1
|
Maia MV, do Egito EST, Sapin-Minet A, Viana DB, Kakkar A, Soares DCF. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025; 30:328. [PMID: 39860198 PMCID: PMC11767523 DOI: 10.3390/molecules30020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.
Collapse
Affiliation(s)
- Matheus Valentin Maia
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratório de Sistemas Dispersos LaSiD, Faculdade de Farmácia, Universidade Federal do Rio Grande no Norte, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Anne Sapin-Minet
- Faculté de Pharmacie, Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | - Daniel Bragança Viana
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | | |
Collapse
|
2
|
Selvi SV, Prasannan A, Yu H, Lincy V, Hong PD. Bio-mineralized tin/bismuth oxide nanoparticles with silk fibroins for efficient electrochemical detection of 2-nitroaniline in river water samples. ENVIRONMENTAL RESEARCH 2023; 221:115285. [PMID: 36640938 DOI: 10.1016/j.envres.2023.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the usage of nitroaniline has played a vital role in pharmaceutical formulations as it is a crucial ingredient in the synthesis of pesticides and dyes. However, the level of nitroaniline existing in industrial waste keeps rising the environmental contamination. Thus, monitoring of active nitro-residuals becomes more significant in reducing the toxicity of the ecosystem. Therefore, we have taken an attempt to evaluate the hazardous pollutant 2-nitroaniline (2-NA) using the electrocatalyst viz., tin-doped bismuth oxide inserted on a biopolymer silk fibroin composite modified glassy carbon electrode (Sn-Bi2O3/SF@GCE). The Sn-Bi2O3/SF nanocomposite was synthesized through hydrothermal and co-precipitation methods. The physicochemical properties of the prepared Sn-Bi2O3/SF hybrid composite were examined by conventional microscopy and spectroscopic techniques like FE-SEM, HR-TEM, XRD, FTIR, Raman, and XPS. Furthermore, the bio-mineralized Sn-Bi2O3/SF@GCE displayed a wide linear range (0.009 μM-785.7 μM) and a lower detection limit (3.5 nM) with good sensitivity for 2-NA detection under the optimum conditions. The result shows that the Sn-Bi2O3/SF-modified GCE has good reproducibility, repeatability, and excellent selectivity for 2-NA detection in the presence of other co-interfering compounds. Moreover, the practical applicability of Sn-Bi2O3/SF@GCE sensors was investigated for the effective detection of 2-NA in real river water samples, revealing good recovery results.
Collapse
Affiliation(s)
- Subash Vetri Selvi
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Adhimoorthy Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Hao Yu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Varghese Lincy
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
3
|
Zhang J, Li S, Yang Z, Liu C, Chen X, Zhang Y, Zhang F, Shi H, Chen X, Tao L, Shan H, Zhang M. Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. BIOMATERIALS ADVANCES 2022; 135:212743. [PMID: 35929216 DOI: 10.1016/j.bioadv.2022.212743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S), an important endogenous signaling molecule, plays an important neuroprotective role in the central nervous system. However, there is no ideal delivery material or method involving the sustained and controlled release of H2S for clinical application in brain diseases. Silk fibroin (SF)-based hydrogels have become a potentially promising strategy for local, controlled, sustained drug release in the treatment of various disorders. Here, we show a silk fibroin (SF)-based hydrogel with sustained H2S delivery (H2S@SF hydrogel) is effective in treating brain injury through stereotactic orthotopic injection in a severe intracerebral hemorrhage (ICH) mouse model. In this study, we observed H2S@SF hydrogel sustained H2S release in vitro and in vivo. The physicochemical properties of H2S@SF hydrogel were studied using FE-SEM, Raman spectroscopy and Rheological analysis. Treatment with H2S@SF hydrogel attenuated brain edema, reduced hemorrhage volume and improved the recovery of neurological deficits after severe ICH following stereotactic orthotopic injection. Double immunofluorescent staining also revealed that H2S@SF hydrogel may reduce cell pyroptosis in the striatum, cortex and hippocampus. However, when using endogenous H2S production inhibitor AOAA, H2S@SF hydrogel could not suppress ICH-induced cell pyroptosis. Hence, the therapeutic effect of the H2S@SF hydrogel may be partly the result of the slow-release of H2S and/or the effect of the SF hydrogel on the production of endogenous H2S. Altogether, the results exhibit promising attributes of injectable silk fibroin hydrogel and the utility of H2S-loaded injectable SF hydrogel as an alternative biomaterial toward brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Sunao Li
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Zhenbei Yang
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou 215001, China
| | - Chao Liu
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Xueshi Chen
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feng Zhang
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou 215001, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiping Chen
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Luyang Tao
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China.
