1
|
Acuña MI, Lamirault C, Larcher T, Brisebard E, Schneider T, Juchaux M, Iglesias-Rey R, Fernández-Rodicio S, Aguiar P, Gómez-Lado N, Martínez-Rovira I, González-Vegas R, Yousef I, Gomez-Caamano A, Pombar M, Luna V, Sanchez M, Prezado Y. Mini-GRID therapy delivers optimised spatially fractionated radiation therapy using a flattening free filter accelerator. COMMUNICATIONS MEDICINE 2025; 5:101. [PMID: 40188304 PMCID: PMC11972377 DOI: 10.1038/s43856-025-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Radioresistant tumours remain a challenge for conventional radiation therapy (RT), and often, only palliative treatment can be offered. Recently developed techniques, such as spatially fractionated radiation therapy (SFRT) could potentially improve treatment. However, current clinical SFRT implementations do not allow the full potential to be exploited. We further optimize SFRT, developing mini-GRID, which uses a flattening free filter accelerator. METHODS The increase in normal tissue tolerances provided by mini-GRID compared to conventional RT and GRID therapy was validated in a rat model of brain irradiation in a longitudinal imaging study, behavioural tests and by histopathological evaluation. RESULTS The implementation optimizes mini-GRID therapy, with beam widths around 2 mm2. The peak-to-valley dose ratios and peak dose rates are around 4 and 7 Gy/min, respectively. Mini-GRID RT allows the use of high peak doses: 42 Gy in one fraction, a factor more than twice higher than the peak doses generally employed in conventional GRID therapy (20 Gy peak dose). This enables the use of more aggressive and potentially curative treatments. Infrared microspectroscopy analysis suggests different early biochemical changes in both modalities, with conventional RT leading to stronger modifications in the secondary protein structure, and higher oxidative damage than mini-GRID RT. CONCLUSIONS The possibility to treat both large and small tumours, and to perform safe and potentially curative dose escalations in previously untreatable cases, makes mini-GRID a promising approach to expand the clinical use of SFRT.
Collapse
Affiliation(s)
- M Isabel Acuña
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, A Coruña, Spain
| | - Charlotte Lamirault
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, Orsay, France
| | | | | | - Tim Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Ramon Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging and Pharmacokinetic Modelling Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Spain; Nuclear Medicine and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Santiago de Compostela, Santiago de Compostela, Spain
| | - Noemi Gómez-Lado
- Molecular Imaging and Pharmacokinetic Modelling Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Spain; Nuclear Medicine and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Santiago de Compostela, Santiago de Compostela, Spain
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchrotron, 08209 Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Gomez-Caamano
- Department of Radiation Oncology, Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Pombar
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Victor Luna
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Sanchez
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda Prezado
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, A Coruña, Spain.
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, A Coruña, Spain.
| |
Collapse
|
2
|
González-Vegas R, Seksek O, Bertho A, Bergs J, Hirayama R, Inaniwa T, Matsufuji N, Shimokawa T, Prezado Y, Yousef I, Martínez-Rovira I. Synchrotron-based infrared microspectroscopy unveils the biomolecular response of healthy and tumour cell lines to neon minibeam radiation therapy. Analyst 2025; 150:342-352. [PMID: 39668677 PMCID: PMC11638702 DOI: 10.1039/d4an01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues. Heavy ion RT could therefore benefit from the tissue-sparing effects of minibeam radiation therapy (MBRT). To investigate the potential of this combination, here we assessed the biochemical response to neon MBRT (NeMBRT) through synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM). Healthy (BJ) and tumour (B16-F10) cell lines were subjected to seamless (broad beam) neon RT (NeBB) and NeMBRT at HIMAC. SR-FTIRM measurements were conducted at the MIRAS beamline of ALBA Synchrotron. Principal component analysis (PCA) permitted to assess the biochemical effects after the irradiations and 24 hours post-irradiation for the different RT modalities and doses. For the healthy cells, NeMBRT resulted in the most dissimilar spectral signatures from non-irradiated cells early after irradiations, mainly due to protein conformational modifications. Nevertheless, most of the damage appeared to recover one day post-RT; conversely, protein- and nucleic acid-related IR bands were strongly affected by NeBB 24 hours after treatment, suggesting superior oxidative damage and nucleic acid degradation. Tumour cells appeared to be less sensitive to NeBB than to NeMBRT shortly after RT. Still, after one day, both NeBB and the high-dose NeMBRT regions yielded important spectral modifications, suggestive of cell death processes, protein oxidation or oxidative stress. Lipid-associated spectral changes, especially due to the NeBB and NeMBRT peak groups for the tumour cell line, were consistent with reactive oxygen species attacks.
