1
|
Liu C, Li D, Dang J, Shu J, Smit SJ, Wu Q, Lichman BR. Haplotype-resolved genome of Agastache rugosa (Huo Xiang) provides insight into monoterpenoid biosynthesis and gene cluster evolution. HORTICULTURE RESEARCH 2025; 12:uhaf034. [PMID: 40224328 PMCID: PMC11992331 DOI: 10.1093/hr/uhaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025]
Abstract
Monoterpenoids are small volatile molecules produced by many plants that have applications in consumer products and healthcare. Plants from the mint family (Lamiaceae) are prodigious producers of monoterpenoids, including a chemotype of Agastache rugosa (Huo Xiang), which produces pulegone and isomenthone. We sequenced, assembled and annotated a haplotype-resolved chromosome-scale genome assembly of A. rugosa with a monoterpene chemotype. This genome assembly revealed that pulegone biosynthesis genes are in a biosynthetic gene cluster, which shares a common origin with the pulegone gene cluster in Schizonepeta tenuifolia. Using phylogenetics and synteny analysis, we describe how the clusters in these two species diverged through inversions and duplications. Using Hi-C analysis, we identified tentative evidence of contact between the pulegone gene cluster and an array of pulegone reductases, with both regions also enriched in retrotransposons. This genome and its analysis add valuable and novel insights to the organization and evolution of terpenoid biosynthesis in Lamiaceae.
Collapse
Affiliation(s)
- Chanchan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - DiShuai Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjie Dang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Shu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Samuel J Smit
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - QiNan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| |
Collapse
|
2
|
Niu W, Zhang J, Qu L, Ji XJ, Wei Y. Advances in synthesizing plant-derived isoflavones and their precursors with multiple pharmacological activities using engineered yeasts. Microb Cell Fact 2025; 24:75. [PMID: 40155940 PMCID: PMC11954244 DOI: 10.1186/s12934-025-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones such as daidzein and genistein are naturally occurring compounds found in plants such as legumes. They have diverse pharmacological activities, making them valuable in the food, pharmaceutical, and cosmetic industries. Currently, isoflavones are mainly obtained through the extraction of plant biomass. Chemical synthesis is challenging for most isoflavones due to the complexity of their structures. The limited supply of isoflavones cannot meet the market demands. Advances in synthetic biology have provided a sustainable and efficient solution for the production of isoflavones, with yeasts often serving as the microbial chassis for biosynthesis. This review summarizes the pharmacological properties of specific isoflavones, their biosynthetic pathways, and the technical strategies used in engineered yeasts for isoflavone production. In addition, the development of synthetic biology and state-of-the-art biotechnological strategies for the environmentally friendly production of bioactive isoflavones is discussed.
Collapse
Affiliation(s)
- Wenhui Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jingxian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Laboratory of Synthetic Biology, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Chen L, Liao P. Current insights into plant volatile organic compound biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102708. [PMID: 40147248 DOI: 10.1016/j.pbi.2025.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Plant-derived volatile organic compounds (VOCs) are essential for various ecological interactions, including plant communication, pollinator attraction, and defense against herbivores. Some VOCs are active ingredients with significant economic and medicinal value. For example, monoterpenoids such as linalool, geraniol, menthol, camphor, borneol, citral, and thymol are well-known for their flavor and aroma. Most monoterpenoids have a strong scent and physiological activity; some compounds, like thymoquinone, have excellent anti-cancer activities, making them important for pharmaceuticals and also beneficial in food and cosmetics. VOCs encompass a diverse range of chemical classes, such as terpenoids, benzenoids/phenylpropanoids, amino acid derivatives, and fatty acid-derived compounds. With the development of genomic, transcriptomic, and metabolomic techniques, significant progress has been made in the discovery of genes for the biosynthesis of VOCs. Herein, recent advances in the biosynthesis of plant-derived VOCs, focusing on two main classes: benzenoids/phenylpropanoids and monoterpenes, are discussed. It highlights the identification of a peroxisomal enzyme, benzaldehyde synthase, in petunia that elucidates the biosynthetic pathway of benzaldehyde, and a bifunctional enzyme, geranyl/farnesyl diphosphate synthase (RcG/FPPS1), in roses (Rosa chinensis "Old Blush") that contributes to the production of cytosolic geranyl diphosphate. Current understanding about canonical and non-canonical pathways for monoterpene formation and some approaches that are useful for gene discovery have been discussed. Open questions and future perspectives in this field have also been presented.