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China.
| | - Mingyang Zhang
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Márquez A, Santos MV, Guirado G, Moreno A, Aznar-Cervantes SD, Cenis JL, Santagneli SH, Domínguez C, Omenetto FG, Muñoz-Berbel X. Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood. LAB ON A CHIP 2021; 21:608-615. [PMID: 33404577 DOI: 10.1039/d0lc00702a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In optical biosensing, silk fibroin (SF) appears as a promising alternative where other materials, such as paper, find limitations. Besides its excellent optical properties and unmet capacity to stabilize biomacromolecules, SF in test strips exhibits additional functions, i.e. capillary pumping activity of 1.5 mm s-1, capacity to filter blood cells thanks to its small, but tuneable, porosity and enhanced biosensing sensitivity. The bulk functionalization of SF with the enzymes glucose oxidase and peroxidase and the mediator ABTS produces colourless and transparent SF films that respond to blood glucose increasing 2.5 times the sensitivity of conventional ABTS-based assays. This enhanced sensitivity results from the formation of SF-ABTS complexes, where SF becomes part of the bioassay. Additionally, SF films triple the durability of most stable cellulose-based sensors. Although demonstrated for glucose, SF microfluidic test strips may incorporate other optical bioassays, e.g. immunoassays, with the aim of transferring them from central laboratories to the place of patient's care.
Collapse
Affiliation(s)
- Augusto Márquez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain. xavier.munoz@imb-cnm
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Clinical available circulating tumor cell assay based on tetra(4-aminophenyl) porphyrin mediated reduced graphene oxide field effect transistor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Zadegan S, Nourmohammadi J, Vahidi B, Haghighipour N. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. Int J Biol Macromol 2019; 133:795-803. [PMID: 31028813 DOI: 10.1016/j.ijbiomac.2019.04.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/28/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to investigate physical, mechanical, and osteogenic properties of silk fibroin (SF) nanofibers containing Urtica dioica L. (nettle) extract at different concentrations. In this respect, the successful incorporation of nettle in SF nanofibers was analyzed and then confirmed through Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The mean fiber diameter, water uptake, breaking strain, cellular attachment, and proliferation of the given nanofibers also increased as the nettle content was added, while this trend was opposite in terms of tensile strength and modulus. The in vitro release studies correspondingly demonstrated that the nettle release had been controlled according to Fickian diffusion and it was faster in the samples including more nettle. Furthermore, both ARS staining and real-time RT-PCR results suggested that nettle had enhanced the expression of both early and late markers of osteoblast differentiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Sara Zadegan
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
7
|
Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb Technol 2016; 90:1-18. [DOI: 10.1016/j.enzmictec.2016.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
|
8
|
Pavoni E, Tozzi S, Tsukada M, Taddei P. Structural study on methacrylamide-grafted Tussah silk fibroin fibres. Int J Biol Macromol 2016; 88:196-205. [DOI: 10.1016/j.ijbiomac.2016.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/14/2016] [Accepted: 03/27/2016] [Indexed: 11/28/2022]
|
9
|
Su D, Jiang L, Chen X, Dong J, Shao Z. Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9619-28. [PMID: 26989907 DOI: 10.1021/acsami.6b00891] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regenerated silk fibroin (RSF) of Bombyx mori silk fiber is a promising natural material for bone defect repair. However, a lack of specific integrin and growth factor for osteoinduction significantly hinders its application in this area. In this study, the role of Laponite nanoplatelet (LAP), a bioactive clay that can promote osteoblast growth, in the formation of RSF hydrogel, as well as the various properties of RSF/LAP hybrid hydrogel, was closely investigated. The results indicate that LAP could serve as a medium to accelerate hydrophobic interaction among the RSF molecules and a disruptor to limit the growth of β-sheet domain during the gelation of RSF. Rheological measurement suggests that the RSF/LAP hydrogel is injectable as it displays thixotropy in the room temperature. Proliferation and differentiation results of the primary osteoblasts encapsulated in hydrogel show that RSF/LAP hydrogel can promote the cell proliferation and enhance the osteogenic differentiation. The transcript levels for alkaline phosphatase, osteocalcin, osteopontin, and collagen type I osteogenic markers obviously improve with RSF/LAP hydrogel compared to the controls at 14 days, especially with the higher contents of LAP. Overall, the results suggest that the RSF/LAP hydrogel have great potential to be utilized as an injectable biomaterial for irregular bone defect repair.