Collapse
Affiliation(s)
- R González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - O Seksek
- IJCLab, French National Centre for Scientific Research, 91450 Orsay, France
| | - A Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - J Bergs
- Radiology Department, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - R Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Inaniwa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - N Matsufuji
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - T Shimokawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
- Department of Accelerator and Medical Physics, QST, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Japan
| | - Y Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - I Yousef
- MIRAS Beamline, ALBA Synchrotron, 08209 Cerdanyola del Vallès, Barcelona, Spain
| | - I Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang Y, Li Z, Wei S, Xu C, Chen M, Sang J, Han Y, Yan H, Li Z, Cui Z, Ye X. Antifungal Activity and Mechanisms of 2-Ethylhexanol, a Volatile Organic Compound Produced by Stenotrophomonas sp. NAU1697, against Fusarium oxysporum f. sp. cucumerinum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15213-15227. [PMID: 38916250 DOI: 10.1021/acs.jafc.3c09851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Researchers often consider microorganisms from Stenotrophomonas sp. to be beneficial for plants. In this study, the biocidal effects and action mechanisms of volatile organic compounds (VOCs) produced by Stenotrophomonas sp. NAU1697 were investigated. The mycelial growth and spore germination of Fusarium oxysporum f. sp. cucumerinum (FOC), which is a pathogen responsible for cucumber wilt disease, were significantly inhibited by VOCs emitted from NAU1697. Among the VOCs, 33 were identified, 11 of which were investigated for their antifungal properties. Among the tested compounds, 2-ethylhexanol exhibited the highest antifungal activity toward FOC, with a minimum inhibitory volume (MIV) of 3.0 μL/plate (equal to 35.7 mg/L). Damage to the hyphal cell wall and cell membrane integrity caused a decrease in the ergosterol content and a burst of reactive oxygen species (ROS) after 2-ethylhexanol treatment. DNA damage, which is indicative of apoptosis-like cell death, was monitored in 2-ethylhexanol-treated FOC cells by using micro-FTIR analysis. Furthermore, the activities of mitochondrial dehydrogenases and mitochondrial respiratory chain complex III in 2-ethylhexanol-treated FOC cells were significantly decreased. The transcription levels of genes associated with redox reactions and the cell wall integrity (CWI) pathway were significantly upregulated, thus indicating that stress was caused by 2-ethylhexanol. The findings of this research provide a new avenue for the sustainable management of soil-borne plant fungal diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zeyuan Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Changsheng Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Minhua Chen
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierong Sang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiru Han
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Martínez-Rovira I, Montay-Gruel P, Petit B, Leavitt RJ, González-Vegas R, Froidevaux P, Juchaux M, Prezado Y, Yousef I, Vozenin MC. Infrared microspectroscopy to elucidate the underlying biomolecular mechanisms of FLASH radiotherapy. Radiother Oncol 2024; 196:110238. [PMID: 38527626 DOI: 10.1016/j.radonc.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8μs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.
Collapse
Affiliation(s)
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, Iridium Network, 2610, Wilrijk (Antwerp), Belgium; Centre for Oncological Research (CORE), University of Antwerp, 2610, Antwerp, Belgium
| | - Benoît Petit
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland
| | - Marjorie Juchaux
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Yolanda Prezado
- Centre de recherche d'Orsay, Institut Curie, 91401, Orsay, France
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchotron, 08290, Cerdanyola del Vallès (Barcelona), Spain
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, 1066, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva (Current address), 1205, Geneva, Switzerland
| |
Collapse
|
5
|
González-Vegas R, Yousef I, Seksek O, Ortiz R, Bertho A, Juchaux M, Nauraye C, Marzi LD, Patriarca A, Prezado Y, Martínez-Rovira I. Investigating the biochemical response of proton minibeam radiation therapy by means of synchrotron-based infrared microspectroscopy. Sci Rep 2024; 14:11973. [PMID: 38796617 PMCID: PMC11128026 DOI: 10.1038/s41598-024-62373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT. FTIRM measurements were performed at ALBA Synchrotron, and multivariate data analysis methods were employed to assess spectral differences between irradiation configurations and doses. For astrocytes, the spectral regions related to proteins and nucleic acids were highly affected by conventional irradiations and the high-dose regions of pMBRT, suggesting important modifications on these biomolecules. For glioma, pMBRT had a great effect on the nucleic acids and carbohydrates. In animals, conventional radiotherapy had a remarkable impact on the proteins and nucleic acids of healthy rats; analysis of tumour regions in glioma-bearing rats suggested major nucleic acid modifications due to pMBRT.
