylogenetic relationships, conserved motifs, and cis-regulatory elements. RNA-seq analysis across 12 tissues revealed that 274 WRKY genes are highly expressed and form distinct tissue-specific clusters. Notably, TaWRKY254 (TraesZ8425B6B01G167200) was significantly upregulated under various environmental stresses. RT-qPCR confirmed that TaWRKY254 expression under salt stress was substantially higher in Zhou8425B compared to Chinese Spring. Sequence diversity analysis revealed a 513 bp deletion in the promoter region and a T-to-C nonsynonymous mutation in the exon, resulting in an isoleucine-to-valine substitution in Zhou8425B. Based on this 513 bp difference, we developed a specific molecular marker and genotyped the recombinant inbred lines (RILs) from a Zhou8425B × Chinese Spring. Phenotypic analysis showed that RILs carrying the TaWRKY254Zhou8425B genotype exhibited enhanced salt tolerance, as evidenced by increased catalase, proline, and soluble protein levels, reduced lipid peroxidation, and significantly higher thousand kernel weight compared to those with the TaWRKY254CS genotype. These findings suggest that TaWRKY254 may play an important role in salt stress adaptation and yield-related traits, highlighting its potential as a genetic resource for salt-tolerant wheat breeding.
Collapse
Affiliation(s)
- Yuxin Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Huimin Huang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhao Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Chenxi Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huifang Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Tongtong Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Anqi Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengquan Cheng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaode Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Guangwei Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunpu Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Zhu K, Li M, Dong L, Zhang H, Zhang D, Lu P, Wu Q, Xie J, Chen Y, Guo G, Zhang P, Li B, Li W, Dong L, Hou Y, Yang Y, Qiu D, Wang G, Huang B, Cui X, Fu H, Yuan C, Fahima T, Nevo E, Li H, Rong J, Hua W, Liu Z. An atypical NLR pair TdCNL1/TdCNL5 from wild emmer confers powdery mildew resistance in wheat. Nat Genet 2025:10.1038/s41588-025-02208-z. [PMID: 40490514 DOI: 10.1038/s41588-025-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/28/2025] [Indexed: 06/11/2025]
Abstract
Resistance to wheat powdery mildew is commonly mediated by individual resistance proteins, most of which encode nucleotide-binding leucine-rich repeat (NLR) receptors. Here we report that the powdery mildew resistance gene MLIW170/PM26 in wild emmer and bread wheat derivatives is determined by a genetically linked atypical NLR pair TdCNL1/TdCNL5. Map-based cloning and PacBio HiFi long-read sequencing revealed that TdCNL1 encodes an atypical coiled-coil-domain-containing NLR protein (CNL) fused with a new potassium-dependent sodium-calcium exchanger integrated domain, whereas TdCNL5 encodes a canonical CNL protein. Mutagenesis and virus-induced gene silencing experiments indicated that both TdCNL1 and TdCNL5 are essential for powdery mildew resistance. Transgenic plants with TdCNL1 alone or TdCNL1/TdCNL5 together show resistance, whereas Fielder with TdCNL5 alone was susceptible. Geographically, MLIW170/PM26 occurs in a few Southern populations of wild emmer wheat. Our study highlights an atypical NLR pair coordinately regulating powdery mildew resistance and provides a diversified resistance gene resource for wheat improvement.
Collapse
Affiliation(s)
- Keyu Zhu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Lingli Dong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huaizhi Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Deyun Zhang
- Chaozhou Hybribio Biochemistry Ltd., Chaozhou, China
| | - Ping Lu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Jingzhong Xie
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongxing Chen
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Guanghao Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Panpan Zhang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Beibei Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Wenling Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Lei Dong
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Yikun Hou
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yijun Yang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dan Qiu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baoge Huang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejia Cui
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkui Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mount Carmel, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Israel
| | - Hongjie Li
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Junkang Rong
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Lin'an, China.
| | - Wei Hua
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China.
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Zhiyong Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Seed Industry Laboratory, Sanya, China.
| |
Collapse
|
3
|
Yang J, Zhao Y, Zou Y, Ban J, Li Z, Zhang Y, Yang J, Wang Y, Li C, Fu X, Gao X, Hu W, Wang X, Zhou Y, Ding X, He M, Zhang W, Cao T, Gao Z. Two homoeoallelic gene expression of TaCHLIs ensures normal chlorophyll biosynthesis in Hexaploid wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109795. [PMID: 40132508 DOI: 10.1016/j.plaphy.2025.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Being polyploid has a fitness advantage but is physically complex. During polyploid plant evolution, some duplicate genes retain their ancestral function, which affected the plant phenotype in allelic dosage or functional redundancy. However, how duplicated genes whose products needed to form functional complexes coped with deleterious mutations remained unclear. Here, we report a yellow green leaf-2 (ygl2) mutant with yellow-green leaves derived from a cross of Shaan 3025 (S3025) and Shi 4185 (S4185) that was controlled by a combination of Tachli-7A null and Tachli-7B truncation, whereas Tachli-7A null or Tachli-7B truncation individually resulted in normal leaf colour. Our results indicated genetic complementarity between TaCHLI-7A and TaCHLI-7B is responsible for normal chloroplast development. Furthermore, TaCHLI-7D was conserved in ygl2, S3025 and S4185 at both sequence and expression levels. Furthermore, two-thirds of the total mRNA abundance in S4185 with Tachli-7A null was sufficient for chlorophyll synthesis, indicating that redundant mRNA dosage was the reason for genetic complementarity. Particularly, Tachli-7A null can be retained in several modern cultivars with no disadvantage under field conditions, probably because the redundant mRNA dosage is expected to buffer the gene imbalance caused by the imperfect relationship between different copies of TaCHLIs and their molecular interactors. Furthermore, the loss of TaCHLI-7A seems to preserve the minimum dosage and maximise simplification. Our findings provide evidence of homoeologs loss and functional mechanism during polyploid evolution.
Collapse
Affiliation(s)
- Jian Yang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yankun Zhao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Yanmin Zou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Jinfu Ban
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Zhankun Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Yu'e Zhang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Junfeng Yang
- Hebei Wangfeng Seed Industry Co., Ltd, Xingtai, 054900, Hebei, China
| | - Yan Wang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Caihua Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Xinmei Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Weiguo Hu
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xicheng Wang
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yanjie Zhou
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xin Ding
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Mingqi He
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China
| | - Wensheng Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Science, 050022, Shijiazhuang, China.
| | - Tingjie Cao
- National Laboratory of Wheat Engineering, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-huai Region, Ministry of Agriculture, Henan Key Laboratory of Wheat Biology, Institute of Wheat, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei Province, 050041, China.
| |
Collapse
|
4
|
Zhang S, Shan X, Wang Y, Lu T, Xu D, Gong H, Fan Y, Guan Y, Zhao J, Sun H, Li D, Hu H, Ru Z, Gu YQ. Recent duplications and rare structural variations revealed by comparative sequence analysis of low molecular weight glutenin subunits (LMW-GS) genes re-identified using LMWgsFinder in 26 genomes of the grass family. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:128. [PMID: 40425835 DOI: 10.1007/s00122-025-04919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
KEY MESSAGE LMWgs Finder developed by this study was used to re-identify the LMW-GS genes in a total of 26 genomes across the grass family and several important and novel findings were obtained. LMW-GS are one of the primary components of wheat (Triticum aestivum L.) seed storage proteins, which have an important impact on wheat end-use quality traits. Identifying LMW-GS genes accurately within wheat genomes has consistently presented a significant challenge. LMWgsFinder developed by this study was used to re-identify the LMW-GS genes in a total of 26 genomes of the grass family. Apart from six species, a total of 291 LMW-GS genes were identified. Except for the two versions of the TaCS (Triticum aestivum Chinese Spring) genome, only 38.13% (98/257) of the LMW-GS genes identified by LMWgsFinder were annotated in the coding sequence annotation files (provided by the sequencing research groups) of the remaining 18 genomes. EnSpm-like transposon activity mediated recent duplication or triplication of the same LMW-GS gene has been observed in 8 wheat species for the first time, indicating that the replication of LMW-GS genes has been ongoing alongside the evolution of wheat. Several cases of rare structural variations associated with the loss or acquisition of LMW-GS gene function have been discovered and experimentally verified. Twenty-one new LMW-GS genes were discovered in 15 species of Triticeae. The results of this study provide the first empirical support at the DNA level, with confirmed chromosomal localization information, for the widely accepted notion that LMW-GS genes undergo gene duplication during wheat evolution. Additionally, this study offers gene sequence resources and a wealth of valuable information for further research on LMW-GS gene function, molecular-assisted selection, gene aggregation breeding, and molecular design breeding.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Yun Wang
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Daxing Xu
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Han Gong
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Junjie Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Haili Sun
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Haiyan Hu
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
- School of Agriculture, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Zhengang Ru
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
- School of Agriculture, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
5
|
Wang L, Zhao H, Li R, Tian R, Jia K, Gong Y, Hou S, Li N, Pu Y. Unveiling the evolutionary and transcriptional landscape of ERF transcription factors in wheat genomes: a genome-wide comparative analysis. BMC Genomics 2025; 26:503. [PMID: 40389830 PMCID: PMC12090403 DOI: 10.1186/s12864-025-11671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
Ethylene response factors (ERFs), belonging to the AP2/ERF superfamily, play vital roles in plant growth, development, and stress responses. The evolutionary and expression features of the members of the ERF gene family have not yet been extensively analyzed through comprehensive comparative genomics across various diploid, tetraploid, and hexaploid wheat genomes. In this study, we identified a total of 2,967 ERF genes across one diploid, two tetraploid, and five hexaploid wheat genomes using the characteristics of conserved domains of ERF proteins. Phylogenetic analysis revealed that ERF genes clustered into two main groups. Analyses of expansion of the ERF gene family indicated that the members of IIIc and IX (sub)groups were observed to show the expansion in tetraploid and hexaploid wheat compared to diploid wheat. Tandem duplication was identified as a key mechanism for ERF gene family expansion, with varying proportions across different wheat genomes. Ancient evolutionary evidence was traced using Amborella trichopoda as a reference, revealing the retention of gene copies in both tetraploid and hexaploid wheat. Then, we analyzed the expression of ERF genes under salt stress in Triticum aestivum, identifying 86 consistently up-regulated and 14 down-regulated ERF genes, and reported the stress tolerant and disease resistant ERF genes in hexaploid wheat. These findings provide valuable insights into the evolutionary dynamics and functional features of ERF genes in wheat, paving the way for genetic breeding and molecular improvement of wheat species.