Collapse
Affiliation(s)
- Dihan Su
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200032, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200032, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
10
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
11
|
Koperska M, Pawcenis D, Bagniuk J, Zaitz M, Missori M, Łojewski T, Łojewska J. Degradation markers of fibroin in silk through infrared spectroscopy. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.04.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Taddei P, Chiono V, Anghileri A, Vozzi G, Freddi G, Ciardelli G. Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromol Biosci 2013; 13:1492-510. [DOI: 10.1002/mabi.201300156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie; Università di Bologna Via Belmeloro 8/2; Bologna I-40126 Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Anna Anghileri
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Giovanni Vozzi
- Research Center “E. Piaggio”; University of Pisa; Largo Lucio Lazzarino 2 56126 Pisa Italy
- Dipartimento di Ingegneria dell'Informazione; University of Pisa; Via Caruso 1 56126 Pisa Italy
| | - Giuliano Freddi
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
13
|
Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X. Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 2013; 14:1885-92. [PMID: 23607809 DOI: 10.1021/bm400267m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor both protein secondary structures (conformations) and their orientations in single cocoon silk fibers of the Chinese Tussah silk moth ( Antheraea pernyi ). In addition, to understand further the relationship between structure and properties of single silk fibers, we studied the changes of orientation and content of different secondary structures in single A. pernyi silk fibers when subjected to different strains. The results showed that the content and orientation of β-sheet was almost unchanged for strains from 0 to 0.3. However, the orientation of α-helix and random coil improved progressively with increasing strain, with a parallel decrease in α-helix content and an increase in random coil. This clearly indicates that most of the deformation upon stretching of the single fiber is due to the change of orientation in the amorphous regions coupled with a conversion of some of the α-helix to random coil. These observations provide an explanation for the supercontraction behavior of certain animal silks and are likely to facilitate understanding and optimization of postdrawing used in the conjunction with the wet-spinning of silk fibers from regenerated silk solutions. Thus, our work demonstrates the power of S-FTIR microspectroscopy for studying biopolymers.
Collapse
Affiliation(s)
- Shengjie Ling
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nyanhongo GS, Nugroho Prasetyo E, Herrero Acero E, Guebitz GM. Engineering Strategies for Successful Development of Functional Polymers Using Oxidative Enzymes. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100590] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Sampaio S, Miranda TMR, Santos JG, Soares GMB. Preparation of silk fibroin-poly(ethylene glycol) conjugate films through click chemistry. POLYM INT 2011. [DOI: 10.1002/pi.3143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|
17
|
Um IC, Kim TH, Kweon HY, Ki CS, Park YH. A comparative study on the dielectric and dynamic mechanical relaxation behavior of the regenerated silk fibroin films. Macromol Res 2009. [DOI: 10.1007/bf03218615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Srisuwan Y, Srihanam P. Dissolution of Philosamia ricini Silk Film: Properties and
Functions in Different Solutions. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jas.2009.978.982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Martel A, Burghammer M, Davies RJ, Di Cola E, Vendrely C, Riekel C. Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy. J Am Chem Soc 2009; 130:17070-4. [PMID: 19053481 DOI: 10.1021/ja806654t] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized the steps involved in silk assembly from the protein solution into beta-type fibers by a combination of small-angle and wide-angle X-ray scattering and Raman spectroscopy. The aggregation process was studied in a concentric flow microfluidic cell, which allows mimicking the spinning duct. The fibroin molecule in solution shows an elongated shape with a maximum diameter of 38 nm. During the pH-driven initial assembly step, large-scale aggregates of fibroin molecules with a maximum diameter of about 260 nm are formed. Raman spectroscopy on the dried, fibrous material shows a principally alpha-helical silk I secondary structure, which is transformed gradually into beta-type silk II by increasing immersion times in water. The formation of crystalline beta-sheet domains within the fiber is confirmed by wide-angle X-ray scattering. The assembly process resembles the peptide condensation-ordering model proposed for amyloid cross-beta formation.