Collapse
Affiliation(s)
- Roberto González-Vegas
- Physics Department, Universitat Autònoma de Barcelona (UAB), Campus UAB Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | - Ibraheem Yousef
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, 08209, Barcelona, Spain
| | - Olivier Seksek
- IJCLab, French National Centre for Scientific Research, 91450, Orsay, France
| | - Ramon Ortiz
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Annaïg Bertho
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Marjorie Juchaux
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
| | - Catherine Nauraye
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Annalisa Patriarca
- Radiation Oncology Department, Institut Curie, INSERM LITO, PSL Research University, University Paris-Saclay, Campus Universitaire, 91898, Orsay, France
| | - Yolanda Prezado
- Institut Curie, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, 91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706, Santiago de Compostela, A Coruña, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Autònoma de Barcelona (UAB), Campus UAB Bellaterra, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
6
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
7
|
Ricciardi V, Lasalvia M, Perna G, Portaccio M, Delfino I, Lepore M, Capozzi V, Manti L. Vibrational spectroscopies for biochemical investigation of X-ray exposure effects on SH-SY5Y human neuroblastoma cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01035-2. [PMID: 37392215 DOI: 10.1007/s00411-023-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Neuroblastoma is the most recurring cancer in childhood and adolescence. The SH-SY5Y neuroblastoma cell line is generally adopted for elaborating new therapeutical approaches and/or elaborating strategies for the prevention of central nervous system disturbances. In fact, it represents a valid model system for investigating in vitro the effects on the brain of X-ray exposure using vibrational spectroscopies that can detect early radiation-induced molecular alterations of potential clinical usefulness. In recent years, we dedicated significant efforts in the use of Fourier-transform and Raman microspectroscopy techniques for characterizing such radiation-induced effects on SH-SY5Y cells by examining the contributions from different cell components (DNA, proteins, lipids, and carbohydrates) to the vibrational spectra. In this review, we aim at revising and comparing the main results of our studies to provide a wide outlook of the latest outcomes and a framework for future radiobiology research using vibrational spectroscopies. A short description of our experimental approaches and data analysis procedures is also reported.
Collapse
Affiliation(s)
- Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80100, Naples, Italy
| | - Maria Lasalvia
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71122, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Bari, 70100, Bari, Italy
| | - Giuseppe Perna
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71122, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Bari, 70100, Bari, Italy
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Ines Delfino
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Viterbo, Italy.
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vito Capozzi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71122, Foggia, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Bari, 70100, Bari, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80100, Naples, Italy
- Dipartimento di Fisica "E. Pancini", Università degli Studi di Napoli "Federico II", 80100, Naples, Italy
| |
Collapse
|
8
|
Influence of PEG-coated Bismuth Oxide Nanoparticles on ROS Generation by Electron Beam Radiotherapy. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line.
Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation.
Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy and independent of the PEG concentrations. Linear increments of ROS percentages over the 3 hours of incubation time were observed.
Conclusions: Finally, the PEG coating might not substantially affect the ROS generated and thus emphasizing the functionalized BiONPs application as the radiosensitizer for electron beam therapy.
Collapse
|
9
|
Evaluation of Proton-Induced Biomolecular Changes in MCF-10A Breast Cells by Means of FT-IR Microspectroscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy (RT) with accelerated beams of charged particles (protons and carbon ions), also known as hadrontherapy, is a treatment modality that is increasingly being adopted thanks to the several benefits that it grants compared to conventional radiotherapy (CRT) treatments performed by means of high-energy photons/electrons. Hence, information about the biomolecular effects in exposed cells caused by such particles is needed to better realize the underlying radiobiological mechanisms and to improve this therapeutic strategy. To this end, Fourier transform infrared microspectroscopy (μ-FT-IR) can be usefully employed, in addition to long-established radiobiological techniques, since it is currently considered a helpful tool for examining radiation-induced cellular changes. In the present study, MCF-10A breast cells were chosen to evaluate the effects of proton exposure using μ-FT-IR. They were exposed to different proton doses and fixed at various times after exposure to evaluate direct effects due to proton exposure and the kinetics of DNA damage repair. Irradiated and control cells were examined in transflection mode using low-e substrates that have been recently demonstrated to offer a fast and direct way to examine proton-exposed cells. The acquired spectra were analyzed using a deconvolution procedure and a ratiometric approach, both of which showed the different contributions of DNA, protein, lipid, and carbohydrate cell components. These changes were particularly significant for cells fixed 48 and 72 h after exposure. Lipid changes were related to variations in membrane fluidity, and evidence of DNA damage was highlighted. The analysis of the Amide III band also indicated changes that could be related to different enzyme contributions in DNA repair.