Collapse
Affiliation(s)
- Liwen Wang
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Hongjun Zhao
- Institute of industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Runfang Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Rumei Tian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kaihua Jia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yongchao Gong
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Song Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanyan Pu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
6
|
Yu Y, Liu J, Lan S, Chen Q, Li J, Song H, Pan C, Qi J, Cui Y, Li X, Luo MC, Ni F, Epstein L, Fu D, Wu J. Wheat stripe rust resistance gene Yr9, derived from rye, is a CC-NBS-LRR gene in a highly conserved NLR cluster. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2932-5. [PMID: 40285909 DOI: 10.1007/s11427-024-2932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Yang Yu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiajun Liu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Shengjie Lan
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qihang Chen
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinlong Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Haoyuan Song
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Chen Pan
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Juan Qi
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Cui
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Xingfeng Li
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Ming-Cheng Luo
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Fei Ni
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, 95616, USA
| | - Daolin Fu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
- Spring Valley Agriscience Co., Ltd., Jinan, 250300, China.
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Han G, Yan H, Li L, An D. Advancing wheat breeding using rye: a key contribution to wheat breeding history. Trends Biotechnol 2025:S0167-7799(25)00093-9. [PMID: 40199624 DOI: 10.1016/j.tibtech.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Rye (Secale cereale L.), a close relative of wheat (Triticum aestivum L.), has significantly contributed to wheat breeding, exemplified by the global utilization of T1RS·1BL translocation lines. This highlights the strategic importance of integrating elite genes from related species into modern crop-breeding programs. This review explores the historical contributions of rye to wheat breeding and its potential in future applications. We delve into the impact of biotechnological approaches in unlocking the genetic repertoire of rye to bolster wheat improvement. Key strategies include goal-directed germplasm innovation, in-depth understanding of genetic basis, multi-omic big data and artificial intelligence (AI)-aided precision breeding, and strengthened global collaboration. These efforts are expected to maximize the potential of rye in sustainable wheat breeding.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Lihui Li
- Yazhouwan National Laboratory, Sanya 572024, China.
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
8
|
Yan M, Yang G, Yang D, Zhang X, Wang Q, Gao J, Mei C. Evaluating Genome Assemblies for Optimized Completeness and Accuracy of Reference Gene Sequences in Wheat, Rye, and Triticale. PLANTS (BASEL, SWITZERLAND) 2025; 14:1140. [PMID: 40219208 PMCID: PMC11991537 DOI: 10.3390/plants14071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Recent years have witnessed a surge in the publication of dozens of genome assemblies for Triticeae crops, which have significantly advanced gene-related research in wheat, rye, and triticale. However, this progress has also introduced challenges in selecting universally efficient and applicable reference genomes for genotypes with distant or ambiguous phylogenetic relationships. In this study, we assessed the completeness and accuracy of genome assemblies for wheat, rye, and triticale using comparative benchmarking universal single-copy orthologue (BUSCO) analysis and transcript mapping approaches. BUSCO analysis revealed that the proportion of complete genes positively correlated with RNA-seq read mappability, while the frequency of internal stop codons served as a significant negative indicator of assembly accuracy and RNA-seq data mappability in wheat. By integrated analysis of alignment rate, covered length, and total depth from RNA-seq data, we identified the assemblies of SY Mattis, Lo7, and SY Mattis plus Lo7 as the most robust references for gene-related studies in wheat, rye, and triticale, respectively. Furthermore, we recommend that the D genome sequence be incorporated in reference assemblies in bioinformatic analyses for triticale, as introgression, translocation, and substitution of the D genome into triticale genome frequently occurs during triticale breeding. The frequency of internal stop codons could help in evaluating correctness of assemblies published in the future, and other findings are expected to support gene-related research in wheat, rye, triticale, and other closely related species.
Collapse
Affiliation(s)
- Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Guodong Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Dongming Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jinghui Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Yang F, Li X, Liu S, Lyu J, Ge Z, Bai MY. TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1162-1178. [PMID: 39737613 DOI: 10.1111/jipb.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling. Overexpressing TabHLH489 significantly reduced nitrate-promoted wheat growth and grain yield. Transcriptomic analysis showed that approximately 75% of nitrate-responsive genes were no longerregulated by nitrate in the TabHLH489 overexpression lines. TabHLH489 directly interacts with TaNLP7-3A, the wheat homolog protein of NIN-like protein 7 (NLP7), a central transcription factor in nitrate signaling. This interaction impairs TaNLP7-3A's ability to bind DNA, thereby inhibiting its transcriptional activity. Moreover, TabHLH489 induces the accumulation of reactive oxygen species (ROS) to reduce the nuclear localization of TaNLP7-3A, thereby diminishing its effectiveness in regulating the plant nitrogen response. These findings highlight the intricate regulatory mechanism by which TabHLH489 modulates TaNLP7-3A activity through direct interaction and ROS-mediated inhibition of nuclear localization. Our research highlights the critical roles of TabHLH489 and TaNLP7-3A in modulating nitrate signaling, providing new gene targets for developing wheat varieties with enhanced nitrogen use efficiency.