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Priego-Cubero S, Knoch E, Wang Z, Alseekh S, Braun KH, Chapman P, Fernie AR, Liu C, Becker C. Subfunctionalization and epigenetic regulation of a biosynthetic gene cluster in Solanaceae. Proc Natl Acad Sci U S A 2025; 122:e2420164122. [PMID: 39977312 PMCID: PMC11874288 DOI: 10.1073/pnas.2420164122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Biosynthetic gene clusters (BGCs) are sets of often heterologous genes that are genetically and functionally linked. Among eukaryotes, BGCs are most common in plants and fungi and ensure the coexpression of the different enzymes coordinating the biosynthesis of specialized metabolites. Here, we report the identification of a withanolide BGC in Physalis grisea (ground-cherry), a member of the nightshade family (Solanaceae). A combination of transcriptomic, epigenomic, and metabolic analyses revealed that, following a duplication event, this BGC evolved two tissue-specifically expressed subclusters, containing several pairs of paralogs that contribute to related but distinct biochemical processes; this subfunctionalization is tightly associated with epigenetic features and the local chromatin environment. The two subclusters appear strictly isolated from each other at the structural chromatin level, each forming a highly self-interacting chromatin domain with tissue-dependent levels of condensation. This correlates with gene expression in either above- or below-ground tissue, thus spatially separating the production of different withanolide compounds. By comparative phylogenomics, we show that the withanolide BGC most likely evolved before the diversification of the Solanaceae family and underwent lineage-specific diversifications and losses. The tissue-specific subfunctionalization is common to species of the Physalideae tribe but distinct from other, independent duplication events outside of this clade. In sum, our study reports on an instance of an epigenetically modulated subfunctionalization within a BGC and sheds light on the biosynthesis of withanolides, a highly diverse group of steroidal triterpenoids important in plant defense and amenable to pharmaceutical applications due to their anti-inflammatory, antibiotic, and anticancer properties.
Collapse
Affiliation(s)
- Santiago Priego-Cubero
- Ludwig-Maximilians-Universität München (LMU) Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München (LMU), Martinsried82152, Germany
| | - Eva Knoch
- Ludwig-Maximilians-Universität München (LMU) Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München (LMU), Martinsried82152, Germany
| | - Zhidan Wang
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart70599, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv4000, Bulgaria
| | - Karl-Heinz Braun
- Ludwig-Maximilians-Universität München (LMU) Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München (LMU), Martinsried82152, Germany
| | - Philipp Chapman
- Ludwig-Maximilians-Universität München (LMU) Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München (LMU), Martinsried82152, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv4000, Bulgaria
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Stuttgart70599, Germany
| | - Claude Becker
- Ludwig-Maximilians-Universität München (LMU) Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München (LMU), Martinsried82152, Germany
| |
Collapse
|
5
|
Liu SJ, Liu Z, Shao BY, Li T, Zhu X, Wang R, Shi L, Xu S, Van de Peer Y, Xue JY. Deciphering the biosynthetic pathway of triterpene saponins in Prunella vulgaris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17220. [PMID: 39868644 DOI: 10.1111/tpj.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025]
Abstract
The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified. This study used a comprehensive screening methodology, combining phylogenetic analysis, gene expression assessment, metabolome-transcriptome correlation and co-expression analysis, to identify candidate genes involved in triterpene saponins biosynthesis. Nine candidate genes - two OSCs, three CYP716s and four UGT73s - were precisely identified from large gene families comprising hundreds of members. These genes were subjected to heterologous expression and functional characterization, with enzymatic activity assays confirming their roles in the biosynthetic pathway, aligning with bioinformatics predictions. Analysis revealed that these genes originated from a whole-genome duplication (WGD) event in P. vulgaris, highlighting the potential importance of WGD for plant metabolism. This study addresses the knowledge gap in the biosynthesis of triterpene saponins in P. vulgaris, establishing a theoretical foundation for industrial production via synthetic biology. Additionally, we present an efficient methodological protocol that integrates evolutionary principles and bioinformatics techniques in metabolite biosynthesis research. This approach holds significant value for studies focused on unraveling various biosynthetic pathways.