Collapse
|
10
|
The effects of bismuth oxide nanoparticles and cisplatin on MCF-7 breast cancer cells irradiated with Ir-192 High Dose Rate brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Freitas CSA, Maciel LF, Corrêa Dos Santos RA, Costa OMMM, Maia FCB, Rabelo RS, Franco HCJ, Alves E, Consonni SR, Freitas RO, Persinoti GF, Oliveira JVDC. Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 2022; 24:1430-1453. [PMID: 34995419 DOI: 10.1111/1462-2920.15876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.
Collapse
Affiliation(s)
- Carla Sant Anna Freitas
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucas Ferreira Maciel
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ohanna Maria Menezes Medeiro Costa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francisco Carlos Barbosa Maia
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Eduardo Alves
- Laboratory of Electron Microscopy and Ultrastructural Analysis, Plant Pathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raul Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Zong L, Li C, Shi J, Yue J, Wang X. FTIR microspectroscopic study of biomacromolecular changes in As 2O 3 induced MGC803 cells apoptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120220. [PMID: 34329848 DOI: 10.1016/j.saa.2021.120220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
It is well-known that As2O3 has significant anticancer effects, however, little is known regarding its mechanism for treating gastric cancer. Thus, we investigated biomacromolecular (DNA, proteins and lipids) changes of human gastric cancer cell line MGC803 to further understand As2O3-induced apoptosis. Conventional methods showed the increase of the apoptosis rate, the decrease of mitochondrial membrane potential (MMP), the accumulation of reactive oxygen species (ROS) and the changes of apoptotic proteins, etc. Fourier transform infrared (FTIR) microspectroscopy sensitively recognized overall biomacromolecular changes caused by the above: Peak-area ratios indicated the content/structure changes in DNA, proteins and lipids. Principle component analysis (PCA) revealed significant changes in intracellular DNA concentration and structure. This study suggests that As2O3 may exert anti-gastric cancer effect by altering intracellular biomacromolecules especially DNA.
Collapse
Affiliation(s)
- Ling Zong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jie Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jianjun Yue
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
Karimi F, Shaabani E, Martínez-Rovira I, Yousef I, Ghahremani MH, Kharrazi S. Infrared microspectroscopy studies on the protective effect of curcumin coated gold nanoparticles against H 2O 2-induced oxidative stress in human neuroblastoma SK-N-SH cells. Analyst 2021; 146:6902-6916. [PMID: 34636832 DOI: 10.1039/d1an01379c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contribution of oxidative stress in several chronic and degenerative diseases suggests that antioxidant therapy can be a promising therapeutic strategy. However, in the case of many antioxidants, their biodistribution and bioactivity are restricted due to low water solubility. Curcumin is a powerful free radical scavenger that upon conjugation to gold nanoparticles results in the formation of stable gold nanoparticles that act as highly water-soluble carriers for the curcumin molecules. In the present study, the effect of curcumin-coated gold nanoparticles (Cur-GNPs) on the H2O2-treated human neuroblastoma (SK-N-SH) cell line was evaluated by using Fourier transform infrared (FTIR) microspectroscopy. Biochemical changes in cells resulting from exposure to reactive oxygen species (ROS) and antioxidant treatment on cells were investigated. Analyzing changes in PO2- bands and amide bands in the fingerprint region and also changes in the ratio of CH2(asym) to CH3(asym) bands in the lipid region revealed that post-treatment with Cur-GNPs could effectively decrease the damage on DNA caused by H2O2 treatment, whereas pre-treatment of cells with Cur-GNPs was found to be more effective at preventing lipid peroxidation than post-treatment. Further analysis of the CH2(asym) to CH3(asym) ratio provided information on not only the lipid peroxidation level in cells, but also the interaction of nanoparticles with the plasma membrane, as confirmed by lactate dehydrogenase assay.
Collapse
Affiliation(s)
- Fateme Karimi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Immaculada Martínez-Rovira
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain. .,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l'Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 09290 Cerdanyola del Vallès, Spain.