Collapse
Affiliation(s)
- Fan Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xuepeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Songyu Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zixuan Ge
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
10
|
Chen M, Chen T, Yun L, Che Z, Ma J, Kong B, Long J, Cheng C, Guo K, Zhang P, Guo L, Yang D. Large-scale integration of meta-QTL and genome-wide association study identifies genomic regions and candidate genes for photosynthetic efficiency traits in bread wheat. BMC Genomics 2025; 26:284. [PMID: 40121401 PMCID: PMC11929995 DOI: 10.1186/s12864-025-11472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Improving photosynthetic efficiency is an essential strategy for advancing wheat breeding progress. Integrating wheat genetic resources provides an opportunity to discover pivotal genomic regions and candidate genes (CGs) for photosynthetic efficiency traits in wheat. RESULTS A large-scale meta-QTL (MQTL) analysis was performed with 1363 initial quantitative trait loci (QTLs) for photosynthetic efficiency traits extracted from 66 independent QTL mapping studies over the past decades. Consequently, 718 initial QTLs were refined into 74 MQTLs, which were distributed on all wheat chromosomes except 1D, 3 A, 4B, and 5B. Compared with the confidence interval (CI) of the initial QTL, the CI of the identified MQTL was 0.03 to 10.97 cM, with an average of 1.46 cM, which was 20.46 times narrower than that of the original QTL. The maximum explained phenotypic variance (PVE) of the MQTL ranged from 7.43 to 20.42, with an average of 11.97, which was 1.07 times higher than that of the original QTL. Of these, 54 MQTLs were validated using genome-wide association study (GWAS) data from different natural populations in previous research. A total of 3,102 CGs were identified within the MQTL intervals, where 342 CGs share homology with rice, and 1,043 CGs are highly expressed in leaves, spikes, and stems. These CGs were mainly involved in porphyrin metabolism, glyoxylate, dicarboxylate metabolism, carbon metabolism and photosynthesis antenna proteins metabolism pathways by the in silico transcriptome assessment. For the key CG TaGGR-6A (TraesCS6A02G307700) involved in the porphyrin metabolism pathway, a functional kompetitive allele-specific PCR (KASP) marker was developed at 2464 bp (A/G) position within the 3' untranslated region, successfully distinguishing two haplotypes: TaGGR-6A-Hap I (type AA) and TaGGR-6A-Hap II (type GG). Varieties with the TaGGR-6A-Hap II allele exhibited approximately 13.42% and 11.45% higher flag leaf chlorophyll content than those carrying the TaGGR-6A-Hap I allele. The elite haplotype TaGGR-6A-Hap II was positively selected during wheat breeding, as evidenced by the geographical and annual frequency distributions of the two TaGGR-6A haplotypes. CONCLUSION The findings will give further insights into the genetic determinants of photosynthetic efficiency traits and provide some reliable MQTLs and putative CGs for the genetic improvement of photosynthetic efficiency in wheat.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Letong Yun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhuo Che
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingfu Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Binxue Kong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangying Long
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunhua Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kaiqi Guo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Li G, Ren Y, Yang Y, Chen S, Zheng J, Zhang X, Li J, Chen M, Sun X, Lv C, Li X, Zhang B, Sun X, Li Y, Zhao M, Dong C, Tang J, Huang Z, Peng Y, Gu D, Wang Z, Zheng H, Shi C, Kang G, Zheng T, Chen F, Wang D, Zhang K, Yin G. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. PLANT COMMUNICATIONS 2025; 6:101222. [PMID: 39690740 PMCID: PMC11956103 DOI: 10.1016/j.xplc.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
High-quality genome information is essential for efficiently deciphering and improving crop traits. Here, we report a highly contiguous and accurate hexaploid genome assembly for the key wheat breeding parent Zhou8425B, an elite 1BL/1RS translocation line with durable adult plant resistance (APR) against yellow rust (YR) disease. By integrating HiFi and Hi-C sequencing reads, we have generated a 14.75-Gb genome assembly for Zhou8425B with a contig N50 of 70.94 and a scaffold N50 of 735.11 Mb. Comparisons with previously sequenced common wheat cultivars shed light on structural changes in the 1RS chromosome arm, which has been extensively used in wheat improvement. Interestingly, Zhou8425B 1RS carries more genes encoding AP2/ERF-ERF or B3 transcription factors than its counterparts in four previously sequenced wheat and rye genotypes. The Zhou8425B genome assembly aided in the fine mapping of a new APR locus (YrZH3BS) that confers resistance to YR disease and promotes grain yield under field conditions. Notably, pyramiding YrZH3BS with two previously characterized APR loci (YrZH22 and YrZH84) can further reduce YR severity and enhance grain yield, with the triple combination (YrZH3B + YrZH22 + YrZH84) having the greatest effect. Finally, the founder genotype effects of Zhou8425B were explored using publicly available genome resequencing data, which reveals the presence of important Zhou8425B genomic blocks in its derivative cultivars. Our data demonstrate the value of the Zhou8425B genome assembly for further study of the structural and functional characteristics of 1RS, the genetic basis of durable YR resistance, and founder genotype effects in wheat breeding. Our resources will facilitate the development of elite wheat cultivars through genomics-assisted breeding.
Collapse
Affiliation(s)
- Guangwei Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yan Ren
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yuxin Yang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Shulin Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jizhou Zheng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Xiaoqing Zhang
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Junlong Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mengen Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaonan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaode Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Bingbing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiao Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yujia Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mingtian Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunhao Dong
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jianwei Tang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Zhenpu Huang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yanyan Peng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Dengbin Gu
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Zhiyong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Tiancun Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Feng Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Guihong Yin
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Zhang N, Tang L, Li S, Liu L, Gao M, Wang S, Chen D, Zhao Y, Zheng R, Soleymaniniya A, Zhang L, Wang W, Yang X, Ren Y, Sun C, Wilhelm M, Wang D, Li M, Chen F. Integration of multi-omics data accelerates molecular analysis of common wheat traits. Nat Commun 2025; 16:2200. [PMID: 40038279 PMCID: PMC11880479 DOI: 10.1038/s41467-025-57550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Integration of multi-omics data can provide information on biomolecules from different layers to illustrate the complex biology systematically. Here, we build a multi-omics atlas containing 132,570 transcripts, 44,473 proteins, 19,970 phosphoproteins, and 12,427 acetylproteins across wheat vegetative and reproductive phases. Using this atlas, we elucidate transcriptional regulation network, contributions of post-translational modification (PTM) and transcript level to protein abundance, and biased homoeolog expression and PTM in wheat. The genes/proteins related to wheat development and disease resistance are systematically analyzed, thus identifying phosphorylation and/or acetylation modifications for the seed proteins controlling wheat grain quality and the disease resistance-related genes. Lastly, a unique protein module TaHDA9-TaP5CS1, specifying de-acetylation of TaP5CS1 by TaHDA9, is discovered, which regulates wheat resistance to Fusarium crown rot via increasing proline content. Our atlas holds great promise for fast-tracking molecular biology and breeding studies in wheat and related crops.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Tang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Songgang Li
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lu Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjuan Gao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sisheng Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Daiying Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Armin Soleymaniniya
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, 84104, Germany
| | - Lingran Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenkang Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Xia Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yan Ren
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Congwei Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, 84104, Germany
| | - Daowen Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Feng Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Hao W, Wu Y, Guo Q, Wu J, Lin M, Hu Q, Tandayu E, Lu J, Si H, Ma C, Wang X, Chen C. Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:63. [PMID: 40021553 DOI: 10.1007/s00122-025-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
KEY MESSAGE A new stripe rust resistance gene YrAn1589 in Chinese wheat Annong1589 was mapped to a 160.9-166.6 kb interval on chromosome arm 3BL and co-segregated with a marker CAPS9 developed from candidate gene TraesCS3B03G1054600. Stripe rust, caused by Puccinia. striiformis f. sp. tritici (Pst), is a devastating fungal disease that can significantly reduce wheat yield. The Chinese wheat cultivar Annong1589 demonstrates high resistance against the predominant Pst races in the Huang-Huai valley wheat region. The present study aimed to identify the stripe rust resistance gene in Annong1589. Genetic analysis indicated that the resistance in Annong1589 was conferred by a single dominant gene, provisionally designated YrAn1589. Using Wheat660K SNP array, bulked segregant RNA sequencing and new molecular markers developed, the resistance gene was mapped to a 160.9-166.6 kb region between CAPS8 and CAPS10 on chromosome 3BL based on IWGSC CS RefSeq v2.1 and eight other reference genome sequences, including eight high-confidence annotated genes. Transcriptome and qRT-PCR analyses revealed significantly upregulated expression of TraesCS3B03G1054600 in resistant plants following CYR32 inoculation, suggesting it is a potential candidate gene for YrAn1589. A functional marker CAPS9 developed from a A/G polymorphic SNP in the candidate co-segregated with YrAn1589 in the F2 population. Subcellular localization experiments showed that TraesCS3B03G1054600 protein was localized in the cytoplasm and nucleus, implying its role in immune response and resistance. Our findings establish YrAn1589 as a new stripe rust resistance gene, providing valuable gene resource and molecular markers for improvement of stripe rust resistance in wheat.
Collapse
Affiliation(s)
- Weihao Hao
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjie Wu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jingchun Wu
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
| | - Meng Lin
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qiwei Hu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Erwin Tandayu
- Agriculture Victoria, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Jie Lu
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Hongqi Si
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanxi Ma
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Can Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Zhu J, Chen Q, Guo Z, Wang Y, Li Q, Li Y, Lei L, Liu C, Li Y, Tang R, Tang J, Zhang Z, Peng S, Zhang M, Chen Z, Kong L, Deng M, Xu Q, Zhang Y, Jiang Q, Wang J, Chen G, Jiang Y, Wei Y, Zheng Y, Qi P. Genome-wide analysis of Q binding reveals a regulatory network that coordinates wheat grain yield and grain protein content. J Genet Genomics 2025:S1673-8527(25)00058-X. [PMID: 40032184 DOI: 10.1016/j.jgg.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Wheat is an important cereal crop used to produce diverse and popular food worldwide because of its high grain yield (GY) and grain protein content (GPC). However, GY and GPC are usually negatively correlated. We previously reported that favorable alleles of the wheat domestication gene Q can synchronously increase GY and GPC, but the underlying mechanisms remain largely unknown. In this study, we investigated the regulatory network involving Q associated with GY and GPC in young grains through DNA affinity purification sequencing and transcriptome sequencing analyses, electrophoretic mobility shift and dual-luciferase assays, and transgenic approaches. Three Q-binding motifs, namely TTAAGG, AAACA[A/T]A, and GTAC[T/G]A, were identified. Notably, genes related to photosynthesis or carbon and nitrogen metabolism were enriched and regulated by Q. Moreover, Q was revealed to bind directly to its own gene and the glutamine synthetase gene TaGSr-4D to increase expression, thereby influencing nitrogen assimilation during the grain filling stage and increasing GPC. Considered together, our study findings provide molecular evidence of the positive regulatory effects of Q on wheat GY and GPC.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhenru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Caihong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yue Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rui Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhongxu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
15
|
Ding H, Li Y, Ou J, Song Y, Qiu L, Rong X, Sun H, Zhao C, Wu Y, Qin R, Li J, Liu C, Cui F. Characterization of a stable QTL for quality-related traits and its effects on yields in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:56. [PMID: 40000500 DOI: 10.1007/s00122-025-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
KEY MESSAGE A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs for quality-related traits were identified, and the candidate genes underlying qDt-KJ 4B, a novel major and stable QTL for dough tractility, were identified Wheat quality traits are usually negatively correlated with yield traits, but they affect the processing quality and nutritional value of wheat. Therefore, identifying more wheat quantitative trait loci (QTLs) and elucidating their genetic basis are essential for cultivating new high-quality and high-yielding wheat varieties. In this study, QTL analysis for five quality-related traits was performed on a recombinant inbred line (RIL) mapping population, KJ-RIL, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). A total of 6 major stable QTLs and 59 pairwise epistatic eQTLs (eQTLs) for dough tractility (DT), kernel hardness (KH), Zeleny sedimentation value (ZEL), water absorption (WAR) and wet gluten content (WGC) were identified in multiple environments. The genetic effects and additive pyramiding effects of the major and stable QTLs of qDt-KJ-4B on quality- and yield-related traits were characterized. The DT phenotypic values of the KJ-RILs increased with the number of favourable QTLs. BAB (only qDt-KJ-5D did not harbour favourable alleles) and BBA (only qDt-KJ-4A did not harbour favourable alleles) were the best combination for improving both the quality and yield potential of qDt-KJ-4B, qDt-KJ-4A and qDt-KJ-5D. The candidate genes underlying qDt-KJ-4B were predicted on the basis of multiomics data, with TraesKN4B01HG03930 and TraesKN4B01HG03950 as the most likely candidate genes. Overall, our results are helpful for elucidating the genetic relationships between quality- and yield-related traits and will aid in future development of new high-quality and high-yield wheat varieties to meet diverse consumption needs.
