1
|
Yin F, Qin Z. Long-Chain Molecules with Agro-Bioactivities and Their Applications. Molecules 2023; 28:5880. [PMID: 37570848 PMCID: PMC10421526 DOI: 10.3390/molecules28155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.
Collapse
Affiliation(s)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Dauda WP, Singh Rana V, Solanke AU, Krishnan G, Bashya BM, Aggarwal R, Shanmugam V. Metabolomic analysis of sheath blight disease of rice (Oryza sativa L.) induced by Rhizoctonia solani phytotoxin. J Appl Microbiol 2022; 133:3215-3227. [PMID: 35957552 DOI: 10.1111/jam.15776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
AIM To understand the mechanism of necrosis incited by a host-selective phytotoxin designated as Rhizoctonia solani toxin (RST) identified to be a potential pathogenic factor of Rhizoctonia solani AG1 IA, causing sheath blight (ShB) of rice. METHODS AND RESULTS The metabolomic changes induced by the phytotoxic metabolite in a ShB susceptible rice cultivar were elucidated by Gas Chromatography-Mass Spectrometry (GC-MS) analysis and compared with that of the pathogen to identify rice metabolites targeted by the phytotoxin. The profiles of about 29 metabolites with various physiological roles in rice plants have been identified worldwide. Unsupervised and supervised multivariate chemometrics (Principal Component Analysis, PCA and Partial Least Squares-Discriminant Analysis, PLS-DA) and cluster (Heat maps) analyses were used to compare the metabolites obtained from chemical profiles of the treatments with sterile distilled water (SDW) control. The results indicated that the rice plant expressed more metabolites in response to the pathogen than the phytotoxin and was lowest in SDW control. The key metabolites expressed in rice in response to the treatments were investigated by the Variable Importance in Projection (VIP) analysis using P< 0.05 VIP >15. The analysis identified 7 and 11 upregulating metabolites in the phytotoxin and the pathogen treatments, respectively, compared to the untreated control. Among the phytotoxin-treated and the pathogen inoculated samples, the phytotoxin treated sample recorded upregulation of 6 metabolites, whereas 9 metabolites were upregulated in the pathogen inoculated samples. These upregulating metabolites are speculated for the necrotic symptoms characteristic to both the phytotoxin and pathogen. In this analysis, hexadecanoic acid and dotriacontane were highly expressed metabolites specific to the phytotoxin and pathogen-treated samples, respectively. Besides upregulation, the metabolites also have a VIP score of >1.5 and hence fulfilled the criteria of classifying them as reliable potential biomarkers. In the pathway analysis, hexadecanoic acid and dotriacontane were identified to be involved in several important biosynthetic pathways of rice, such as the biosynthesis of saturated fatty acid and unsaturated fatty acids cutin, suberin, and wax. CONCLUSIONS The study concludes that though certain metabolites induced by the phytotoxin in the susceptible variety during necrosis shares with that of the pathogen, the identification of metabolites specific to the phytotoxin in comparison to the pathogenic and SDW controls indicated that the phytotoxin modulates the host metabolism differently and hence can be a potential pathogenicity factor of the ShB fungus. SIGNIFICANCE AND IMPACT OF THE STUDY Due to lack of knowledge on the pathway genes of RST and in the absence of an ShB resistant variety, understanding differentially expressed metabolic changes induced in the susceptible variety by the phytotoxin in comparison to that of the pathogenic and uninoculated controls enables us to identify the key metabolite changes during the ShB infection. Such metabolomic changes can further be used to infer gene functions for exploitation in ShB control.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- ICAR-Indian Agricultural Research Institute, New Delhi, India.,Crop Science Unit, Department of Agronomy, Federal University, Nigeria
| | | | | | - Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
3
|
Goyal AK, Middha SK, Usha T. Baccaurea ramiflora Lour.: a comprehensive review from traditional usage to pharmacological evidence. ADVANCES IN TRADITIONAL MEDICINE 2022; 22:231-249. [DOI: 10.1007/s13596-020-00489-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022]
|
4
|
New Antiproliferative Compounds against Glioma Cells from the Marine-Sourced Fungus Penicillium sp. ZZ1750. Mar Drugs 2021; 19:md19090483. [PMID: 34564145 PMCID: PMC8465473 DOI: 10.3390/md19090483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Seven novel compounds, namely peniresorcinosides A–E (1–5), penidifarnesylin A (6), and penipyridinone A (7), together with the 11 known ones 8–17, were isolated from a culture of the marine-associated fungus Penicillium sp. ZZ1750 in rice medium. The structures of the new compounds were established based on their high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, extensive nuclear magnetic resonance (NMR) spectroscopic analyses, chemical degradation, Mosher’s method, 13C-NMR calculations, electronic circular dichroism (ECD) calculations, and single crystal X-ray diffraction. Peniresorcinosides A (1) and B (2) are rare glycosylated alkylresorcinols and exhibited potent antiglioma activity, with IC50 values of 4.0 and 5.6 µM for U87MG cells and 14.1 and 9.8 µM for U251 cells, respectively.