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
14
|
Morrish R, Yim KHW, Pagliara S, Palombo F, Chahwan R, Stone N. Single Cell Label-Free Probing of Chromatin Dynamics During B Lymphocyte Maturation. Front Cell Dev Biol 2021; 9:646616. [PMID: 33842468 PMCID: PMC8033168 DOI: 10.3389/fcell.2021.646616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 01/11/2023] Open
Abstract
Large-scale intracellular signaling during developmental growth or in response to environmental alterations are largely orchestrated by chromatin within the cell nuclei. Chemical and conformational modifications of the chromatin architecture are critical steps in the regulation of differential gene expression and ultimately cell fate determination. Therefore, establishing chemical properties of the nucleus could provide key markers for phenotypic characterization of cellular processes on a scale of individual cells. Raman microscopy is a sensitive technique that is capable of probing single cell chemical composition—and sub-cellular regions—in a label-free optical manner. As such, it has great potential in both clinical and basic research. However, perceived limitations of Raman spectroscopy such as low signal intensity and the difficulty in linking alterations in vibrational signals directly with ensuing biological effects have hampered advances in the field. Here we use immune B lymphocyte development as a model to assess chromatin and transcriptional changes using confocal Raman microscopy in combination with microfluidic devices and correlative transcriptomics, thereby linking changes in chemical and structural properties to biological outcomes. Live B lymphocytes were assessed before and after maturation. Multivariate analysis was applied to distinguish cellular components within each cell. The spectral differences between non-activated and activated B lymphocytes were then identified, and their correlation with known intracellular biological changes were assessed in comparison to conventional RNA-seq analysis. Our data shows that spectral analysis provides a powerful tool to study gene activation that can complement conventional molecular biology techniques and opens the way for mapping the dynamics in the biochemical makeup of individual cells.
Collapse
Affiliation(s)
- Rikke Morrish
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom.,Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Kevin Ho Wai Yim
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefano Pagliara
- Living Systems Institute and School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
FT-IR Transflection Micro-Spectroscopy Study on Normal Human Breast Cells after Exposure to a Proton Beam. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fourier transform infrared micro-spectroscopy (μ-FT-IR) is nowadays considered a valuable tool for investigating the changes occurring in human cells after exposure to ionizing radiation. Recently, considerable attention has been devoted to the use of this optical technique in the study of cells exposed to proton beams, that are being increasingly adopted in cancer therapy. Different experimental configurations are used for proton irradiation and subsequent spectra acquisition. To facilitate the use of μ-FT-IR, it may be useful to investigate new experimental approaches capable of speeding up and simplifying the irradiation and measurements phases. Here, we propose the use of low-e-substrates slides for cell culture, allowing the irradiation and spectra acquisition in transflection mode in a fast and direct way. In recent years, there has been a wide debate about the validity of these supports, but many researchers agree that the artifacts due to the presence of the electromagnetic standing wave effects are negligible in many practical cases. We investigated human normal breast cells (MCF-10 cell line) fixed immediately after the irradiation with graded proton radiation doses (0, 0.5, 2, and 4 Gy). The spectra obtained in transflection geometry showed characteristics very similar to those present in the spectra acquired in transmission geometry and confirm the validity of the chosen approach. The analysis of spectra indicates the occurrence of significant changes in DNA and lipids components of cells. Modifications in protein secondary structure are also evidenced.
Collapse
|
16
|
Martínez-Rovira I, Seksek O, Dokic I, Brons S, Abdollahi A, Yousef I. Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst 2020; 145:2345-2356. [PMID: 31993615 DOI: 10.1039/c9an02350j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.
Collapse
Affiliation(s)
- I Martínez-Rovira
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| | - O Seksek
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Université de Paris, IJCLab, 91405 Orsay, France
| | - I Dokic
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - A Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - I Yousef
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| |
Collapse
|
17
|
Zendehdel R, Asadi S, Alizadeh S, Ranjbarian M. Quality assessment of DNA and hemoglobin by Fourier transform infrared spectroscopy in occupational exposure to extremely low-frequency magnetic field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45374-45380. [PMID: 32789635 DOI: 10.1007/s11356-020-09503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown the effect of extremely low-frequency (ELF) magnetic fields on the hematopoietic system. However, molecular modification and biological toxicity are not known yet. The aim of this study was to investigate the effect of occupational exposure to ELF magnetic field on the hemoglobin and DNA alteration using Fourier transform infrared (FTIR) spectroscopy. Twenty nine individuals were selected among those working as the controller in a powerhouse in order to be studied as the population exposed to ELF magnetic field. Control group comprised of 29 administrative employees voluntarily participated who were matched with the exposed subjects in terms of sex, age, work experiences, smoking habit, and socioeconomic status. DNA and hemoglobin were extracted from blood samples and then were studied by FTIR spectroscopy. The results showed the level of magnetic field exposure was between 0.38 to 50 μT in the exposed subjects while the level of magnetic field exposure was between 0.19 and 20 μT for the unexposed people. Hemoglobin level was equal to 15.67 ± 1.42 g/dL for exposed subjects which is significantly lower than that of the unexposed people (p = 0.0001). There was a significant alteration in CH content and COO structure of the hemoglobin structure. Moreover, DNA showed significant changes by functional group of organic base. This change in the structure of DNA and hemoglobin can lead to the creation of risks in human health. In conclusion, FTIR method could reveal the quality of DNA and hemoglobin structure in subjects after exposure to ELF magnetic field.