Collapse
Affiliation(s)
- Hongke Ding
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Yankun Li
- Shandong Provincial Seed Administration Station, Jinan, 250100, China
| | - Jinlian Ou
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Yuanze Song
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Lihua Qiu
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Xinyu Rong
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Chunhua Zhao
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Yongzhen Wu
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Ran Qin
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Jinlong Li
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fa Cui
- Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Modern Seed Industry and Green Breeding Research Center, College of Horticulture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
16
|
Wang D, Xie J, Wang J, Mu M, Xiong H, Ma F, Li P, Jia M, Li S, Li J, Zhu M, Li P, Guan H, Zhang Y, Li H. Unraveling Allelic Impacts on Pre-Harvest Sprouting Resistance in TaVP1-B of Chinese Wheat Accessions Using Pan-Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:504. [PMID: 40006763 PMCID: PMC11859669 DOI: 10.3390/plants14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The TaVP1-B gene, located on the 3B chromosome of wheat, is a homolog of the Viviparous-1 (VP-1) gene of maize and was reported to confer resistance to pre-harvest sprouting (PHS) in wheat. In this study, the structure of the TaVP1-B gene was analyzed using the wheat pan-genome consisting of 20 released cultivars (19 wheat are from China), and 3 single nucleotide polymorphisms (SNPs), which were identified at the 496 bp, 524 bp, and 1548 bp of the TaVP1-B CDS region, respectively. Haplotypes analysis showed that these SNPs were in complete linkage disequilibrium and that only two haplotypes designated as hap1 (TGG) and hap2 (GAA) were present. Association analysis between TaVP1-B haplotypes and PHS resistance of the 20 wheat cultivars in four experiment environments revealed that the average PHS resistance of accessions with hap1 was significantly better than that of accessions with hap2, which infers the effects of TaVP1-B on wheat PHS resistance. To further investigate the impacts of alleles at the TaVP1-B locus on PHS resistance, the SNP at 1548 bp of the TaVP1-B CDS region was converted to a KASP marker, which was used for genotyping 304 Chinese wheat cultivars, whose PHS resistance was evaluated in three environments. The average sprouting rates (SRs) of 135 wheat cultivars with the hap1 were significantly lower than the 169 cultivars with the hap2, validating the impacts of TaVP1-B on PHS resistance in Chinese wheat. The present study provided the breeding-friendly marker for functional variants in the TaVP1-B gene, which can be used for genetic improvement of PHS resistance in wheat.
Collapse
Affiliation(s)
- Danfeng Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University/Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; (D.W.); (J.W.); (M.M.)
- Henan International Joint Laboratory of Translational Biology, Zhoukou 466001, China;
| | - Jinjin Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475000, China;
| | - Jingwen Wang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University/Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; (D.W.); (J.W.); (M.M.)
- Henan Plant Gene and Molecular Breeding Engineering Research Center, Zhoukou 466001, China;
| | - Mengdi Mu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University/Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; (D.W.); (J.W.); (M.M.)
- Henan Plant Gene and Molecular Breeding Engineering Research Center, Zhoukou 466001, China;
| | - Haifeng Xiong
- Henan Plant Gene and Molecular Breeding Engineering Research Center, Zhoukou 466001, China;
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
| | - Fengshuo Ma
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Peizhen Li
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Menghan Jia
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Shuangjing Li
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Jiaxin Li
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Mingyue Zhu
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
- Henan Crop Molecular Design Breeding and Cultivation Engineering Technology Research Center, Zhoukou 466001, China
| | - Peiwen Li
- Henan Province Plant Genetics and Molecular Breeding Innovation Team, Zhoukou 466001, China; (F.M.); (P.L.); (M.J.); (S.L.); (J.L.); (M.Z.); (P.L.)
| | - Haiyan Guan
- Henan International Joint Laboratory of Translational Biology, Zhoukou 466001, China;
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University/Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; (D.W.); (J.W.); (M.M.)
- Henan International Joint Laboratory of Translational Biology, Zhoukou 466001, China;
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475000, China;
| |
Collapse
|
17
|
Luo Q, Zheng Q, Tong C, Jia H, Liu L, Yin M, Xie J, Li H, Wang H, Chen Z, Li B, He F, Li Z. The location and genome origin of alien chromatin in wheat founder parent Xiaoyan 6. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:41. [PMID: 39891684 DOI: 10.1007/s00122-025-04826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
KEY MESSAGE The location of alien chromatin in Xiaoyan 6 was identified using mc-GISH analysis, genetic mapping and whole genome re-sequencing, and its possible origin was discussed. As a founder parent, Xiaoyan 6 has played an important role in distant hybridization breeding in China. Although it came from the cross between common wheat and Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey, the location of its alien chromatin has not been determined using traditional genomic in situ hybridization (GISH). In the present study, chromosome variation in Xiaoyan 6 was discovered by multicolor GISH analysis. Four alien-specific markers were developed by specific-locus amplified fragment sequencing technique. Their amplified sequences were analyzed by basic local alignment search tool with the reference genome sequences of common wheat Chinese Spring (CS) and Th. elongatum, and the whole genome re-sequencing reads of Th. ponticum and CS. Furthermore, the four markers were mapped on three different chromosomes in two RIL populations. By dissecting the mapped reads depth of the whole genome re-sequencing of Xiaoyan 6, we found that the depth of nine chromosome regions was obviously lower than the average. Among these, three regions on 1A, 3A and 7B were demonstrated as the alien introgressions in Xiaoyan 6 by multiple methods. Finally, the genetic transmission of the alien chromatin was analyzed in a set of wheat-Th. ponticum introgression lines. Some stable QTLs for morphological and physiological traits have been mapped near the alien chromatin.