Collapse
|
5
|
Usha T, Middha SK, Shanmugarajan D, Babu D, Goyal AK, Yusufoglu HS, Sidhalinghamurthy KR. Gas chromatography-mass spectrometry metabolic profiling, molecular simulation and dynamics of diverse phytochemicals of Punica granatum L. leaves against estrogen receptor. FRONT BIOSCI-LANDMRK 2021; 26:423-441. [PMID: 34590457 DOI: 10.52586/4957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Breast cancer is the most common type of cancer globally and its treatment with many FDA-approved synthetic drugs manifests various side effects. Alternatively, phytochemicals are natural reserves of novel drugs for cancer therapy. Punica granatum commonly known as pomegranate is a rich source of phytopharmaceuticals. Methods: The phytoconstituents of Punica granatum leaves were profiled using GC-MS/MS in the present work. Cytoscape-assisted network pharmacology of principal and prognostic biomarkers, which are immunohistochemically tested in breast cancer tissue, was carried out for the identification of protein target. Followed by, rigorous virtual screening of 145 phytoconstituents against the three ER isoforms (α, β and γ) was performed using Discovery Studio. The docked complexes were further evaluated for their flexibility and stability using GROMACS2016 through 50 ns long molecular dynamic simulations. Results: In the current study, we report the precise and systematic GC-MS/MS profiling of phytoconstituents (19 novel metabolites out of 145) of hydromethanolic extract of Punica granatum L. (pomegranate) leaves. These phytocompounds are various types of fatty acids, terpenes, heterocyclic compounds and flavonoids. 4-coumaric acid methyl ester was identified as the best inhibitor of ER isoforms with drug-likeness and no toxicity from ADMET screening. γ-ligand binding domain complex showed the best interactions with minimum RMSD, constant Rg, and the maximum number of hydrogen bonds. Conclusion: We conclude that 4-coumaric acid methyl ester exhibits favourable drug-like properties comparable to tamoxifen, an FDA-approved breast cancer drug and can be tested further in preclinical studies.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, 560029 Karnataka, India
| | - Sushil Kumar Middha
- DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 560012 Bangalore, India
| | - Dhivya Shanmugarajan
- DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 560012 Bangalore, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Arvind Kumar Goyal
- Centre for Bamboo Studies, Department of Biotechnology, Bodoland University, Kokrajhar, 783370 Assam, India
| | | | | |
Collapse
|
6
|
Diffusible Compounds Produced by Hanseniaspora osmophila and Gluconobacter cerinus Help to Control the Causal Agents of Gray Rot and Summer Bunch Rot of Table Grapes. Antibiotics (Basel) 2021; 10:antibiotics10060664. [PMID: 34199335 PMCID: PMC8230015 DOI: 10.3390/antibiotics10060664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.