Collapse
Affiliation(s)
- Rezvan Zendehdel
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Alizadeh
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| | - Mouhammad Ranjbarian
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
18
|
Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, Khairil Anuar MA, Rahman WN. Synergetic Influence of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-Rich Fraction on Reactive Oxygen Species Generation and Radiosensitization Effects for Clinical Radiotherapy Beams. Int J Nanomedicine 2020; 15:7805-7823. [PMID: 33116502 PMCID: PMC7567565 DOI: 10.2147/ijn.s269214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line. METHODS In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line. RESULTS The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam. CONCLUSION The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.
Collapse
Affiliation(s)
- Noor Nabilah Talik Sisin
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Khairunisak Abdul Razak
- Material Engineering Programme, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Safri Zainal Abidin
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Nor Fazila Che Mat
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Reduan Abdullah
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
- Nuclear Medicine, Radiotherapy and Oncology Department, Hospital of Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Raizulnasuha Ab Rashid
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Muhammad Afiq Khairil Anuar
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| | - Wan Nordiana Rahman
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan,Malaysia
| |
Collapse
|
19
|
An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability of Fourier transform infrared (FTIR) spectroscopy in analyzing cells at a molecular level was exploited for investigating the biochemical changes induced in protein, nucleic acid, lipid, and carbohydrate content of cells after irradiation by graded X-ray doses. Infrared spectra from in vitro SH-SY5Y neuroblastoma cells following exposure to X-rays (0, 2, 4, 6, 8, 10 Gy) were analyzed using a ratiometric approach by evaluating the ratios between the absorbance of significant peaks. The spectroscopic investigation was performed on cells fixed immediately (t0 cells) and 24 h (t24 cells) after irradiation to study both the initial radiation-induced damage and the effect of the ensuing cellular repair processes. The analysis of infrared spectra allowed us to detect changes in proteins, lipids, and nucleic acids attributable to X-ray exposure. The ratiometric analysis was able to quantify changes for the protein, lipid, and DNA components and to suggest the occurrence of apoptosis processes. The ratiometric study of Amide I band indicated also that the secondary structure of proteins was significantly modified. The comparison between the results from t0 and t24 cells indicated the occurrence of cellular recovery processes. The adopted approach can provide a very direct way to monitor changes for specific cellular components and can represent a valuable tool for developing innovative strategies to monitor cancer radiotherapy outcome.
Collapse
|
20
|
Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules 2020; 25:E561. [PMID: 32012927 PMCID: PMC7037412 DOI: 10.3390/molecules25030561] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.
Collapse
Affiliation(s)
| | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.S.); (N.W.); or (M.S.)
| |
Collapse
|
21
|
Mateen S, Rehman MT, Shahzad S, Naeem SS, Faizy AF, Khan AQ, Khan MS, Husain FM, Moin S. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur J Pharmacol 2019; 852:14-24. [PMID: 30796902 DOI: 10.1016/j.ejphar.2019.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder affecting joints and frequently characterized by initial local and later systemic inflammation. The present study was conducted with the aim to determine the anti-inflammatory and antioxidant effects of cinnamaldehyde and eugenol in the peripheral blood mononuclear cells (PBMC) of RA patients. PBMCs obtained from RA patients were treated with varying concentrations of cinnamaldehyde and eugenol. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were monitored in the 24-h culture supernatant of PBMCs. Reactive oxygen species formation, biomolecular oxidation and the activities of antioxidant enzymes were also determined. FTIR analysis was done to determine structural alterations in the PBMCs. Molecular docking was performed to gain an insight into the binding mechanism of eugenol and cinnamaldehyde with pro-inflammatory cytokines. The levels of pro-inflammatory cytokines and markers of oxidative stress were found to be elevated in the PBMC culture of RA patients as compared to the healthy controls. Cinnamaldehyde and eugenol have significantly reduced the levels of cytokines. Reactive oxygen species formation, biomolecular oxidation and antioxidant defense response were also ameliorated by treating PBMCs with both the compounds. FTIR results further confirms cinnamaldehyde and eugenol mediated protection to biomolecules of PBMCs of RA patients. Molecular docking results indicates interaction of cinnamaldehyde and eugenol with key residues of TNF-α and IL-6. Cinnamaldehyde and eugenol were found to exert potent anti-inflammatory and anti-oxidant effects on the PBMC culture of RA patients. So, these compounds may be used as an adjunct in the management of RA.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sumayya Shahzad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abul Faiz Faizy