Collapse
Affiliation(s)
- Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chunyan Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Jia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liqin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mou Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxin Wang
- Agriculture and Rural Bureau of Nanpi County, Nanpi, 061500, Hebei, China
| | - Zeyang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
18
|
Liu Z, Yang F, Wan H, Deng C, Hu W, Fan X, Wang J, Yang M, Feng J, Wang Q, Yang N, Cai L, Liu Y, Tang H, Li S, Luo J, Zheng J, Wu L, Yang E, Pu Z, Jia J, Li J, Yang W. Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. PLANT COMMUNICATIONS 2025; 6:101131. [PMID: 39257004 PMCID: PMC11783901 DOI: 10.1016/j.xplc.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The allotetraploid wild grass Aegilops ventricosa (2n = 4x = 28, genome DvDvNvNv) has been recognized as an important germplasm resource for wheat improvement owing to its ability to tolerate biotic stresses. In particular, the 2NvS segment from Ae. ventricosa, as a stable and effective resistance source, has contributed greatly to wheat improvement. The 2NvS/2AS translocation is a prevalent chromosomal translocation between common wheat and wild relatives, ranking just behind the 1B/1R translocation in importance for modern wheat breeding. Here, we assembled a high-quality chromosome-level reference genome of Ae. ventricosa RM271 with a total length of 8.67 Gb. Phylogenomic analyses revealed that the progenitor of the Dv subgenome of Ae. ventricosa is Ae. tauschii ssp. tauschii (genome DD); by contrast, the progenitor of the D subgenome of bread wheat (Triticum aestivum L.) is Ae. tauschii ssp. strangulata (genome DD). The oldest polyploidization time of Ae. ventricosa occurred ∼0.7 mya. The Dv subgenome of Ae. ventricosa is less conserved than the D subgenome of bread wheat. Construction of a graph-based pangenome of 2AS/6NvL (originally known as 2NvS) segments from Ae. ventricosa and other genomes in the Triticeae enabled us to identify candidate resistance genes sourced from Ae. ventricosa. We identified 12 nonredundant introgressed segments from the Dv and Nv subgenomes using a large winter wheat collection representing the full diversity of the European wheat genetic pool, and 29.40% of European wheat varieties inherit at least one of these segments. The high-quality RM271 reference genome will provide a basis for cloning key genes, including the Yr17-Lr37-Sr38-Cre5 resistance gene cluster in Ae. ventricosa, and facilitate the full use of elite wild genetic resources to accelerate wheat improvement.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Li Cai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
19
|
Ni F, Yu Y, Epstein L, Fu D, Wu J. Sequencing Trait-Associated Mutations (STAM) to Clone Rust Resistance Genes. Methods Mol Biol 2025; 2898:291-305. [PMID: 40198565 DOI: 10.1007/978-1-0716-4378-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Sequencing trait-associated mutations (STAM) is a simple and straightforward gene cloning method that was developed in wheat. It uses full-length isoform sequencing (Iso-Seq) of the wild type as the reference and employs transcriptome sequencing of multiple, independently derived mutants for gene cloning. The STAM method eliminates the need for fine-mapping or a high-quality whole genome assembly of a specific wheat cultivar, and it could also be used in other plant species with complex genomes. Detailed, bioinformatic analysis protocol and tips for STAM are provided in this chapter.
Collapse
Affiliation(s)
- Fei Ni
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yang Yu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Daolin Fu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, China.
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
20
|
Wang X, Wu H, Manzoor N, Dongcheng W, Su Y, Liu Z, Lin C, Mao Z. The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3524. [PMID: 39771223 PMCID: PMC11676291 DOI: 10.3390/plants13243524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Quinoa (Chenopodium quinoa) is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH4+), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (AMTs), plays important roles in the development, yield, and quality of crops. Many AMTs and their functions have been identified in major crops; however, no systematic analyses of AMTs and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date. In this study, the CqAMTs were identified, followed by the quantification of the gene expression, while the regulatory networks were predicted based on weighted gene co-expression network analysis (WGCNA), with the putative transcriptional factors (TFs) having binding sites on the promoters of CqAMTs, nitrate transporters (CqNRTs), and glutamine-synthases (CqGSs), as well as the putative TF expression being correlated with the phenotypes and activities of GSs, glutamate synthase (GOGAT), nitrite reductase (NiR), and nitrate reductase (NR) of quinoa roots. The results showed a total of 12 members of the CqAMT family with varying expressions in different organs and in the same organs at different developmental stages. Complementation expression analyses in the triple mep1/2/3 mutant of yeast showed that except for CqAMT2.2b, 11/12 CqAMTs restored the uptake of NH4+ in the host yeast. CqAMT1.2a was found to mainly locate on the cell membrane, while TFs (e.g., CqNLPs, CqG2Ls, B3 TFs, CqbHLHs, CqZFs, CqMYBs, CqNF-YA/YB/YC, CqNACs, and CqWRKY) were predicted to be predominantly involved in the regulation, transportation, and assimilation of nitrogen. These results provide the functions of CqAMTs and their possible regulatory networks, which will lead to improved nitrogen use efficiency (NUE) in quinoa as well as other major crops.
Collapse
Affiliation(s)
- Xiangxiang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; (X.W.); (H.W.); (N.M.); (W.D.); (Z.L.)
- Institute of Improvement and Utilization of Characteristic Resource Plants, Yunnan Agricultural University, Kunming 650201, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China
| |
Collapse
|
21
|
Chen Y, Zhao K, Chen H, Wang L, Yan S, Guo L, Liu J, Li H, Li D, Zhang W, Duan X, Liu X, Cao X, Gao X. Bioinformatics and Expression Analyses of the TaATLa Gene Subfamily in Wheat ( Triticum aestivum L.). Int J Mol Sci 2024; 25:12454. [PMID: 39596519 PMCID: PMC11594669 DOI: 10.3390/ijms252212454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Amino acids are the main form of nitrogen in plants, and their transport across cell membranes relies on amino acid transporters (AATs). Among the plant AATs, the TaATLa subfamily comprises 18 members, yet the bioinformatics characteristics and functions of TaATLa genes in common wheat remain poorly understood due to their complex genomes. This study performed genomic analyses of TaATLas. These analyses included chromosome distributions, evolutionary relationships, collinearity, gene structures, and expression patterns. An analysis of cis-acting elements and predicted miRNA-TaATLas regulatory networks suggests that TaATLas are regulated by light, hormones, and stress signals. Functional assays revealed that TaATLa6 transports glutamine (Gln), glutamate (Glu), and aspartate (Asp) in yeast. In contrast, TaATLa4 specifically transports Gln and Asp. Furthermore, TaATLas exhibits diverse gene expression patterns, with TaATLa4-7D enhancing yeast heat tolerance in a heterologous expression system, indicating its potential role in adapting to environmental stress by regulating amino acid transport and distribution. This study sheds light on the functional roles of TaATLa genes, with implications for improving nitrogen use in wheat and other crop species.
Collapse
Affiliation(s)
- Yifei Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Kexin Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Heng Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Luzhen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Shuai Yan
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Lei Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.C.)
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Danping Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaoyan Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiukun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China (D.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
22
|
Feng Y, Zhao Y, Ma Y, Chen X, Shi H. Integrative physiological and transcriptome analysis unravels the mechanism of low nitrogen use efficiency in burley tobacco. PLANT DIRECT 2024; 8:e70004. [PMID: 39435449 PMCID: PMC11491304 DOI: 10.1002/pld3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Burley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments. Nitrogen use inefficient genotype (TN90) had lower nitrogen uptake and transport efficiencies, reduced leaf and root biomass, lower nitrogen assimilation and photosynthesis capacity, and lower nitrogen remobilization ability than the nitrogen use efficient genotype (K326). Transcriptomic analysis revealed that genes associated with photosynthesis, carbon fixation, and nitrogen metabolism are implicated in NUE. Three nitrate transporter genes in the leaves (NPF2.11, NPF2.13, and NPF3.1) and three nitrate transporter genes (NPF6.3, NRT2.1, and NRT2.4) in roots were down-regulated by nitrogen starvation, all of which showed lower expression in TN90 than in K326. In addition, the protein-protein interaction (PPI) network diagram identified eight key genes (TPIP1, GAPB, HEMB, PGK3, PSBO, PSBP2, PSAG, and GLN2) that may affect NUE. Less advantageous changes in nitrogen uptake, nitrogen assimilation in combination with nitrogen remobilization, and maintenance of photosynthesis in response to nitrogen deficiency led to a lower NUE in TN90. The key genes (TPIP1, GAPB, PGK3, PSBO, PSBP2, PSAG, and GLN2) were associated with improving photosynthesis and nitrogen metabolism in tobacco plants grown under N-deficient conditions.
Collapse
Affiliation(s)
- Yuqing Feng
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yuanyuan Zhao
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yanjun Ma
- Technology CenterShanghai Tobacco Group Beijing Cigarette Factory Co., Ltd.BeijingChina
| | - Xiaolong Chen
- China Tobacco Henan Industrial Co., Ltd.ZhengzhouHenanChina
| | - Hongzhi Shi
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
23
|
Xia Z, Gong Y, Yang Y, Wu M, Bai J, Zhang S, Lu H. Effects of root-zone warming, nitrogen supply and their interactions on root-shoot growth, nitrogen uptake and photosynthetic physiological characteristics of maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108887. [PMID: 38943877 DOI: 10.1016/j.plaphy.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In the context of climate change, the impact of root-zone warming (RW) on crop nutrient absorption and utilization has emerged as a significant concern that cannot be overlooked. Nitrogen (N) is an essential element for crop growth and development, particularly under stress. The comprehensive effect and relationship between RW and N level remains unclear. The objective of this experiment was to investigate the impact of RW on root-shoot growth and photosynthetic physiological characteristics of maize seedlings under varying N levels. The results demonstrated that optimal RW was beneficial to the growth of maize, while excessive root-zone temperature (RT) significantly impeded N uptake in maize. Under low N treatment, the proportion of N distribution in roots increased, and the root surface area increased by 41 %. Furthermore, under low N levels, the decline in root vitality and the increase in root MDA caused by high RT were mitigated, resulting in an enhancement of the root's ability to cope with stress. For the above-ground part, under the double stress of high RT and low N, the shoot N concentration, leaf nitrate reductase, leaf glutamine synthase, chlorophyll content, net photosynthetic rate and shoot dry matter accumulation decreased by 86 %, 60 %, 35 %, 53 %, 64 % and 59 %, respectively. It can be reasonably concluded that reasonable N management is an important method to effectively reduce the impact of high RT stress.
