1
|
Subramani G, Manian R. Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization. J Biotechnol 2024; 393:49-60. [PMID: 39025369 DOI: 10.1016/j.jbiotec.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
Collapse
Affiliation(s)
- Gomathi Subramani
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Rameshpathy Manian
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Haq S, Tariq A, Naz S, Abid S, Akhtar MN, Bullo S, Alhokbany N, Ahmed S. Remarkable enhancement of the nonlinear optical behavior towards asymmetric substituted D-π-A dithiophene-based compounds. J Mol Model 2024; 30:287. [PMID: 39066914 DOI: 10.1007/s00894-024-06081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Nonlinear optics (NLO) is an interesting field that discloses the interaction between intense light and matter, leading to a deeper understanding of NLO phenomena. Organic chromophores are considered as promising materials for NLO due to their exceptional structural versatility, ease of processing, and rapid response to NLO effects. Functional materials based on thiophene have been indispensable in advancing organic optoelectronics. Specifically, dithiophene-based compounds display weaker aromaticity, reduced steric hindrance, and additional sulfur-sulfur interactions. Hence, by utilizing dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (DTBDT) as the core structure, designing of a set of organic compounds with D1-π-D2-π-A-type framework, namely ZR1D1-ZR1D8, was carried out in this study. The analysis of frontier molecular orbitals (FMOs) revealed that compound ZR1D2 has the lowest band gap of 1.922 eV among all the investigated chromophores. The correlation of global reactivity parameters (GRPs) with the band gap values indicates that ZR1D2 displays a hardness of 0.961 eV and a softness of 0.520 eV-1. Among the studied compounds, ZR1D2 demonstrated a broad absorption spectrum that extended across the visible region. The maximum absorption wavelengths were observed at 766.470 nm for ZR1D2 and 749.783 nm for ZR1D5. These DTBDT-based dyes exhibit a remarkable NLO response with exceptionally high first hyperpolarizability (βtot) values. Among them, compound ZR1D2 stands out with the highest average linear polarizability (⟨α⟩ = 3.0 × 10-22 esu), first hyperpolarizability (βtot = 4.1 × 10-27 esu), and second hyperpolarizability (γtot = 7.5 × 10-32 esu) values. In summary, this investigation offers valuable insights into the potential use of DTBDT-based organic chromophores, particularly ZR1D2, for advanced applications in NLO. These findings suggest promising opportunities for researchers to synthesize these molecules and utilize these compounds in hi-tech NLO-based applications. METHODOLOGY The density functional theory computations were performed at the M06/6-311G(d,p) functional to explore their structural effects on electronic and NLO findings. Various analyses like highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps, absorption maxima, density of states, open circuit voltage, binding energies of electrons and holes, and transition density matrix are employed to investigate photovoltaic efficiencies of the derivatives. Different software packages like Avogadro, Multiwfn, Origin, GaussSum, PyMOlyze, and Chemcraft were used to deduce conclusions from the output files.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Areej Tariq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Salma Naz
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan.
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Yashyanaik S, Venkatesh T, Ereshnaik, Vinuth M. Red-emitting 4-methyl coumarin fused barbituric acid as an electrochemical sensor for catechol detection and probe for latent fingerprints. LUMINESCENCE 2024; 39:e4825. [PMID: 38961763 DOI: 10.1002/bio.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (β) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 μM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.
Collapse
Affiliation(s)
- Surendranaik Yashyanaik
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Talavara Venkatesh
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Ereshnaik
- Department of P.G. Studies and Research in Industrial Chemistry, Sir. M.V. Govt. Science College, Bommanakatte, Bhadravathi, Karnataka, India
| | - Mirle Vinuth
- Department of Chemistry, The National Institute of Engineering, North campus, Mysore, Karnataka, India
| |
Collapse
|
4
|
Hadji D, Baroudi B, Bensafi T. Nonlinear optical properties of azo sulfonamide derivatives. J Mol Model 2024; 30:117. [PMID: 38561513 DOI: 10.1007/s00894-024-05915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT The present work deals with the linear and nonlinear optical properties such as the dipole moment, polarizability, total hyperpolarizability, electric field-induced second harmonic generation, and hyper-Rayleigh scattering first hyperpolarizability of four heterocyclic azo compounds containing the sulfonamide group considered promise in nonlinear optic. The obtained polarizability and hyperpolarizability were supported by the frontier molecular orbital analysis. The properties have been effectively estimated and thoroughly examined to shed light on the nonlinear optical activity based on the density functional theory. The observed results show a high total first hyperpolarizability β tot up to 2503 a.u. and a low energy gap E g less than 1.41 eV. An inverse relationship has been obtained between the β tot and E g . The calculated E g values confirm that charge occurs within the azo sulfonamides. The new study provides a promising avenue for the development of these azo sulfonamides as novel NLO materials. METHODS The molecular modeling and the theoretical studies were performed with Gaussian software packages. The B3LYP/6-311 + G** level was used for optimization. All the linear and nonlinear optical properties reported here are obtained using the DFT. The optimized structures and their frontier molecular orbitals were plotted using the GaussView 5.1 program.
