1
|
Farias SADS, Rocha KML, Nascimento ÉCM, de Jesus RDCC, Neres PR, Martins JBL. Docking and Electronic Structure of Rutin, Myricetin, and Baicalein Targeting 3CLpro. Int J Mol Sci 2023; 24:15113. [PMID: 37894797 PMCID: PMC10606270 DOI: 10.3390/ijms242015113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the role of 3CLpro protease for SARS-CoV-2 replication and knowing the potential of flavonoid molecules like rutin, myricetin, and baicalein against 3CLpro justify an investigation into their inhibition. This study investigates possible bonds and reactivity descriptors of rutin, myricetin, and baicalein through conformational and electronic properties. Density functional theory was used to determine possible interactions. Analyses were carried out through the molecular electrostatic potential, electron localization function, Fukui function descriptors based on frontier orbitals, and non-covalent interactions. A docking study was performed using a resolution of 1.55 Å for 3CLpro to analyze the interactions of rutin, myricetin, and baicalein. Scores of structures showed that rutin is the best ligand, followed by myricetin and baicalein. Docking studies showed that baicalein and rutin can establish effective interactions with residues of the catalytic dyad (Cys145 and His41), but just rutin forms a hydrogen bond. Myricetin, in turn, could not establish an effective interaction with Cys145. Baicalein interaction arose with active residues such as Arg188, Val186, Gln189, and Gln192. Interactions of rutin and myricetin with Arg188 and Gln189 were also found. A critical interaction was observed only for rutin with the hydroxyls of ring A with His41, and also for Cys145 with rings B and C, which is probably related to the highest score of rutin.
Collapse
Affiliation(s)
- Sergio A de S Farias
- Laboratory of Computational Simulations (LabIn02), Institute of Educational Sciences, Federal University of Western Pará, Santarém 68040-255, Pará, Brazil
| | - Kelvyn M L Rocha
- Instituto de Química, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Érica C M Nascimento
- Instituto de Química, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Rafael do C C de Jesus
- Instituto de Química, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| | - Paulo R Neres
- Laboratory of Computational Simulations (LabIn02), Institute of Educational Sciences, Federal University of Western Pará, Santarém 68040-255, Pará, Brazil
| | - João B L Martins
- Instituto de Química, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil
| |
Collapse
|
2
|
Liu K, Zhang Y, Zhang W, Liu L, Yu Z. A Study on the Interactions of Proteinase K with Myricetin and Myricitrin by Multi-Spectroscopy and Molecular Modeling. Int J Mol Sci 2023; 24:ijms24065317. [PMID: 36982397 PMCID: PMC10048853 DOI: 10.3390/ijms24065317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Myricetin (MYR) and myricitrin (MYT) are well recognized for their nutraceutical value, such as antioxidant, hypoglycemic, and hypotensive effects. In this work, fluorescence spectroscopy and molecular modeling were adopted to investigate the conformational and stability changes of proteinase K (PK) in the presence of MYR and MYT. The experimental results showed that both MYR and MYT could quench fluorescence emission via a static quenching mechanism. Further investigation demonstrated that both hydrogen bonding and van der Waals forces play significant roles in the binding of complexes, which is consistent with the conclusions of molecular modeling. Synchronous fluorescence spectroscopy, Förster resonance energy transfer, and site-tagged competition experiments were performed to prove that the binding of MYR or MYT to PK could alter its micro-environment and conformation. Molecular docking results revealed that either MYR or MYT spontaneously interacted with PK at a single binding site via hydrogen bonding and hydrophobic interactions, which is consistent with the results of spectroscopic measurements. A 30 ns molecular dynamics simulation was conducted for both PK-MYR and PK-MYT complexes. The calculation results showed that no large structural distortions or interaction changes occurred during the entire simulation time span. The average RMSD changes of PK in PK-MYR and PK-MYT were 2.06 and 2.15 Å, respectively, indicating excellent stability of both complexes. The molecular simulation results suggested that both MYR and MYT could interact with PK spontaneously, which is in agreement with spectroscopic results. This agreement between experimental and theoretical results indicates that the method herein could be feasible and worthwhile for protein–ligand complex studies.