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Qayyum Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
22
|
Lasalvia M, Perna G, Manti L, Rasero J, Stramaglia S, Capozzi V. Raman spectroscopy monitoring of MCF10A cells irradiated by protons at clinical doses. Int J Radiat Biol 2019; 95:207-214. [DOI: 10.1080/09553002.2019.1547849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| | - Giuseppe Perna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| | - Lorenzo Manti
- Physics Department, University of Napoli “Federico II”, Napoli, Italy
- National Institute of Nuclear Physics - INFN, Napoli Section, Napoli, Italy
| | - Javier Rasero
- Biocruces Health Research Institute, Barakaldo, Spain
| | - Sebastiano Stramaglia
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
- Department of Physics, University of Bari “Aldo Moro”, Bari, Italy
| | - Vito Capozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| |
Collapse
|
23
|
Martínez-Rovira I, Seksek O, Yousef I. A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines. Analyst 2019; 144:6352-6364. [DOI: 10.1039/c9an01109a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful tool for nanoparticle-based treatment response at single cell-level.
Collapse
Affiliation(s)
- I. Martínez-Rovira
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| | - O. Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS); Université Paris Sud
- Université Paris-Saclay
- Campus Universitaire
- F-91400 Orsay
| | - I. Yousef
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
24
|
Lasalvia M, Perna G, Pisciotta P, Cammarata FP, Manti L, Capozzi V. Raman spectroscopy for the evaluation of the radiobiological sensitivity of normal human breast cells at different time points after irradiation by a clinical proton beam. Analyst 2019; 144:2097-2108. [DOI: 10.1039/c8an02155d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiobiological effects occurring in normal human breast cells exposed to a low dose of a clinical proton beam are detectable by means of Raman spectra and the ratiometric analysis of Raman peak intensities.
Collapse
Affiliation(s)
- M. Lasalvia
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| | - G. Perna
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| | - P. Pisciotta
- Istituto Nazionale di Fisica Nucleare
- Laboratori Nazionali del Sud
- INFN-LNS
- Catania
- Italy
| | - F. P. Cammarata
- Institute of Molecular Bioimaging and Physiology
- National Research Council
- 90015 Cefalù
- Italy
| | - L. Manti
- Dipartimento di Fisica
- Università di Napoli “Federico II”
- 80126 Napoli
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Napoli
| | - V. Capozzi
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| |
Collapse
|
25
|
Martínez-Rovira I, Seksek O, Puxeu J, Gómez J, Kreuzer M, Dučić T, Ferreres MJ, Artigues M, Yousef I. Synchrotron-based infrared microspectroscopy study on the radiosensitization effects of Gd nanoparticles at megavoltage radiation energies. Analyst 2019; 144:5511-5520. [DOI: 10.1039/c9an00792j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful technique for disentangling biochemical effects in nanoparticle-based radiotherapy approaches.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
- Ionizing Radiation Research Group (GRRI)
| | - Olivier Seksek
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- CNRS, Univ Paris Sud
- Université Paris-Saclay
- F-91400 Orsay
- France
| | - Josep Puxeu
- Hospital Universitari Sant Joan de Reus
- Institut d'Investigació Sanitària Pere Virgili
- 43204 Reus
- Spain
| | - Joan Gómez
- Ionizing Radiation Research Group (GRRI)
- Physics Department
- Universitat Autònoma de Barcelona (UAB)
- 08193 Cerdanyola del Vallès
- Spain
| | - Martin Kreuzer
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| | - Tanja Dučić
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| | | | - Manel Artigues
- Hospital Universitari Sant Joan de Reus
- Institut d'Investigació Sanitària Pere Virgili
- 43204 Reus
- Spain
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron
- MIRAS Beamline
- 09290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
26
|
Lipiec E, Wood BR, Kulik A, Kwiatek WM, Dietler G. Nanoscale Investigation into the Cellular Response of Glioblastoma Cells Exposed to Protons. Anal Chem 2018; 90:7644-7650. [PMID: 29799188 DOI: 10.1021/acs.analchem.8b01497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to ionizing radiation can induce cellular defense mechanisms including cell activation and rapid proliferation prior to metastasis and in extreme cases can result in cell death. Herewith we apply infrared nano- and microspectroscopy combined with multidimensional data analysis to characterize the effect of ionizing radiation on single glioblastoma nuclei isolated from cells treated with 10 Gy of X-rays or 1 and 10 Gy of protons. We observed chromatin fragmentation related to the formation of apoptotic bodies following X-ray exposure. Following proton irradiation we detected evidence of a DNA conformational change (B-DNA to A-DNA transition) related to DNA repair and accompanied by an increase in protein content related to the synthesis of peptide enzymes involved in DNA repair. We also show that proton exposure can increase cholesterol and sterol ester synthesis, which are important lipids involved in the metastatic process changing the fluidity of the cellular membrane in preparation for rapid proliferation.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland.,Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry , Monash University , 3800 Clayton , Victoria , Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow , Poland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