Collapse
Affiliation(s)
- Djebar Hadji
- Department of Chemistry, Faculty of Sciences, University of Saida - Dr. Moulay Tahar, 20000, Saïda, Algeria.
- Modeling and Calculation Methods Laboratory, University of Saida - Dr. Moulay Tahar, 20000, Saïda, Algeria.
| | - Benamar Baroudi
- Hassiba Benbouali University of Chlef, Ouled Fares, 02180, Chlef, Algeria
| | - Toufik Bensafi
- Modeling and Calculation Methods Laboratory, University of Saida - Dr. Moulay Tahar, 20000, Saïda, Algeria
| |
Collapse
|
5
|
Rasool F, Wu G, Shafiq I, Kousar S, Abid S, Alhokbany N, Chen K. Heterocyclic Donor Moiety Effect on Optical Nonlinearity Behavior of Chrysene-Based Chromophores with Push-Pull Configuration via the Quantum Chemical Approach. ACS OMEGA 2024; 9:3596-3608. [PMID: 38284097 PMCID: PMC10809687 DOI: 10.1021/acsomega.3c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Organic-based nonlinear optical (NLO) materials may be used in many optical-electronic systems and other next-generation defense technologies. With the importance of NLO materials, a series of push-pull architecture (D-π-A) derivatives (DTMD2-DTMD6) were devised from DTMR1 through structural alteration of different efficient donor heterocyclic groups. Density functional theory-based computations were executed at the MPW1PW91/6-31G(d,p) level to explore the NLO behavior of the derivatives. To investigate the optoelectronic behavior of the said compounds, various analyses like the frontier molecular orbital (FMO), global reactivity parameters, density of state (DOS), absorption spectra (UV-vis), natural bond orbital, and transition density matrix (TDM) were performed. The derivatives have a smaller band gap (2.156-1.492 eV) and a larger bathochromic shift (λmax = 692.838-969.605 nm) as compared to the reference chromophore (ΔE = 2.306 eV and λmax = 677.949 nm). FMO analysis revealed substantial charge conduction out of the donor toward the acceptor via a spacer that was also shown by TDM and DOS analyses. All derivatives showed promising NLO results, with the maximum amplitude of linear polarizability ⟨α⟩ and first (βtotal) and second (γtotal) hyperpolarizabilities over their reference chromophore. DTMD2 contained the highest βtotal (7.220 × 10-27 esu) and γtotal (1.720 × 10-31 esu) values corresponding with the reduced band gap (1.492 eV), representing potential futures for a large NLO amplitude. This structural modification through the use of various donors has played a significant part in achieving promising NLO behavior in the modified compounds.