Collapse
|
7
|
Whiteford R, Nurika I, Schiller T, Barker G. The white-rot fungus, Phanerochaete chrysosporium, under combinatorial stress produces variable oil profiles following analysis of secondary metabolites. J Appl Microbiol 2021; 131:1305-1317. [PMID: 33484615 DOI: 10.1111/jam.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
AIMS The effects of combinatorial stress on lipid production in Phanerochaete chrysosporium remain understudied. This species of white-rot fungi was cultivated on solid-state media while under variable levels of known abiotic and biotic stressors to establish the effect upon fungal oil profiles. METHODS AND RESULTS Environmental stressors induced upon the fungus included the following: temperature, nutrient limitation and interspecies competition to assess impact upon oil profiles. Fatty acid type and its concentration were determined using analytical methods of gas chromatography and mass spectrometry. Growth rate under stress was established using high-performance liquid chromatography with ergosterol as the biomarker. Fungi grown on solid-state agar were able to simultaneously produce short- and long-chain fatty acids which appeared to be influenced by nutritional composition as well as temperature. Addition of nitrogen supplements increased the growth rate, but lipid dynamics remained unchanged. Introducing competition-induced stress had significantly altered the production of certain fatty acids beyond that of the monoculture while under nutrient-limiting conditions. Linoleic acid concentrations, for example, increased from an average of 885 ng μl-1 at monoculture towards 13 820 ng μl-1 at co-culture, following 7 days of incubation. CONCLUSIONS Interspecies competition produced the most notable impact on lipid production for solid-state media cultivated fungi while the addition of nitrogen supplementation presented growth and lipid accumulation to be uncorrelated. Combinatorial stress therefore influences the yield of overall lipid production as well as the number of intermediate fatty acids produced, deriving similar oil profiles to the composition of vegetable and fish oils. SIGNIFICANCE AND IMPACT OF THE STUDY Fungal secondary metabolism remains highly sensitive following combinatorial stress. The outcome impacts the research towards optimizing fungal oil profiles for biomass and nutrition. Future investigations on fungal stress tolerance mechanisms need to address these environmental factors throughout the experimental design.
Collapse
Affiliation(s)
- R Whiteford
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - I Nurika
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia
| | - T Schiller
- Warwick Manufacturing Group, The University of Warwick, Coventry, UK
| | - G Barker
- School of Life Sciences, The University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Neipihoi, Narzary B, Saikia S, Saikia S, Tamuli KJ, Sahoo RK, Dutta D, Bordoloi M. Anticancer and antimicrobial compounds from Croton caudatus Gieseler and Eurya acuminata DC: Two edible plants used in the traditional medicine of the Kuki tribes. Nat Prod Res 2020; 35:6025-6029. [DOI: 10.1080/14786419.2020.1815737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Neipihoi
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bardwi Narzary
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
| | - Snigdha Saikia
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surovi Saikia
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
| | - Kashyap J. Tamuli
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ranjan K. Sahoo
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
| | - Deepjyoti Dutta
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
| | - Manobjyoti Bordoloi
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Oliveira D, Furtado FB, Gomes AAS, Belut BR, Nascimento EA, Morais SAL, Martins CHG, Santos VO, da Silva CV, Teixeira TL, Cunha LS, Oliveira AD, de Aquino FJT. Chemical Constituents and Antileishmanial and Antibacterial Activities of Essential Oils from Scheelea phalerata. ACS OMEGA 2020; 5:1363-1370. [PMID: 32010806 PMCID: PMC6990423 DOI: 10.1021/acsomega.9b01962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Scheelea phalerata Mart. ex Spreng (Arecaceae) is a palm tree found in the Brazilian cerrado. There are no topics related to volatile oils from S. phalerata leaves in the literature. This work determines its chemical composition and evaluates the biological activity under two different seasonal conditions (dry and rainy seasons). The dry essential oil yield was 0.034 ± 0.001% and the rainy essential oil yield was 0.011 ± 0.003%. Both essential oils presented different qualitative and quantitative compositions (99.4 and 98.5%). The main constituents of the dry essential oil were phytol (36.7%), nonadecane (9.7%), linolenic acid (9.1%), (Z)-hex-3-en-1-ol (4.2%), and squalene (4.0%). The main constituents of the rainy essential oil were phytol (26.1%), palmitic acid (18.7%), hexan-1-ol (15.6%), (Z)-hex-3-en-1-ol (9.7%), and oleic acid (4.0%). The antileishmanial activity against promastigotes of Leishmania amazonensis was observed only for the rainy season essential oil (IC50 value of 165.05 ± 33.26 μg mL-1). A molecular docking study showed that alcohols exert a paramount efficacy and that the action of some essential oil compounds may be similar to that of amphotericin B. Still, only the essential oil from the dry season showed moderate antibacterial activity against S. sanguinis (MICs 200-400 μg mL-1). The cytotoxicity against Vero cells was identical (>512) for both essential oils. The novel data here for both chemical characterization and biological activity, in particular, evidence that the action of these compounds is similar to that of amphotericin B, provide valuable information to the drug-discovery field.