Collapse
Affiliation(s)
- Si-Jie Liu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengtai Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Bing-Yan Shao
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Li
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinning Zhu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yves Van de Peer
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, Ghent, B-9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Wang M, Zhang S, Li R, Zhao Q. Unraveling the specialized metabolic pathways in medicinal plant genomes: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1459533. [PMID: 39777086 PMCID: PMC11703845 DOI: 10.3389/fpls.2024.1459533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants are important sources of bioactive specialized metabolites with significant therapeutic potential. Advances in multi-omics have accelerated the understanding of specialized metabolite biosynthesis and regulation. Genomics, transcriptomics, proteomics, and metabolomics have each contributed new insights into biosynthetic gene clusters (BGCs), metabolic pathways, and stress responses. However, single-omics approaches often fail to fully address these complex processes. Integrated multi-omics provides a holistic perspective on key regulatory networks. High-throughput sequencing and emerging technologies like single-cell and spatial omics have deepened our understanding of cell-specific and spatially resolved biosynthetic dynamics. Despite these advancements, challenges remain in managing large datasets, standardizing protocols, accounting for the dynamic nature of specialized metabolism, and effectively applying synthetic biology for sustainable specialized metabolite production. This review highlights recent progress in omics-based research on medicinal plants, discusses available bioinformatics tools, and explores future research trends aimed at leveraging integrated multi-omics to improve the medicinal quality and sustainable utilization of plant resources.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
| | - Shuqiao Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
7
|
An C, Li D, Lu L, Liu C, Xu X, Xie S, Wang J, Liu R, Yang C, Qin Y, Zheng P. Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey. PLANTS (BASEL, SWITZERLAND) 2024; 13:3536. [PMID: 39771235 PMCID: PMC11679336 DOI: 10.3390/plants13243536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Jing Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Smit SJ, Whitehead C, James SR, Jeffares DC, Godden G, Peng D, Sun H, Lichman BR. Pseudomolecule-scale genome assemblies of Drepanocaryum sewerzowii and Marmoritis complanata. G3 (BETHESDA, MD.) 2024; 14:jkae172. [PMID: 39047060 PMCID: PMC11979756 DOI: 10.1093/g3journal/jkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The Nepetoideae, a subfamily of Lamiaceae (mint family), is rich in aromatic plants, many of which are sought after for their use as flavors and fragrances or for their medicinal properties. Here, we present genome assemblies for two species in Nepetiodeae: Drepanocaruym sewerzowii and Marmoritis complanata. Both assemblies were generated using Oxford Nanopore Q20 + reads with contigs anchored to nine pseudomolecules that resulted in 335 Mb and 305 Mb assemblies, respectively, and BUSCO scores above 95% for both the assembly and annotation. We furthermore provide a species tree for the Lamiaceae using only genome-derived gene models, complementing existing transcriptome and marker-based phylogenies.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Caragh Whitehead
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Sally R James
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel C Jeffares
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Deli Peng
- School of Life Science, Yunnan Normal University, Kunming 650092, Yunnan, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
Wang X, Liang Y, Shu J, Jia C, Li Q, Liu C, Wu Q. Transcription factor StWRKY1 is involved in monoterpene biosynthesis induced by light intensity in Schizonepeta tenuifolia Briq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108871. [PMID: 38945094 DOI: 10.1016/j.plaphy.2024.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Menthone-type monoterpenes are the main active ingredients of Schizonepeta tenuifolia Briq. Previous studies have indicated that light intensity influences the synthesis of menthone-type monoterpenes in S. tenuifolia, but the mechanism remains unclear. WRKY transcription factors play a crucial role in plant metabolism, yet their regulatory mechanisms in S. tenuifolia are not well understood. In this study, transcriptome data of S. tenuifolia leaves under different light intensities were analyzed, identifying 57 candidate transcription factors that influence monoterpene synthesis. Among these, 7 members of the StWRKY gene family were identified and mapped onto chromosomes using bioinformatics methods. The physicochemical properties of the proteins encoded by these StWRKY genes, their gene structures, and cis-acting elements were also studied. Comparative genomics and phylogenetic analyses revealed that Sch000013479 is closely related to AaWRKY1, AtWRKY41, and AtWRKY53, and it was designated as StWRKY1. Upon silencing and overexpressing the StWRKY1 transcription factor in S. tenuifolia leaves, changes in the expression of key genes in the menthone-type monoterpene synthesis pathway were observed. Specifically, when StWRKY1 was effectively silenced, the content of (-)-pulegone significantly decreased. These results enhance our understanding of the impact of StWRKYs on monoterpene synthesis in S. tenuifolia and lay the groundwork for further exploration of the regulatory mechanisms involved in the biosynthesis of menthone-type monoterpenes.