Collapse
Affiliation(s)
- Faiz Rasool
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Gang Wu
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Iqra Shafiq
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Shehla Kousar
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Saba Abid
- Institute
of Chemistry,Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Norah Alhokbany
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ke Chen
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Kumar S, Arora A, Sapra S, Kumar R, Singh BK, Singh SK. Recent advances in the synthesis and utility of thiazoline and its derivatives. RSC Adv 2024; 14:902-953. [PMID: 38174252 PMCID: PMC10759189 DOI: 10.1039/d3ra06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thiazolines and their derivatives hold significant importance in the field of medicinal chemistry due to their promising potential as pharmaceutical agents. These molecular entities serve as critical scaffolds within numerous natural products, including curacin A, thiangazole, and mirabazole, and play a vital role in a wide array of physiological reactions. Their pharmacological versatility encompasses anti-HIV, neurological, anti-cancer, and antibiotic activities. Over the course of recent decades, researchers have extensively explored and developed analogs of these compounds, uncovering compelling therapeutic properties such as antioxidant, anti-tumor, anti-microbial, and anti-inflammatory effects. Consequently, thiazoline-based compounds have emerged as noteworthy targets for synthetic endeavors. In this review, we provide a comprehensive summary of recent advancements in the synthesis of thiazolines and thiazoline-based derivatives, along with an exploration of their diverse potential applications across various scientific domains.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Shivani Sapra
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Rajesh Kumar
- Department of Chemistry, R. D. S College, B. R. A. Bihar University Muzaffarpur 842002 India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi-110007 India
| |
Collapse
|
7
|
Kannan MR, Punjal A, Puranik R, Pandey U, Prabhu S, Girisun TCS, Vijayakumar T. Experimental and Computational studies on Intramolecular charge transfer, Terahertz and Two photon absorption of 3-[(4-Nitrophenyl Azo)]-9H-Carbazole-9-Ethanol (NPACE) from their Vibrational spectra for Optical limiting and NLO applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123175. [PMID: 37586280 DOI: 10.1016/j.saa.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Non-linear optical (NLO) features of 3-[(4-Nitrophenyl Azo)]-9H-Carbazole-9-Ethanol (NPACE) chromophore were investigated by FT-IR, FT-Raman, and UV-visible spectra aided by Density Functional Theory (DFT) using the B3LYP/6-311++G(d,p) basis set of Gaussian 16 W package. It is observed from the DFT calculation that the slight increase in the endocyclic angle of C13 -C14 -C15 and the reduction in exocyclic angle of N40 -N39 -C14 and C15 -C14 -N39 ascertained by experimental XRD values indicating the intramolecular charge-transfer interaction between the carbazole and nitrophenyl group through the diazo bridge. The vibrational contribution to the linear electro-optic effect is 15% of the total hyperpolarizability being calculated at B3LYP/6-311++G (d, p) for the NPACE molecule. It is also observed that the 8a, 19a, and 19b modes of the carbazole ring and the 8a, 8b, and 19b modes of the phenyl ring are found to be simultaneously and intensely active in IR and Raman spectra explaining the charge transfer interactions throughout the molecule. The low value of the HOMO- LUMO energy gap (2.5843 eV) and the deviation between the measured absorption wavelength (3.36 eV) from the computed (3.87 eV), both these facts substantiate the intramolecular charge transfer. The polarizability and first-order hyperpolarizability were calculated as 6.48 × 10-24 and 3.8 × 10-29 esu, respectively. The second harmonic generation (SHG) measurement experiment of NPACE was carried out using the powder method. The SHG efficiency is measured in comparison with the urea standard. The calculated torsional mode at 20 cm-1 is in excellent quantitative agreement with the experimentally determined terahertz absorption peak. The two-photon absorption coefficient of NPACE was estimated to be 0.9 × 10-11 mW-1, which is mainly due to the D-π-A type of molecular structure, and the optical limiting threshold for NPACE was estimated to be 1.52 × 1013 Wm-2 enabling this material as a potential candidate for optical limiting applications.
Collapse
Affiliation(s)
- M R Kannan
- Futuristic Materials Research Centre for Planetary Exploration, Department of Physics and Nanotechnology, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Kancheepuram, Tamilnadu, India
| | - Ajinkya Punjal
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
| | - Ruturaj Puranik
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
| | - Utkarsh Pandey
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
| | - Shriganesh Prabhu
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
| | - T C Sabari Girisun
- Nanophotonics Laboratory, Department of Physics, Bharathidasan university, Tiruchirapalli 620024, India
| | - T Vijayakumar
- Futuristic Materials Research Centre for Planetary Exploration, Department of Physics and Nanotechnology, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Kancheepuram, Tamilnadu, India.