Collapse
Affiliation(s)
- Zhenqing Xia
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuxiang Gong
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yi Yang
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wu
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jingxuan Bai
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shibo Zhang
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haidong Lu
- College of agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Wang D, Zhang X, Cao Y, Batool A, Xu Y, Qiao Y, Li Y, Wang H, Lin X, Bie X, Zhang X, Jing R, Dong B, Tong Y, Teng W, Liu X, Xiao J. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1295-1312. [PMID: 38695649 DOI: 10.1111/jipb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 07/12/2024]
Abstract
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuxiu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Cao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamana Batool
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunzhou Qiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baodi Dong
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yiping Tong
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| |
Collapse
|
25
|
Niu J, Wang W, Wang Z, Chen Z, Zhang X, Qin Z, Miao L, Yang Z, Xie C, Xin M, Peng H, Yao Y, Liu J, Ni Z, Sun Q, Guo W. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol 2024; 25:171. [PMID: 38951917 PMCID: PMC11218387 DOI: 10.1186/s13059-024-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.
Collapse
Affiliation(s)
- Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Zhang Z, Liu D, Li B, Wang W, Zhang J, Xin M, Hu Z, Liu J, Du J, Peng H, Hao C, Zhang X, Ni Z, Sun Q, Guo W, Yao Y. A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality. MOLECULAR PLANT 2024; 17:1038-1053. [PMID: 38796709 DOI: 10.1016/j.molp.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Binyong Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jize Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Peng Y, Lou H, Tan Z, Ouyang Z, Zhang Y, Lu S, Guo L, Yang B. Lipidomic and Metabolomic Analyses Reveal Changes of Lipid and Metabolite Profiles in Rapeseed during Nitrogen Deficiency. PLANT & CELL PHYSIOLOGY 2024; 65:904-915. [PMID: 37847101 DOI: 10.1093/pcp/pcad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Nitrogen is one of the most essential macronutrients for plant growth and its availability in soil is vital for agricultural sustainability and productivity. However, excessive nitrogen application could reduce the nitrogen use efficiency and produce environmental pollution. Here, we systematically determined the response in lipidome and metabolome in rapeseed during nitrogen starvation. Plant growth was severely retarded during nitrogen deficiency, while the levels of most amino acids were significantly decreased. The level of monogalactosyldiacyglycerol (MGDG) in leaves and roots was significantly decreased, while the level of digalactosyldiacylglycerol (DGDG) was significantly decreased in roots, resulting in a significant reduction of the MGDG/DGDG ratio during nitrogen starvation. Meanwhile, the levels of sulfoquinovosyl diacylglycerol, phosphatidylglycerol and glucuronosyl diacylglycerol were reduced to varying extents. Moreover, the levels of metabolites in the tricarboxylic acid cycle, Calvin cycle and energy metabolism were changed during nitrogen deficiency. These findings show that nitrogen deprivation alters the membrane lipid metabolism and carbon metabolism, and our study provides valuable information to further understand the response of rapeseed to nitrogen deficiency at the metabolism level.
Collapse
Affiliation(s)
- Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Hongxiang Lou
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Shenzhen 518000, China
| | - Bao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|
28
|
Wang M, Cheng J, Wu J, Chen J, Liu D, Wang C, Ma S, Guo W, Li G, Di D, Zhang Y, Han D, Kronzucker HJ, Xia G, Shi W. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nat Genet 2024; 56:1257-1269. [PMID: 38802564 DOI: 10.1038/s41588-024-01762-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Jie Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Jiefei Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Chenyang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- Hainan Yazhou Bay Seed Laboratory, Sanya, P. R. China
| | - Weiwei Guo
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Yumei Zhang
- Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Herbert J Kronzucker
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P. R. China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, P. R. China
| |
Collapse
|
29
|
Li Y, Hu J, Lin H, Qiu D, Qu Y, Du J, Hou L, Ma L, Wu Q, Liu Z, Zhou Y, Li H. Mapping QTLs for adult-plant resistance to powdery mildew and stripe rust using a recombinant inbred line population derived from cross Qingxinmai × 041133. FRONTIERS IN PLANT SCIENCE 2024; 15:1397274. [PMID: 38779062 PMCID: PMC11109386 DOI: 10.3389/fpls.2024.1397274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.
Collapse
Affiliation(s)
- Yahui Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huailong Lin
- Jiushenghe Seed Industry Co. Ltd., Changji, China
| | - Dan Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Hou
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Xining, China
| | - Lin Ma
- Datong Hui and Tu Autonomous County Agricultural Technology Extension Center, Xining, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
30
|
Xu B, Shen T, Chen H, Li H, Rehman SU, Lyu S, Hua L, Wang G, Zhang C, Li K, Li H, Lan C, Chen GY, Hao M, Chen S. Mapping and characterization of rust resistance genes Lr53 and Yr35 introgressed from Aegilops species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:113. [PMID: 38678511 PMCID: PMC11056342 DOI: 10.1007/s00122-024-04616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.
Collapse
Affiliation(s)
- Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100000, China
| | - Hong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shams Ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
31
|
Wang H, Wang W, Xie Z, Yang Y, Dai H, Shi F, Ma L, Sui Z, Xia C, Kong X, Zhang L. Overexpression of rice OsNRT1.1A/OsNPF6.3 enhanced the nitrogen use efficiency of wheat under low nitrogen conditions. PLANTA 2024; 259:127. [PMID: 38637411 DOI: 10.1007/s00425-024-04408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyong Dai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Shi
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Liang Ma
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhifeng Sui
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
32
|
Miao L, Xu W, Liu Y, Huang X, Chen Z, Wang H, Wang Z, Chen Y, Song Q, Zhang J, Han F, Peng H, Yao Y, Xin M, Hu Z, Ni Z, Sun Q, Xing J, Guo W. Reshaped DNA methylation cooperating with homoeolog-divergent expression promotes improved root traits in synthesized tetraploid wheat. THE NEW PHYTOLOGIST 2024; 242:507-523. [PMID: 38362849 DOI: 10.1111/nph.19593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.
Collapse
Affiliation(s)
- Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiangyi Huang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, 266000, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
33
|
Yan Q, Lu Y, Pang Y, Zhao H, Liu J, Liu M, Zhu H, Zhang Z, Li G, Wu Y, Liu S. TaCRTISO dosage modulates plant height and spike number per plant in wheat. PLANT PHYSIOLOGY 2024; 194:2208-2212. [PMID: 38036298 DOI: 10.1093/plphys/kiad632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
An allelic variation of TaCRTISO is valuable in adjusting spike number per plant and plant height in wheat breeding.
Collapse
Affiliation(s)
- Qiang Yan
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Lu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yunlong Pang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hailiang Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Jingxian Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Mingyu Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Huaqiang Zhu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Ziliang Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Genying Li
- Shandong Academy of Agricultural Sciences, Crop Research Institute, Jinan 250100, China
| | - Yuye Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
34
|
Cai Y, Zhou X, Wang C, Liu A, Sun Z, Li S, Shi X, Yang S, Guan Y, Cheng J, Wu Y, Qin R, Sun H, Zhao C, Li J, Cui F. Quantitative trait loci detection for three tiller-related traits and the effects on wheat (Triticum aestivum L.) yields. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:87. [PMID: 38512468 DOI: 10.1007/s00122-024-04589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.
Collapse
Affiliation(s)
- Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Xiaohan Zhou
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Aifeng Liu
- Crop Research Institute, Shandong Academy of Agricultural Science, Jinan, 250100, People's Republic of China
| | - Zhencang Sun
- Jingbo Agrochemicals Technology Co., Ltd., Binzhou, 256500, People's Republic of China
| | - Shihui Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Shuang Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Yuxiang Guan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell SignalingHebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
35
|
Coombes B, Lux T, Akhunov E, Hall A. Introgressions lead to reference bias in wheat RNA-seq analysis. BMC Biol 2024; 22:56. [PMID: 38454464 PMCID: PMC10921782 DOI: 10.1186/s12915-024-01853-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND RNA-seq is a fundamental technique in genomics, yet reference bias, where transcripts derived from non-reference alleles are quantified less accurately, can undermine the accuracy of RNA-seq quantification and thus the conclusions made downstream. Reference bias in RNA-seq analysis has yet to be explored in complex polyploid genomes despite evidence that they are often a complex mosaic of wild relative introgressions, which introduce blocks of highly divergent genes. RESULTS Here we use hexaploid wheat as a model complex polyploid, using both simulated and experimental data to show that RNA-seq alignment in wheat suffers from widespread reference bias which is largely driven by divergent introgressed genes. This leads to underestimation of gene expression and incorrect assessment of homoeologue expression balance. By incorporating gene models from ten wheat genome assemblies into a pantranscriptome reference, we present a novel method to reduce reference bias, which can be readily scaled to capture more variation as new genome and transcriptome data becomes available. CONCLUSIONS This study shows that the presence of introgressions can lead to reference bias in wheat RNA-seq analysis. Caution should be exercised by researchers using non-sample reference genomes for RNA-seq alignment and novel methods, such as the one presented here, should be considered.