Collapse
Affiliation(s)
- Xue Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yafang Liang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Shu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Congling Jia
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiujuan Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chanchan Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qinan Wu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Swamidatta SH, Lichman BR. Beyond co-expression: pathway discovery for plant pharmaceuticals. Curr Opin Biotechnol 2024; 88:103147. [PMID: 38833915 DOI: 10.1016/j.copbio.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Plant natural products have been an important source of medicinal molecules since ancient times. To gain access to the whole diversity of these molecules for pharmaceutical applications, it is important to understand their biosynthetic origins. Whilst co-expression is a reliable tool for identifying gene candidates, a variety of complementary methods can aid in screening or refining candidate selection. Here, we review recently employed plant biosynthetic pathway discovery approaches, and highlight future directions in the field.
Collapse
Affiliation(s)
- Sandesh H Swamidatta
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
11
|
Li D, Jia C, Lin G, Dang J, Liu C, Wu Q. Impact of Methyl Jasmonate on Terpenoid Biosynthesis and Functional Analysis of Sesquiterpene Synthesis Genes in Schizonepeta tenuifolia. PLANTS (BASEL, SWITZERLAND) 2024; 13:1920. [PMID: 39065447 PMCID: PMC11280979 DOI: 10.3390/plants13141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This study investigates the impact of methyl jasmonate (MeJA) on the volatile oil composition of Schizonepeta tenuifolia and elucidates the function of the StTPS45 gene, a key player in terpenoid biosynthesis. The effect of different concentrations of MeJA (0, 50, 100, 200, and 300 μmol/L) on the growth of S. tenuifolia adventitious bud clusters was analyzed over a 20 d period. Using gas chromatography-mass spectrometry (GC-MS), 17 compounds were identified from the adventitious bud clusters of S. tenuifolia. Significant changes in the levels of major monoterpenes, including increased contents of (+)-limonene and (+)-menthone, were observed, particularly at higher concentrations of MeJA. Analysis of transcriptome data from three groups treated with 0, 100, and 300 μmol/L MeJA revealed significant changes in the gene expression profiles following MeJA treatment. At 100 μmol/L MeJA, most terpene synthase (TPS) genes were overexpressed. Additionally, gene expression and functional predictions suggested that StTPS45 acts as germacrene D synthase. Therefore, StTPS45 was cloned and expressed in Escherichia coli, and enzyme activity assays confirmed its function as a germacrene D synthase. Molecular docking and structural prediction of StTPS45 further suggested specific interactions with farnesyl diphosphate (FPP), aligning with its role in the terpenoid synthesis pathway. These findings provide valuable insights into the modulation of secondary metabolite pathways by jasmonate signaling and underscore the potential of genetic engineering approaches to enhance the production of specific terpenoids in medicinal plants.
Collapse
Affiliation(s)
- Dishuai Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
| | - Congling Jia
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
| | - Guyin Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
| | - Jingjie Dang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
| | - Chanchan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (D.L.); (C.J.); (G.L.); (J.D.)