Collapse
Affiliation(s)
- Kefan Liu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Yubo Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- Provincial Key Laboratory for Separation and Analysis of Complex Systems in Liaoning Universities, Shenyang Normal University, Shenyang 110034, China
- Correspondence:
| |
Collapse
|
3
|
Yan T, Tao Y, Wang X, Lv C, Miao G, Wang S, Wang D, Wang Z. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Han D, Han Z, Liu L, Wang Y, Xin S, Zhang H, Yu Z. Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis- O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study. Int J Mol Sci 2020; 21:ijms21030766. [PMID: 31991574 PMCID: PMC7038215 DOI: 10.3390/ijms21030766] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/05/2023] Open
Abstract
Four cyclodextrins (CD) including β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), heptakis-O-(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), and heptakis-O-(2, 6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were used as solubilizer to study the solubility enhancement of myricetin. The results of the phase solubility study showed that the presence of CDs could enhance the solubility of myricetin by forming 1:1 complexes. Among all CDs, HP-β-CD had the highest solubilization effect to myricetin. The concentration of myricetin could be 1.60 × 10-4 moL/L when the presence of HP-β-CD reached 1.00 × 10-2 moL/L, which was 31.45 times higher than myricetin's aqueous solubility. Subsequently, the HP-β-CD:myricetin complex was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In order to get an insight of the plausible structure of the complex, molecular docking was used to study the complexation process of HP-β-CD and myricetin. In the complex, the A ring and C ring of myricetin were complexed into the hydrophobic cavity of HP-β-CD, while the ring B was located at the wide rim of HP-β-CD. Four hydrogen bonding interactions were found between HP-β-CD and -OH groups of the guest in the HP-β-CD: myricetin complex. The complexation energy (△E) for the host-guest interactions was calculated with a negative sign, indicating the formation of the complex was an exergonic process. A 30-ns molecular dynamics simulation was conducted to the HP-β-CD: myricetin complex. Calculation results showed that no large structural deformation or position change were observed during the whole simulation time span. The average root-mean-square deviation (RMSD) changes of the host and guest were 2.444 and 1.145 Å, respectively, indicating the complex had excellent stability.
Collapse
Affiliation(s)
- Dongxu Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhongbao Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shigang Xin
- Experimental Center, Shenyang Normal University, Shenyang 110034, China
| | - Hongbo Zhang
- Experimental Center, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- Correspondence:
| |
Collapse
|
5
|
Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4′-O-α-L-rhamnopyranoside through a computational study. J Mol Model 2019; 25:89. [DOI: 10.1007/s00894-019-3959-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
|
6
|
Ionic reaction products of iodine with pyridine, 4-methylpyridine, and 4-tert-butylpyridine in a polyethylene matrix. A FTIR polarization spectroscopic investigation. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Baranović G, Šegota S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:473-486. [PMID: 29220817 DOI: 10.1016/j.saa.2017.11.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/18/2017] [Accepted: 11/25/2017] [Indexed: 05/27/2023]
Abstract
Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31+G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600cm-1 need not be attributable to the CO stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.
Collapse
Affiliation(s)
- Goran Baranović
- Division of Organic Chemistry and Biochemistry, R. Bošković Institute, Zagreb, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, R. Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
8
|
Hansen PE, Spanget-Larsen J. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds. Molecules 2017; 22:E552. [PMID: 28353675 PMCID: PMC6154318 DOI: 10.3390/molecules22040552] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 11/24/2022] Open
Abstract
For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects). Limits for O-H···Y systems are taken as 2800 > νOH > 1800 cm-1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O-H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark.
| | - Jens Spanget-Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark.
| |
Collapse
|