Collapse
Affiliation(s)
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Anthony Hall
- Earlham Institute, Norwich, Norfolk, NR4 7UZ, UK.
| |
Collapse
|
36
|
Qin R, Cao M, Dong J, Chen L, Guo H, Guo Q, Cai Y, Han L, Huang Z, Xu N, Yang A, Xu H, Wu Y, Sun H, Liu X, Ling H, Zhao C, Li J, Cui F. Fine mapping of a major QTL, qKl-1BL controlling kernel length in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:67. [PMID: 38441674 DOI: 10.1007/s00122-024-04574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Mingsu Cao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jizi Dong
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Linqu Chen
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Haoru Guo
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Qingjie Guo
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Han
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhenjie Huang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ninghao Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Aoyu Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Huiyuan Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050000, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050000, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
37
|
Li Q, Song HL, Zhou T, Pei MN, Wang B, Yan SX, Liu YQ, Wu PJ, Hua YP. Differential Morpho-Physiological, Ionomic, and Phytohormone Profiles, and Genome-Wide Expression Profiling Involving the Tolerance of Allohexaploid Wheat ( Triticum aestivum L.) to Nitrogen Limitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3814-3831. [PMID: 38329036 DOI: 10.1021/acs.jafc.3c08626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Common wheat (Triticum aestivum L.) is a global staple food, while nitrogen (N) limitation severely hinders plant growth, seed yield, and grain quality of wheat. Genetic variations in the responses to low N stresses among allohexaploid wheat (AABBDD, 2n = 6x = 42) genotypes emphasize the complicated regulatory mechanisms underlying low N tolerance and N use efficiency (NUE). In this study, hydroponic culture, inductively coupled plasma mass spectrometry, noninvasive microtest, high-performance liquid chromatography, RNA-seq, and bioinformatics were used to determine the differential growth performance, ionome and phytohormone profiles, and genome-wide expression profiling of wheat plants grown under high N and low N conditions. Transcriptional profiling of NPFs, NRT2s, CLCs, SLACs/SLAHs, AAPs, UPSs, NIAs, and GSs characterized the core members, such as TaNPF6.3-6D, TaNRT2.3-3D, TaNIA1-6B, TaGLN1;2-4B, TaAAP14-5A/5D, and TaUPS2-5A, involved in the efficient transport and assimilation of nitrate and organic N nutrients. The low-N-sensitivity wheat cultivar XM26 showed obvious leaf chlorosis and accumulated higher levels of ABA, JA, and SA than the low-N-tolerant ZM578 under N limitation. The TaMYB59-3D-TaNPF7.3/NRT1.5-6D module-mediated shoot-to-root translocation and leaf remobilization of nitrate was proposed as an important pathway regulating the differential responses between ZM578 and XM26 to low N. This study provides some elite candidate genes for the selection and breeding of wheat germplasms with low N tolerance and high NUE.
Collapse
Affiliation(s)
- Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Nan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Wang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Song-Xian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Yun-Qi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Xue S, Wang H, Ma Y, Sun T, Wang Y, Meng F, Wang X, Yang Z, Zhang J, Du J, Li S, Li Z. Fine mapping of powdery mildew resistance gene PmXNM in a Chinese wheat landrace Xiaonanmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:35. [PMID: 38286845 DOI: 10.1007/s00122-024-04544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
KEY MESSAGE Powdery mildew resistance gene PmXNM, originated from the Chinese wheat landrace Xiaonanmai, was delimited to a 300.7-kb interval enriched with resistance genes. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease threatening the yield and quality of wheat worldwide. The use of broad-spectrum disease resistance genes from wheat landraces is an effective strategy to prevent this pathogen. Chinese wheat landrace Xiaonanmai (XNM) was immune to 23 tested Bgt isolates at the seedling stage. The F1, F2, and F2:4 progenies derived from the cross between XNM and Chinese Spring (CS) were used in this study. Genetic analysis revealed that powdery mildew resistance in XNM was controlled by a single dominant gene, temporarily designated PmXNM. Bulked segregant analysis and molecular mapping delimited PmXNM to the distal terminal region of chromosome 4AL flanked by markers caps213923 and kasp511718. The region carrying the PmXNM locus was approximately 300.7 kb and contained nine high-confidence genes according to the reference genome sequence of CS. Five of these genes, annotated as disease resistance RPP13-like proteins 1, were clustered in the target region. Haplotype analysis using the candidate gene-specific markers indicated that the majority of 267 common wheat accessions (75.3%) exhibited extensive gene losses at the PmXNM locus, as confirmed by aligning the targeted genome sequences of CS with those of other sequenced wheat cultivars. Seven candidate gene-specific markers have proven effective for marker-assisted introgression of PmXNM into modern elite cultivars.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Huan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Tiepeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yingxue Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Fan Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xintian Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zihan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jieli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jinxuan Du
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhifang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
39
|
Nan Y, Xie Y, He H, Wu H, Gao L, Atif A, Zhang Y, Tian H, Hui J, Gao Y. Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.). Int J Biol Macromol 2024; 254:127771. [PMID: 38287600 DOI: 10.1016/j.ijbiomac.2023.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the important oil crops, with a high demand for nitrogen (N). It is essential to explore the potential of rapeseed to improve nitrogen utilization efficiency (NUtE). Rapeseed is an allotetraploid crop with a relatively large and complex genome, and there are few studies on the mapping of genes related to NUtE regulation. In this study, we used the combination of bulk segregant analysis sequencing (BSA-Seq) and RNA sequencing (RNA-Seq) to analyze the N-efficient genotype 'Zheyou 18' and N-inefficient genotype 'Sollux', to identify the genetic regulatory mechanisms. Several candidate genes were screened, such as the high-affinity nitrate transporter gene NRT2.1 (BnaC08g43370D) and the abscisic acid (ABA) signal transduction-related genes (BnaC02g14540D, BnaA03g20760D, and BnaA05g01330D). BnaA05g01330D was annotated as ABA-INDUCIBLE bHLH-TYPE TRANSCRIPTION FACTOR (AIB/bHLH17), which was highly expressed in the root. The results showed that the primary root length of the ataib mutant was significantly longer than that of the wild type under low N conditions. Overexpression of BnaA5.AIB could reduce the NUtE under low N levels in Arabidopsis (Arabidopsis thaliana). Candidate genes identified in this study may be involved in the regulation of NUtE in rapeseed, and new functions of AIB in orchestrating N uptake and utilization have been revealed. It is indicated that BnaA5.AIB may be the key factor that links ABA to N signaling and a negative regulator of NUtE. It will provide a theoretical basis and application prospect for resource conservation, environmental protection, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yunyou Nan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyu Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiying He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Han Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixing Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ayub Atif
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Hui Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jing Hui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
40
|
Wang M, Wang Y, Wang X, Wei G, Yang H, Yang X, Shen T, Qu H, Fang S, Wu Z. Integrated physiological, biochemical, and transcriptomics analyses reveal the underlying mechanisms of high nitrogen use efficiency of black sesame. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108205. [PMID: 38035467 DOI: 10.1016/j.plaphy.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cultivating high nitrogen use efficient varieties is a sustainable solution to mitigating adverse effects on the environment caused by excessive nitrogen fertilizer application. However, in sesame, although immoderate nitrogen fertilizers are used to promote yield, the molecular basis of high nitrogen use efficiency (NUE) is largely unknown. Hence, this study aimed to identify high NUE black sesame variety and dissect the underlying physiological and molecular mechanisms. To achieve this, seventeen seedling traits of 30 black sesame varieties were evaluated under low nitrogen (LN) and high nitrogen (HN) conditions. Dry matter accumulation, root parameters, shoot nitrogen accumulation, and chlorophyll content are important factors for evaluating the NUE of sesame genotypes. The variety 17-156 was identified as the most efficient for N utilization. Comparative physiological and transcriptomics analyses revealed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen into amino acids and proteins, and simultaneously improving carbon metabolism and growth. Specifically, the total nitrogen and soluble protein contents significantly increased with the increase in nitrogen concentrations. Many important genes, including nitrate transporters (NPFs), amino acid metabolism-related (GS, GOGAT, GDH, etc.), phytohormone-related, and transcription factors, were significantly up-regulated in 17-156 under HN condition. In addition, 38 potential candidate genes were identified for future studies toward improving sesame's NUE. These findings offer valuable resources for deciphering the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yupeng Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaohui Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Guangwei Wei
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huiyi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tinghai Shen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huijie Qu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
41
|
Niu D, Gao Z, Cui B, Zhang Y, He Y. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat. NATURE PLANTS 2024; 10:37-52. [PMID: 38177663 DOI: 10.1038/s41477-023-01596-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
The staple food crop winter bread wheat (Triticum aestivum) acquires competence to flower in late spring after experiencing prolonged cold in temperate winter seasons, through the physiological process of vernalization. Prolonged cold exposure results in transcriptional repression of the floral repressor VERNALIZATION 2 (TaVRN2) and activates the expression of the potent floral promoter VERNALIZATION 1 (TaVRN1). Cold-induced TaVRN1 activation and TaVRN2 repression are maintained in post-cold vegetative growth and development, leading to an epigenetic 'memory of winter cold', enabling spring flowering. When and how the cold memory is reset in wheat is essentially unknown. Here we report that the cold-induced TaVRN1 activation is inherited by early embryos, but reset in subsequent embryo development, whereas TaVRN2 remains silenced through seed development, but is reactivated rapidly by light during seed germination. We further found that a chromatin reader mediates embryonic resetting of TaVRN1 and that chromatin modifications play an important role in the regulation of TaVRN1 expression and thus the floral transition, in response to developmental state and environmental cues. The findings define a two-step molecular mechanism for re-establishing vernalization requirement in common wheat, ensuring that each generation must experience winter cold to acquire competence to flower in spring.