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
Yang H, Wang C, Zhou G, Zhang Y, He T, Yang L, Wu Y, Wang Z, Tang X, Chen G, Liu Z, Tang H, Zhou H, Kang X, Zhang S, Leng L, Chen S, Song C. A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens 'Variegata'. HORTICULTURE RESEARCH 2024; 11:uhae022. [PMID: 38469381 PMCID: PMC10925848 DOI: 10.1093/hr/uhae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
Mentha is a commonly used spice worldwide, which possesses medicinal properties and fragrance. These characteristics are conferred, at least partially, by essential oils such as menthol. In this study, a gap-free assembly with a genome size of 414.3 Mb and 31,251 coding genes was obtained for Mentha suaveolens 'Variegata'. Based on its high heterozygosity (1.5%), two complete haplotypic assemblies were resolved, with genome sizes of 401.9 and 405.7 Mb, respectively. The telomeres and centromeres of each haplotype were almost fully annotated. In addition, we detected a total of 41,135 structural variations. Enrichment analysis demonstrated that genes involved in terpenoid biosynthesis were affected by these structural variations. Analysis of volatile metabolites showed that M. suaveolens mainly produces piperitenone oxide rather than menthol. We identified three genes in the M. suaveolens genome which encode isopiperitenone reductase (ISPR), a key rate-limiting enzyme in menthol biosynthesis. However, the transcription levels of ISPR were low. Given that other terpenoid biosynthesis genes were expressed, M. suaveolens ISPRs may account for the accumulation of piperitenone oxide in this species. The findings of this study may provide a valuable resource for improving the detection rate and accuracy of genetic variants, thereby enhancing our understanding of their impact on gene function and expression. Moreover, our haplotype-resolved gap-free genome assembly offers novel insights into molecular marker-assisted breeding of Mentha.
Collapse
Affiliation(s)
- Hanting Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guanru Zhou
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lulu Yang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Ya Wu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhengnan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Gang Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanyu Tang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Hanlin Zhou
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xumei Kang
- Wuhan Benagen Technology Co., Ltd, Wuhan 430000, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Schelkunov MI, Shtratnikova VY, Klepikova AV, Makarenko MS, Omelchenko DO, Novikova LA, Obukhova EN, Bogdanov VP, Penin AA, Logacheva MD. The genome of the toxic invasive species Heracleum sosnowskyi carries an increased number of genes despite absence of recent whole-genome duplications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:449-463. [PMID: 37846604 DOI: 10.1111/tpj.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Viktoria Yu Shtratnikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna V Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim S Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Denis O Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Viktor P Bogdanov
- Life Sciences Research Center, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Aleksey A Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
14
|
Li P, Yan MX, Liu P, Yang DJ, He ZK, Gao Y, Jiang Y, Kong Y, Zhong X, Wu S, Yang J, Wang HX, Huang YB, Wang L, Chen XY, Hu YH, Zhao Q, Xu P. Multiomics analyses of two Leonurus species illuminate leonurine biosynthesis and its evolution. MOLECULAR PLANT 2024; 17:158-177. [PMID: 37950440 DOI: 10.1016/j.molp.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
The Lamiaceae family is renowned for its terpenoid-based medicinal components, but Leonurus, which has traditional medicinal uses, stands out for its alkaloid-rich composition. Leonurine, the principal active compound found in Leonurus, has demonstrated promising effects in reducing blood lipids and treating strokes. However, the biosynthetic pathway of leonurine remains largely unexplored. Here, we present the chromosome-level genome sequence assemblies of Leonurus japonicus, known for its high leonurine production, and Leonurus sibiricus, characterized by very limited leonurine production. By integrating genomics, RNA sequencing, metabolomics, and enzyme activity assay data, we constructed the leonurine biosynthesis pathway and identified the arginine decarboxylase (ADC), uridine diphosphate glucosyltransferase (UGT), and serine carboxypeptidase-like (SCPL) acyltransferase enzymes that catalyze key reactions in this pathway. Further analyses revealed that the UGT-SCPL gene cluster evolved by gene duplication in the ancestor of Leonurus and neofunctionalization of SCPL in L. japonicus, which contributed to the accumulation of leonurine specifically in L. japonicus. Collectively, our comprehensive study illuminates leonurine biosynthesis and its evolution in Leonurus.
Collapse
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Xiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Pan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Dan-Jie Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze-Kun He
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Xia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
16
|
Wang Z, Peters RJ. Dynamic evolution of terpenoid biosynthesis in the Lamiaceae. MOLECULAR PLANT 2023; 16:963-965. [PMID: 37118894 PMCID: PMC11414413 DOI: 10.1016/j.molp.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|