| |
Collapse
|
8
|
Tanwar D, Jain P, Ahluwalia D, Sudheendranath A, Thomas SP, Ingole PP, Kumar U. A novel cobalt(ii) acetate complex bearing lutidine ligand: a promising electrocatalyst for oxygen evolution reaction. RSC Adv 2023; 13:24450-24459. [PMID: 37588977 PMCID: PMC10426729 DOI: 10.1039/d3ra04709a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Developing cost-effective electrocatalysts using earth-abundant metal as an alternative to expensive precious metal catalyst remains a key challenge for researchers. Several strategies are being researched/tested for making low-cost transition metal complexes with controlled electron-density and coordination flexibility around the metal center to enhance their catalytic activity. Herein, we report a novel lutidine coordinated cobalt(ii) acetate complex [(3,5-lutidine)2Co(OAc)2(H2O)2] (1) as a promising electrocatalyst for oxygen evolution reaction (OER). Complex 1 was characterized by FT-IR, elemental analysis, and single crystal X-ray diffraction data. The structure optimization of complex 1 was also done using DFT calculation and the obtained geometrical parameters were found to be in good agreement with the parameters obtained from the solid state structure obtained through single crystal X-ray diffraction data. Further, the molecular electrostatic potential (MEP) maps analysis of complex 1 observed electron rich centers that were found to be in agreement with the solid-state structure. It was understood that the coordination of lutidine as a Lewis base and acetate moiety as a flexible ligand will provide more coordination flexibility around the metal center to facilitate the catalytic reaction. Further, the electron rich centers around metal center will also support the enhancement of their catalytic activity. Complex 1 shows impressive OER activity, even better than the state-of-the-art IrO2 catalyst, in terms of turnover frequency (TOF: 0.05) and onset potential (1.50 V vs. RHE). The TOF for complex 1 is two and half times higher, while the onset potential is ca. 20 mV lower, than the benchmark IrO2 catalyst studied under identical conditions.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi New Delhi-110019 India
- Department of Chemistry, University of Delhi New Delhi-110007 India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Deepali Ahluwalia
- Department of Applied Chemistry, Delhi Technological University New Delhi-110042 India
| | | | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology New Delhi-110016 India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi New Delhi-110019 India
| |
Collapse
|
9
|
Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics 2023; 15:pharmaceutics15030779. [PMID: 36986640 PMCID: PMC10051454 DOI: 10.3390/pharmaceutics15030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The widespread usage of Schiff bases in chemistry, industry, medicine, and pharmacy has increased interest in these compounds. Schiff bases and derivative compounds have important bioactive properties. Heterocyclic compounds containing phenol derivative groups in their structure have the potential to capture free radicals that can cause diseases. In this study, we designed and synthesized eight Schiff bases (10–15) and hydrazineylidene derivatives (16–17), which contain phenol moieties and have the potential to be used as synthetic antioxidants, for the first time using microwave energy. Additionally, the antioxidant effects of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were studied using by the bioanalytical methods of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS•+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging activities, and Fe3+, Cu2+, and Fe3+-TPTZ complex reducing capacities. In the context of studies on antioxidants, Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were found to be as powerful DPPH (IC50: 12.15–99.01 μg/mL) and ABTS•+ (IC50: 4.30–34.65 μg/mL). Additionally, the inhibition abilities of Schiff bases (10–15) and hydrazineylidene derivatives (16–17) were determined towards some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCAs I and II), enzymes that are linked to some global disorders including Alzheimer’s disease (AD), epilepsy, and glaucoma. In the context of studies on enzyme inhibition, it was observed that the synthesized Schiff bases (10–15) and hydrazineylidene derivatives (16–17) inhibited AChE, BChE, hCAs I, and hCA II enzymes with IC50 values in ranges of 16.11–57.75 nM, 19.80–53.31 nM, 26.08 ± 8.53 nM, and 85.79 ± 24.80 nM, respectively. In addition, in light of the results obtained, we hope that this study will be useful and guiding for the evaluation of biological activities in the fields of the food, medical, and pharmaceutical industries in the future.
Collapse
|
10
|
Arif N, Shafiq Z, Noureen S, Khalid M, Ashraf A, Yaqub M, Irshad S, Khan MU, Arshad MN, Carmo Braga AA, Ragab AH, Al-Mhyawi SR. Synthesis, spectroscopic, SC-XRD/DFT and non-linear optical (NLO) properties of chromene derivatives. RSC Adv 2022; 13:464-477. [PMID: 36605672 PMCID: PMC9769377 DOI: 10.1039/d2ra07134g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, we reported the efficient synthesis of novel, heterocyclic, coumarin-based pyrano-chromene derivatives, 2-amino-8-methyl-5-oxo-4-[2-(2-oxo-2H-chromen-3-ylmethoxy)-phenyl]-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (4a) and 2-amino-8-methyl-5-oxo-4-[2-(2-oxo-2H-chromen-3-ylmethoxy)-phenyl]-4H,5H-pyrano[3,2-c]chromene-3-carboxylic acid methyl ester (4b). The chemical structures of synthesized compounds were resolved by employing various spectroscopic techniques like UV-Vis, FT-IR, 1H & 13C NMR, and single crystal X-ray diffraction (SC-XRD) analysis. The compounds; 4a and 4b, with appealing π-bonded skeleton were further analyzed in terms of their electronic and structural aspects using an integral approach of density functional theory (DFT) and time-dependent DFT (TD/DFT). The methodology: M06-2X/6-31G(d,p) level of theory was applied to compare their experimental data with theoretical outcomes using quantum chemical analysis. The frontier molecular orbitals (FMOs) study revealed that, 4a possesses a low band gap (5.168 eV) as compared to 4b (6.308 eV). Global reactivity parameters were associated with E gap values as 4a, with the lowest band gap showed the smaller value of hardness (0.094 eV) and a larger value of softness (5.266 eV). The non-linear optical (NLO) insight exhibited that, the average polarizability 〈α〉 and second hyperpolarizability (γ tot) were observed in 4a as 6.77005 × 10-23 and 0.145 × 104 esu, respectively. Overall, the computational studies suggest that the investigated compounds have distinct NLO properties.