Collapse
Affiliation(s)
- Anne Martel
- European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Shi XW, Liu Y, Lewandowski AT, Wu LQ, Wu HC, Ghodssi R, Rubloff GW, Bentley WE, Payne GF. Chitosan Biotinylation and Electrodeposition for Selective Protein Assembly. Macromol Biosci 2008; 8:451-7. [DOI: 10.1002/mabi.200700220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Li XG, Wu LY, Huang MR, Shao HL, Hu XC. Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 2008; 89:497-505. [DOI: 10.1002/bip.20905] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Payne GF, Raghavan SR. Chitosan: a soft interconnect for hierarchical assembly of nano-scale components. SOFT MATTER 2007; 3:521-527. [PMID: 32900013 DOI: 10.1039/b613872a] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional microfabrication has tremendous capabilities for imparting order to hard materials (e.g., silicon wafers) over a range of length scales. However, conventional microfabrication does not provide the means to assemble pre-formed nano-scale components into higher-ordered structures. We believe the aminopolysaccharide chitosan possesses a unique set of properties that enable it to serve as a length-scale interconnect for the hierarchical assembly of nano-scale components into macro-scale systems. The primary amines (atomic length scale) of the glucosamine repeating units (molecular length scale) provide sites to connect pre-formed or self-assembled nano-scale components to the polysaccharide backbone (macromolecular length scale). Connections to the backbone can be formed by exploiting the electrostatic, nucleophilic, or metal-binding capabilities of the glucosamine residues. Chitosan's film-forming properties provide the means for assembly at micron-to-centimetre lengths (supramolecular length scales). In addition to interconnecting length scales, chitosan's capabilities may also be uniquely-suited as a soft component-hard device interconnect. In particular, chitosan's film formation can be induced under mild aqueous conditions in response to localized electrical signals that can be imposed from microfabricated surfaces. This capability allows chitosan to assemble soft nano-scale components (e.g., proteins, vesicles, and virus particles) at specific electrode addresses on chips and in microfluidic devices. Thus, we envision the potential that chitosan may emerge as an integral material for soft matter (bio)fabrication.
Collapse
Affiliation(s)
- Gregory F Payne
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
23
|
Tao W, Li M, Zhao C. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. Int J Biol Macromol 2007; 40:472-8. [PMID: 17173967 DOI: 10.1016/j.ijbiomac.2006.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/12/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, (13)C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol-gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were alpha-helix and random coil in solution. There also existed a little beta-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no alpha-helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol-gel transformation. The velocity increased obviously when the temperature was above 30 degrees C. During the sol-gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to beta-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.
Collapse
Affiliation(s)
- Wei Tao
- School of Material Engineering, Stem Cell Research Laboratory of Jiangsu Province, Suzhou University, Campus Box 64, No. 178 East Gan-Jiang Road, Suzhou 215021, China
| | | | | |
Collapse
|
24
|
Anghileri A, Lantto R, Kruus K, Arosio C, Freddi G. Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein–polysaccharide bioconjugates. J Biotechnol 2007; 127:508-19. [PMID: 16934898 DOI: 10.1016/j.jbiotec.2006.07.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/07/2006] [Accepted: 07/20/2006] [Indexed: 11/20/2022]
Abstract
The capability of Agaricus bisporus tyrosinase to catalyze the oxidation of tyrosine residues of silk sericin was studied under homogeneous reaction conditions, by using sericin peptides purified from industrial wastewater as the substrate. Tyrosinase was able to oxidize about 57% of sericin-bound tyrosine residues. The reaction rate was higher than with silk fibroin, but lower than with other silk-derived model peptides, i.e. tryptic and chymotryptic soluble peptide fractions of silk fibroin, suggesting that the size and the molecular conformation of the substrate influenced the kinetics of the reaction. The concentration of tyrosine in oxidized sericin samples decreased gradually with increasing the enzyme-to-substrate ratio. The average molecular weight of sericin peptides significantly increased by oxidation, indicating that cross-linking occurred via self-condensation of o-quinones and/or coupling with the free amine groups of lysine and, probably, with sulfhydryl groups of cysteine. The high temperature shift of the main thermal transitions observed in the differential scanning calorimetry curves confirmed the formation of peptide species with higher molecular weight and higher thermal stability. Fourier transform-infrared spectra of oxidized sericin samples showed slight changes related to the loss of tyrosine and formation of oxidation products. Oxidized sericin peptides were able to undergo non-enzymatic coupling with chitosan. Infrared spectra provided clear evidence of the formation of sericin-chitosan bioconjugates under homogeneous reaction conditions. Spectral changes in the NH stretching region seem to support the formation of bioconjugates via the Michael addition mechanism.
Collapse
Affiliation(s)
- Anna Anghileri
- Stazione Sperimentale per la Seta, via Giuseppe Colombo 83, Milano 20133, Italy
| | | | | | | | | |
Collapse
|
25
|
Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: Grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 2006; 125:281-94. [PMID: 16621091 DOI: 10.1016/j.jbiotec.2006.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/14/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers.
Collapse
Affiliation(s)
- Giuliano Freddi
- Stazione Sperimentale per la Seta, via Giuseppe Colombo 83, Milano, Italy.
| | | | | | | | | | | |
Collapse
|