27
|
Xin X, Huang G, Liu X, An C, Yao Y, Weger H, Zhang P, Chen X. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:12-20. [PMID: 28399502 DOI: 10.1016/j.envpol.2017.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/23/2023]
Abstract
Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiaying Xin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Xia Liu
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Chunjiang An
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yao Yao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Harold Weger
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peng Zhang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
28
|
Bumah VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirschmugl CJ. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470nm) and methicillin-resistant Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:150-157. [DOI: 10.1016/j.jphotobiol.2016.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/08/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
29
|
Wood BR. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem Soc Rev 2016; 45:1980-98. [PMID: 26403652 DOI: 10.1039/c5cs00511f] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Since Watson and Crick's historical papers on the structure and function of DNA based on Rosalind Franklin's and Maurice Wilkin's X-ray diffraction patterns tremendous scientific curiosity has been aroused by the unique and dynamic structure of the molecule of life. A-DNA and B-DNA represent different conformations of the DNA molecule, which is stabilised by hydrogen interactions between base pairs, stacking interactions between neighboring bases and long-range intra- and inter-backbone forces. This review highlights the contribution Fourier transform infrared (FTIR) spectroscopy has made to the understanding of DNA conformation in relation to hydration and its potential role in clinical diagnostics. The review will first begin by elucidating the main forms of DNA conformation found in nature and the general structures of the A, B and Z forms. This is followed by a detailed critique on infrared spectroscopy applied to DNA conformation highlighting pivotal studies on isolated DNA, polynucleotides, nucleoprotein and nucleohistone complexes. A discussion on the potential of diagnosing cancer using FTIR spectroscopy based on the detection of DNA bands in cells and tissues will ensue, highlighting the recent studies investigating the conformation of DNA in hydrated and dehydrated cells. The method of hydration as a way to facilitate DNA conformational band assignment will be discussed and the conformational change to the A-form upon dehydration will be used to explain the reason for the apparent lack of FTIR DNA signals observed in fixed or air-dried cells and tissues. The advantages of investigating B-DNA in the hydrated state, as opposed to A-DNA in the dehydrated state, are exemplified in a series of studies that show: (1) improved quantification of DNA in cells; (2) improved discrimination and reproducibility of FTIR spectra recorded of cells progressing through the cell cycle; (3) insights into the biological significance of A-DNA as evidenced by an interesting study on bacteria, which can survive desiccation and at the same time undergo the B-A-B transition. Finally, the importance of preserving the B-DNA conformation for the diagnosis of cancer is put forward as way to improve the sensitivity of this powerful technique.
Collapse
Affiliation(s)
- Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, 3800, Victoria, Australia.
| |
Collapse
|
30
|
Yousef I, Seksek O, Gil S, Prezado Y, Sulé-Suso J, Martínez-Rovira I. Study of the biochemical effects induced by X-ray irradiations in combination with gadolinium nanoparticles in F98 glioma cells: first FTIR studies at the Emira laboratory of the SESAME synchrotron. Analyst 2016; 141:2238-49. [DOI: 10.1039/c5an02378e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One strategy to improve the clinical outcome of radiotherapy is to use nanoparticles as radiosensitizers.
Collapse
Affiliation(s)
- Ibraheem Yousef
- SESAME Synchrotron
- 19252 Allan
- Jordan
- ALBA Synchrotron
- Carrer de la Llum 2-26
| | - Olivier Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Sílvia Gil
- Department of Dermatology
- Hospital Parc Taulí
- Sabadell
- Spain
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine
- Keele University
- Thornburrow Drive
- Stoke on Trent
- UK
| | - Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS)
- Université Paris 7 & 11
- 91406 Orsay Cedex
- France
| |
Collapse
|