Collapse
Affiliation(s)
- Nadia Arif
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya UniversityMultan-60800Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya UniversityMultan-60800Pakistan
| | - Sajida Noureen
- Materials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur63100Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information TechnologyRahim Yar Khan64200Pakistan,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information TechnologyRahim Yar Khan64200Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya UniversityMultan-60800Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya UniversityMultan-60800Pakistan
| | - Shabana Irshad
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information TechnologyRahim Yar Khan64200Pakistan,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information TechnologyRahim Yar Khan64200Pakistan
| | | | - Muhammad Nadeem Arshad
- Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São PauloAv. Prof. Lineu Prestes 748São Paulo05508-000Brazil
| | - Ahmed H. Ragab
- Department of Chemistry, Faculty of Science, King Khalid UniversityAbha 62224Saudi Arabia
| | - Saedah R. Al-Mhyawi
- Department of Chemistry, College of Science, University of JeddahJeddah 21419Saudi Arabia
| |
Collapse
|
11
|
Agren S, Chaabene M, El Haskouri J, Ben Chaâbane R, Lahcini M, Hassen V Baouab M. Anil’s ultrasonic synthesis: A preliminary photophysical study of substituent’s effects on chromogenic and fluorogenic cation sensing. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Serin S, Kaya G, Utku T. Insights into solvent effects on molecular properties, physicochemical parameters, and NLO behavior of brinzolamide, a bioactive sulfonamide: A computational study. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Ali OAA, Elangovan N, Mahmoud SF, El-Gendey MS, Elbasheer HZE, El-Bahy SM, Thomas R. Synthesis, characterization, vibrational analysis and computational studies of a new Schiff base from pentafluoro benzaldehyde and sulfanilamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Aslam S, Haroon M, Akhtar T, Arshad M, Khalid M, Shafiq Z, Imran M, Ullah A. Synthesis, Characterization, and DFT-Based Electronic and Nonlinear Optical Properties of Methyl 1-(arylsulfonyl)-2-aryl-1H-benzo[d]imidazole-6-carboxylates. ACS OMEGA 2022; 7:31036-31046. [PMID: 36092624 PMCID: PMC9453983 DOI: 10.1021/acsomega.2c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Herein, a series of N-1-sulfonyl substituted derivatives of 2-substituted benzimidazoles (2a-2e) were designed and synthesized via structural tailoring of the acceptor part of donor-π-acceptor schemes, and their nonlinear optic (NLO) characteristics were reported. The structures of 2a-2e were investigated and their characterization was accomplished by employing spectroscopic procedures, i.e., UV-vis, FT-IR, and 1H and 13C NMR. Further, a density functional theory (DFT) approach was used to calculate UV-vis, vibrational, and 1H and 13C NMR techniques; frontier molecular orbitals (FMOs); global reactivity parameters (GRPs); natural bond orbitals (NBOs); optical and vibrational analysis; and nonlinear optics (NLO). The most promising results were obtained for 6-nitro-2-(4-nitrophenyl)-1-(4-nitrophenylsulfonyl)-1H-benzo[d]imidazole among entitled compounds, as it exhibited the highest ⟨α⟩ and βtot values, showing it is an eye-catching NLO material. This DFT study evokes the interest of researchers regarding the development of benzimidazole-based tempting NLO compounds that could be beneficial in modern hi-tech applications.
