1
|
Wang X, Peng X, Zhao Q, Mi J, Jiang H, Li S, Hu H, Huang H. Synergistic oxidation of toluene through bimetal/cordierite monolithic catalysts with ozone. Sci Rep 2024; 14:7203. [PMID: 38532034 DOI: 10.1038/s41598-024-58026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Toluene treatment has received extensive attention, and ozone synergistic catalytic oxidation was thought to be a potential method to degrade VOCs (violate organic compounds) due to its low reaction temperature and high catalytic efficiency. A series of bimetal/Cord monolithic catalysts were prepared by impregnation with cordierite, including MnxCu5-x/Cord, MnxCo5-x/Cord and CuxCo5-x/Cord (x = 1, 2, 3, 4). Analysis of textural properties, structures and morphology characteristics on the prepared catalysts were conducted to evaluate their performance on toluene conversion. Effects of active component ratio, ozone addition and space velocity on the catalytic oxidation of toluene were investigated. Results showed that MnxCo5-x/Cord was the best among the three bimetal catalysts, and toluene conversion and mineralization rates reached 100 and 96% under the condition of Mn2Co3/Cord with 3.0 g/m3 O3 at the space velocity of 12,000 h-1. Ozone addition in the catalytic oxidation of toluene by MnxCo5-x/Cord could efficiently avoid the 40% reduction of the specific surface area of catalysts, because it could lower the optimal temperature from 300 to 100 °C. (Co/Mn)(Co/Mn)2O4 diffraction peaks in XRD spectra indicated all the four MnxCo1-x/Cord catalysts had a spinel structure, and diffraction peak intensity of spinel reached the largest at the ratio of Mn:Co = 2:3. Toluene conversion rate increased with rising ozone concentration because intermediate products generated by toluene degradation might react with excess ozone to generate free radicals like ·OH, which would improve the toluene mineralization rate of Mn2Co3/Cord catalyst. This study would provide a theoretical support for its industrial application.
Collapse
Affiliation(s)
- Xiaojian Wang
- Shanghai Tobacco Group Co. LTD, Shanghai, 200082, People's Republic of China
| | - Xiaomin Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Quanzhong Zhao
- Inner Mongolia Power Research Institute Branch, Inner Mongolia Power (Group) Co., Ltd., Hohhot, 010020, People's Republic of China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shengli Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hui Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hao Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
2
|
Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim) 2024; 357:e2300595. [PMID: 38128028 DOI: 10.1002/ardp.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The adamantane moiety has attracted significant attention since its discovery in 1933 due to its remarkable structural, chemical, and medicinal properties. This molecule has a notable impact in the therapeutic field because of its "add-on" lipophilicity to any pharmacophoric moieties. As in the case of molecular hybridization, in which one pharmacophore is attached to another one(s) with a probability of increasing the biological activity, adding an adamantane unit improves the absorption distribution, metabolism and excretion properties of the resultant hybrid molecule. This review summarizes various reports highlighting the biological activities of adamantane-based synthetic compounds and their structure-activity relationship study. The information presented in this review may open up possible dimensions for adamantane-based drug development and discovery in the pharmaceutical industry after proper structural modifications.
Collapse
Affiliation(s)
- Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
3
|
Komatović K, Matošević A, Terzić-Jovanović N, Žunec S, Šegan S, Zlatović M, Maraković N, Bosak A, Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer's Disease. Pharmaceutics 2022; 14:1305. [PMID: 35745878 PMCID: PMC9229919 DOI: 10.3390/pharmaceutics14061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
Collapse
Affiliation(s)
- Katarina Komatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Nataša Terzić-Jovanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Sandra Šegan
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (K.K.); (M.Z.)
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia; (A.M.); (S.Ž.); (N.M.)
| | - Dejan M. Opsenica
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (N.T.-J.); (S.Š.)
- Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Al-Otaibi JS, Mary YS, Mary YS, Ullah Z, Kwon HW. Adsorption behavior and solvent effects of an adamantane-triazole derivative on metal clusters – DFT simulation studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Wassel MMS, Ammar YA, Elhag Ali GAM, Belal A, Mehany ABM, Ragab A. Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorg Chem 2021; 110:104794. [PMID: 33735711 DOI: 10.1016/j.bioorg.2021.104794] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
A new series of 1,3,4-thiadiazolo-adamantane derivatives were synthesized through molecular hybridization approach, then used as starting material to synthesize chloro and cyano acetamide-thiadiazole derivatives 2, 3. The newly designed compounds 1-3 were treated with different reagents to design 5-adamantyl thiadiazole derivatives 4-17 and evaluate their in vitro anti-proliferative activity against three cancer cell lines (MCF-7, HepG-2 and A549). Doxorubicin was used as a positive control. The most promising compounds 5, 6, 10a, 10b, 14b, 14c, and 17 showed up-regulation for BAX and down-regulation of Bcl-2, these findings proved their role as hopeful apoptotic inducers. In addition, the inhibitory activity against both wild EGFRWT and mutant EGFRL858R-TK for these derivatives revealed that compounds 5, 14c, and 17 have IC50 value ranging from 85 nM to 71.5 nM against wild EGFRWT and 37.85-41.19 nM against the mutant type, Lapatinib was used as a reference standard with IC50 values of 31.8 nM and 39.53 nM, respectively. The most potent derivatives were subjected to further evaluation against double mutant EGFR L858R/T790M and showed good IC50 values between (0.27-0.78 nM) compared to Lapatinib (0.18 nM) and Erlotinib (0.21 nM). Among them, thiazolo-thiadiazole adamantane derivative 17 exhibited the strongest inhibitory activity to the EGFR. Molecular docking studies were performed inside the active site of EGFR (1M17), and binding energy scores ranged between (-19.19 to -22.07 Kcal/mol) compared to Erlotinib (-19.10 Kcal/mol). Furthermore, oral bioavailability beside some pharmacokinetics properties of these derivatives were also investigated in this research work.
Collapse
Affiliation(s)
- Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| | - Gameel A M Elhag Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt.
| |
Collapse
|
7
|
Pham VH, Phan TPD, Phan DC, Vu BD. Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons. Molecules 2020; 25:molecules25020324. [PMID: 31941142 PMCID: PMC7024387 DOI: 10.3390/molecules25020324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Reaction of 4-(1-adamantyl)-3-thiosemicarbazide (1) with numerous substituted acetophenones and benzaldehydes yielded the corresponding thiosemicarbazones containing adamantane skeletons. The synthesized compounds were evaluated for their in vitro activities against some Gram-positive and Gram-negative bacteria, and the fungus Candida albicans, and cytotoxicity against four cancer cell lines (Hep3B, HeLa, A549, and MCF-7). All of them showed good antifungal activity against Candida albicans. Compounds 2c, 2d, 2g, 2j and 3a, 3e, 3g displayed significant inhibitory activity against Enterococcus faecalis. Compounds 2a, 2e, 2h, 2k and 3j had moderate inhibitory potency against Staphylococcus aureus. Compounds 2a, 2e and 2g found so good inhibitory effect on Bacillus cereus. Compounds 2d and 2h, which contain (ortho) hydroxyl groups on the phenyl ring, were shown to be good candidates as potential agents for killing the tested cancer cell lines, i.e., Hep3B, A549, and MCF-7. Compounds 2a–c, 2f, 2g, 2j, 2k, 3g, and 3i were moderate inhibitors against MCF-7.
Collapse
Affiliation(s)
- Van Hien Pham
- Drug R&D Center, Vietnam Military Medical University. No.160, Phung Hung Street., Phuc La ward, Ha Dong District, Hanoi 100000, Vietnam;
| | - Thi Phuong Dung Phan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy. No. 15, Le Thanh Tong Street, Hoan Kiem District, Hanoi 100000, Vietnam;
| | - Dinh Chau Phan
- Hanoi University of Science and Technology. No.1, Dai Co Viet Street., Bach Khoa Ward, Hai Ba Trung District, Hanoi 100000, Vietnam
- Correspondence: (D.C.P.); (B.D.V.); Tel.: +84 983 425 460 (B.D.V.); Fax: +84 243 688 4077 (B.D.V.)
| | - Binh Duong Vu
- Drug R&D Center, Vietnam Military Medical University. No.160, Phung Hung Street., Phuc La ward, Ha Dong District, Hanoi 100000, Vietnam;
- Correspondence: (D.C.P.); (B.D.V.); Tel.: +84 983 425 460 (B.D.V.); Fax: +84 243 688 4077 (B.D.V.)