Collapse
Affiliation(s)
- Daiane
M. Oliveira
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Fabiana B. Furtado
- Institute of Biosciences of Botucatu,
Department of Microbiology
and Immunology and Institute of Biosciences of Botucatu, Department of Physics and Biophysics, Unesp-São Paulo State University, 250 Distrito de Rubião Junior, Botucatu, SP CEP
18618-689, Brazil
| | - Antoniel A. S. Gomes
- Institute of Biosciences of Botucatu,
Department of Microbiology
and Immunology and Institute of Biosciences of Botucatu, Department of Physics and Biophysics, Unesp-São Paulo State University, 250 Distrito de Rubião Junior, Botucatu, SP CEP
18618-689, Brazil
| | - Belisa R. Belut
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Evandro A. Nascimento
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Sérgio A. L. Morais
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Carlos H. G. Martins
- Nucleus
of Research in Sciences and Technology, Laboratory of Research in
Applied Microbiology (LaPeMA), University
of Franca, 201 Parque Universitário, Franca, SP 14404-600, Brazil
| | - Vinícius
C. O. Santos
- Nucleus
of Research in Sciences and Technology, Laboratory of Research in
Applied Microbiology (LaPeMA), University
of Franca, 201 Parque Universitário, Franca, SP 14404-600, Brazil
| | - Claudio V. da Silva
- Institute
of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Campus Umuarama, Av. Pará
1720 Bloco 2B, Uberlândia, MG CEP 38400-902, Brazil
| | - Thaise L. Teixeira
- Institute
of Biomedical Sciences, Laboratory of Trypanosomatids, Federal University of Uberlândia, Campus Umuarama, Av. Pará
1720 Bloco 2B, Uberlândia, MG CEP 38400-902, Brazil
| | - Luís
C. S. Cunha
- Nucleus of
Bioprospecting in Natural Products (NuBiProN), Chemistry Department, Federal Institute of the Triângulo Mineiro, 4000 Distrito Industrial I, Uberaba, MG 38064-790, Brazil
| | - Alberto de Oliveira
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| | - Francisco J. T. de Aquino
- Nucleus
of Research in Natural Products (NuPPeN), Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila,
2121, Campus Santa Mônica, Uberlândia, MG CEP 38400-902, Brazil
| |
Collapse
|
10
|
Musso F, Pronsato L, Milanesi L, Vasconsuelo A, Faraoni MB. Non-polar extracts of Nicotiana glauca (Solanaceae) induce apoptosis in human rhabdomyosarcoma cells. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Rhabdomyosarcoma (RMS) is the most common soft-tissue tumour in children and adolescents. It originates in normal skeletal muscle from myogenic cells that have failed to fully differentiate, and it usually has a poor prognosis. Current RMS therapy has many adverse effects. Hence, new treatments are needed. Various pharmacological properties, such as analgesic, antineoplastic, antimicrobial, and antiparasitic properties, have been demonstrated in species of the Solanaceae family. We performed ethanolic extraction from leaves of Nicotiana glauca (Solanaceae), and the extract was successively partitioned with n-hexane, chloroform, and ethyl acetate. We evaluated the effects of extracts on RMS cells, and we found that the extracts trigger apoptosis. By bio-guided fractionation assays, we identified the apoptotic agents. Morphological assessment after apoptotic cell induction of cultured cells, mitochondrial and nuclear morphology by Mitotracker, and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively, were analysed in fluorescent microscopy. The capacity of the cells to migrate or proliferate was analysed by the Petit assay, followed by methylene blue staining. NMR and GC-MS spectrometry were used to identify palmitic acid and scopoletin as the phytochemicals responsible for the observed effects. These results indicate that these compounds are apoptotic inducers and they could be useful as chemotherapeutic agents against muscle tumours.
Collapse
|