Collapse
Affiliation(s)
- De Niu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zheng Gao
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Bowen Cui
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yongxing Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
42
|
Zhang H, Jin Z, Cui F, Zhao L, Zhang X, Chen J, Zhang J, Li Y, Li Y, Niu Y, Zhang W, Gao C, Fu X, Tong Y, Wang L, Ling HQ, Li J, Xiao J. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat. Nat Commun 2023; 14:8238. [PMID: 38086830 PMCID: PMC10716289 DOI: 10.1038/s41467-023-44003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CICMCP, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China.
| | - Junming Li
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, China.
| |
Collapse
|
43
|
Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, Yan X, Zhang X, Lu Z, Xu S, Jiao Y, Chong K, Liu X, Cui D, Li G, Zhang Y, Du C, Wu L, Li T, Yan D, Zhan K, Chen F, Wang Z, Zhang L, Kong X, Ru Z, Wang D, Gao L. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. MOLECULAR PLANT 2023; 16:1893-1910. [PMID: 37897037 DOI: 10.1016/j.molp.2023.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.
Collapse
Affiliation(s)
- Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- Xi'An Shansheng Biosciences Co., Ltd., Xi'an 710000, China
| | - Chuizheng Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 612100, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujuan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Guangwei Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunguang Du
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan 562000, China
| | - Tianbao Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Yan
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kehui Zhan
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Feng Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhiyong Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
44
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Feng Y, Zhao Y, Ma Y, Liu D, Shi H. Single-cell transcriptome analyses reveal cellular and molecular responses to low nitrogen in burley tobacco leaves. PHYSIOLOGIA PLANTARUM 2023; 175:e14118. [PMID: 38148214 DOI: 10.1111/ppl.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Tobacco (Nicotiana tabacum) is cultivated and consumed worldwide. It requires great amounts of nitrogen (N) to achieve the best yield and quality. With a view to sustainable and environmentally friendly agriculture, developing new genotypes with high productivity under low N conditions is an important approach. It is unclear how genes in tobacco are expressed at the cellular level and the precise mechanisms by which cells respond to environmental stress, especially in the case of low N. Here, we characterized the transcriptomes in tobacco leaves grown in normal and low-N conditions by performing scRNA-seq. We identified 10 cell types with 17 transcriptionally distinct cell clusters with the assistance of marker genes and constructed the first single-cell atlas of tobacco leaves. Distinct gene expression patterns of cell clusters were observed under low-N conditions, and the mesophyll cells were the most important responsive cell type and displayed heterogene responses among its three subtypes. Pseudo-time trajectory analysis revealed low-N stress decelerates the differentiation towards mesophyll cells. In combination with scRNA-seq, WGCNA, and bulk RNA-seq results, we found that genes involved in porphyrin metabolism, nitrogen metabolism, carbon fixation, photosynthesis, and photosynthesis-antenna pathway play an essential role in response to low N. Moreover, we identified COL16, GATA24, MYB73, and GLK1 as key TFs in the regulation of N-responsive genes. Collectively, our findings are the first observation of the cellular and molecular responses of tobacco leaves under low N stress and lay the cornerstone for future tobacco scRNA-seq investigations.
Collapse
Affiliation(s)
- Yuqing Feng
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| | - Yuanyuan Zhao
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| | - Yanjun Ma
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd, Beijing, China
| | - Deshui Liu
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd, Beijing, China
| | - Hongzhi Shi
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| |
Collapse
|
46
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
47
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Gao J, Hu X, Gao C, Chen G, Feng H, Jia Z, Zhao P, Yu H, Li H, Geng Z, Fu J, Zhang J, Cheng Y, Yang B, Pang Z, Xiang D, Jia J, Su H, Mao H, Lan C, Chen W, Yan W, Gao L, Yang W, Li Q. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1966-1977. [PMID: 37392004 PMCID: PMC10502759 DOI: 10.1111/pbi.14104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Dissecting the genetic basis of complex traits such as dynamic growth and yield potential is a major challenge in crops. Monitoring the growth throughout growing season in a large wheat population to uncover the temporal genetic controls for plant growth and yield-related traits has so far not been explored. In this study, a diverse wheat panel composed of 288 lines was monitored by a non-invasive and high-throughput phenotyping platform to collect growth traits from seedling to grain filling stage and their relationship with yield-related traits was further explored. Whole genome re-sequencing of the panel provided 12.64 million markers for a high-resolution genome-wide association analysis using 190 image-based traits and 17 agronomic traits. A total of 8327 marker-trait associations were detected and clustered into 1605 quantitative trait loci (QTLs) including a number of known genes or QTLs. We identified 277 pleiotropic QTLs controlling multiple traits at different growth stages which revealed temporal dynamics of QTLs action on plant development and yield production in wheat. A candidate gene related to plant growth that was detected by image traits was further validated. Particularly, our study demonstrated that the yield-related traits are largely predictable using models developed based on i-traits and provide possibility for high-throughput early selection, thus to accelerate breeding process. Our study explored the genetic architecture of growth and yield-related traits by combining high-throughput phenotyping and genotyping, which further unravelled the complex and stage-specific contributions of genetic loci to optimize growth and yield in wheat.
Collapse
Affiliation(s)
- Jie Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chunyan Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Guang Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hui Feng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhen Jia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Peimin Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Haiyang Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Huaiwen Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zedong Geng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jingbo Fu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yikeng Cheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Bo Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhanghan Pang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSaskatchewanCanada
| | - Jizeng Jia
- Institute of Crop SciencesChinese Academy of Crop Sciences (CAAS)BeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Caixia Lan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lifeng Gao
- Institute of Crop SciencesChinese Academy of Crop Sciences (CAAS)BeijingChina
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- The Center of Crop NanobiotechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
49
|
Qin R, Ma T, Cai Y, Shi X, Cheng J, Dong J, Wang C, Li S, Pan G, Guan Y, Zhang L, Yang S, Xu H, Zhao C, Sun H, Li X, Wu Y, Li J, Cui F. Characterization and fine mapping analysis of a major stable QTL qKnps-4A for kernel number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:211. [PMID: 37737910 DOI: 10.1007/s00122-023-04456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
KEY MESSAGE A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Tianhang Ma
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jizi Dong
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shihui Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Guoqing Pan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yuxiang Guan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Zhang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shuang Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Huiyuan Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ximei Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
- Shandong Key Laboratory of Dryland Farming Technology, Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
50
|
Gao Z, Bian J, Lu F, Jiao Y, He H. Triticeae crop genome biology: an endless frontier. FRONTIERS IN PLANT SCIENCE 2023; 14:1222681. [PMID: 37546276 PMCID: PMC10399237 DOI: 10.3389/fpls.2023.1222681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Triticeae, the wheatgrass tribe, includes several major cereal crops and their wild relatives. Major crops within the Triticeae are wheat, barley, rye, and oat, which are important for human consumption, animal feed, and rangeland protection. Species within this tribe are known for their large genomes and complex genetic histories. Powered by recent advances in sequencing technology, researchers worldwide have made progress in elucidating the genomes of Triticeae crops. In addition to assemblies of high-quality reference genomes, pan-genome studies have just started to capture the genomic diversities of these species, shedding light on our understanding of the genetic basis of domestication and environmental adaptation of Triticeae crops. In this review, we focus on recent signs of progress in genome sequencing, pan-genome analyses, and resequencing analysis of Triticeae crops. We also propose future research avenues in Triticeae crop genomes, including identifying genome structure variations, the association of genomic regions with desired traits, mining functions of the non-coding area, introgression of high-quality genes from wild Triticeae resources, genome editing, and integration of genomic resources.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Jiao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|