| |
Collapse
|
8
|
Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety. Molecules 2019; 24:molecules24214000. [PMID: 31694218 PMCID: PMC6864450 DOI: 10.3390/molecules24214000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Reaction of 1-adamantyl carbohydrazide (1) with various substituted benzaldehydes and acetophenones yielded the corresponding hydrazide-hydrazones with a 1-adamantane carbonyl moiety. The new synthesized compounds were tested for activities against some Gram-negative and Gram-positive bacteria, and the fungus Candida albicans. Compounds 4a, 4b, 5a, and 5c displayed potential antibacterial activity against tested Gram-positive bacteria and C. albicans, while compounds 4e and 5e possessed cytotoxicity against tested human cancer cell lines.
Collapse
|
9
|
Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur J Med Chem 2018; 157:480-502. [DOI: 10.1016/j.ejmech.2018.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 08/04/2018] [Indexed: 12/23/2022]
|
10
|
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev 2017; 38:1159-1187. [PMID: 29095519 DOI: 10.1002/med.21461] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The biological effects attributed to nitric oxide (• NO) and nitroxyl (HNO) have been extensively studied, propelling their array of putative clinical applications beyond cardiovascular disorders toward other age-related diseases, like cancer and neurodegenerative diseases. In this context, the unique properties and reactivity of the N-O bond enabled the development of several classes of compounds with potential clinical interest, among which • NO and HNO donors, nitrones, and nitroxides are of particular importance. Although primarily studied for their application as cardioprotective agents and/or molecular probes for radical detection, continuous efforts have unveiled a wide range of pharmacological activities and, ultimately, therapeutic applications. These efforts are of particular significance for diseases in which oxidative stress plays a key pathogenic role, as shown by a growing volume of in vitro and in vivo preclinical data. Although in its early stages, these efforts may provide valuable guidelines for the development of new and effective N-O-based drugs for age-related disorders. In this report, we review recent advances in the chemistry of NO and HNO donors, nitrones, and nitroxides and discuss its pharmacological significance and potential therapeutic application.
Collapse
Affiliation(s)
- Catarina Oliveira
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Chen JM, Xia YM, Zhang YD, Zhang TT, Peng QR, Fang Y. Influence of substrates on the in vitro kinetics of steviol glucuronidation and interaction between steviol glycosides metabolites and UGT2B7. Int J Food Sci Nutr 2017; 69:472-479. [DOI: 10.1080/09637486.2017.1373079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jun-Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yong-Mei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yan-Dong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Tong-Tong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Qing-Rui Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yun Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S, Arshad M. ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol 2017; 143:1789-1809. [PMID: 28647857 DOI: 10.1007/s00432-017-2464-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/16/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Reactive oxygen species (ROS) are produced in cancer cells as a result of increased metabolic rate, dysfunction of mitochondria, elevated cell signaling, expression of oncogenes and increased peroxisome activities. Certain level of ROS is required by cancer cells, above or below which lead to cytotoxicity in cancer cells. This biochemical aspect can be exploited to develop novel therapeutic agents to preferentially and selectively target cancer cells. METHODS We searched various electronic databases including PubMed, Web of Science, and Google Scholar for peer-reviewed english-language articles. Selected articles ranging from research papers, clinical studies, and review articles on the ROS production in living systems, its role in cancer development and cancer treatment, and the role of microbiota in ROS-dependent cancer therapy were analyzed. RESULTS This review highlights oxidative stress in tumors, underlying mechanisms of different relationships of ROS and cancer cells, different ROS-mediated therapeutic strategies and the emerging role of microbiota in cancer therapy. CONCLUSION Cancer cells exhibit increased ROS stress and disturbed redox homeostasis which lead to ROS adaptations. ROS-dependent anticancer therapies including ROS scavenging anticancer therapy and ROS boosting anticancer therapy have shown promising results in vitro as well as in vivo. In addition, response to cancer therapy is modulated by the human microbiota which plays a critical role in systemic body functions.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan.
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical University (KMU), Peshawar, 25000, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan
| |
Collapse
|