Collapse
Affiliation(s)
- Shumaila Aslam
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
| | - Muhammad Haroon
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
- Department
of Chemistry, Government Major Muhammad
Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated
with Mirpur University of Science and Technology (MUST)), 10250 Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Tashfeen Akhtar
- Department
of Chemistry, Mirpur University of Science
and Technology (MUST), 10250 Mirpur, Azad Jammu and
Kashmir, Pakistan
| | - Muhammad Arshad
- Department
of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| | - Muhammad Khalid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Aman Ullah
- Department
of Agricultural, Food and Nutritional Science, Faculty of Agricultural,
Life and Environmental Sciences, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
15
|
Synthetic approach to achieve halo imine units: Solid-state assembly, DFT based electronic and non linear optical behavior. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Khan MU, Hussain S, Asghar MA, Munawar KS, Khera RA, Imran M, Ibrahim MM, Hessien MM, Mersal GAM. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh 2) 2-Based Derivatives. ACS OMEGA 2022; 7:18027-18040. [PMID: 35664583 PMCID: PMC9161415 DOI: 10.1021/acsomega.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds having significant nonlinear optical (NLO) applications are being employed in the optoelectronics field. In the current work, a series of non-fullerene acceptor (NFA) based compounds are designed by modifying the acceptors with different substituents using DTS(FBTTh 2 ) 2 R1 as a reference compound. To study the NLO responses to the tuning of various acceptors, DFT and TD-DFT based parameters were calculated at the M06 level along with the 6-31G(d,p) basis set. The designed compounds (MSTD2-MSTD7) showed smaller values of the energy gap in comparison to the reference compound. The energy gaps of the title compounds were linked to global reactivity insights; MSTD7 provided a lower band gap, with smaller and larger quantities for hardness and softness characteristics, respectively. Further, UV-vis analyses were performed for all of the designed compounds, displaying wavelengths red-shifted from that of DTS(FBTTh 2 ) 2 R1 . The intraelectron transfer (ICT) process and stability of the title compounds were explored via frontier molecular orbital (FMO) and natural bond orbital (NBO) studies, respectively. Out of all the designed compounds, the highest value of linear polarizability ⟨α⟩ of 3.485 × 10-22 esu, first hyperpolarizability (βtotal) of 13.44 × 10-27 esu and second-order hyperpolarizability ⟨γ⟩ of 3.66 × 10-31 esu were exhibited by MSTD7. In short, all of the designed compounds exhibited promising NLO properties because of their low charge transport resistance. These NLO properties may be useful for experimental researchers to uncover NLO materials for modern applications.
Collapse
Affiliation(s)
| | - Shabbir Hussain
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore 54770, Pakistan
| | | | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud M. Hessien
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A. M. Mersal
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Arshad M, Khalid M, Asad M, Braga AAC, Asiri AM, Alotaibi MM. Influence of Peripheral Modification of Electron Acceptors in Nonfullerene (O-IDTBR1)-Based Derivatives on Nonlinear Optical Response: DFT/TDDFT Study. ACS OMEGA 2022; 7:11631-11642. [PMID: 35449988 PMCID: PMC9017101 DOI: 10.1021/acsomega.1c06320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Fullerene-based organic compounds have been reported as useful materials with some limitations; nonetheless, fullerene-free compounds are primarily considered to be the most substantial materials for the development of modern technology. Therefore, in this study, a series of compounds (NFBC2-NFBC7) having an A-π-D architecture were designed for the first time from a synthesized nonfullerene (O-IDTBR) compound by changing different acceptor groups. The synthesized nonfullerene (O-IDTBR1) compound and its designed derivatives were optimized with frequency analyses at the M06/6-311G(d,p) level. These optimized structures were further characterized by different quantum chemical approaches. The study required that the designed compounds possess a low energy gap in comparison to that of O-IDTBR1 (2.385 eV). Moreover, density of state (DOS) calculations supported the FMO analysis and displayed charge transfers from the HOMO to the LUMO in an effective manner. The λmax values of the investigated chromophores were observed to be greater than that of the reference compound. Amazingly, the highest amplitude of linear polarizability ⟨α⟩ and first (βtot) and second hyperpolarizability values were achieved by NFBC6 at 1956.433, 2155888.013, and 7.868 × 108 au, respectively, among all other derivatives. Effective NLO findings revealed that nonfullerene-based derivatives may contribute significantly to NLO technology.
Collapse
Affiliation(s)
- Muhammad
Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Ataualpa A. C. Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
| |
Collapse
|
19
|
Kavitha E, Ramarajan D, Rakić A, Dimić D, Sudha S, Nirmala PN. Structural, spectroscopic, quantum chemical, and molecular docking investigation of (E)-N'-(2,5-dimethoxybenzylidene)picolinohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Hasanova SS, Mamedova LN, Ashfaq M, Munawar KS, Movsumov EM, Khalid M, Tahir MN, Imran M. Synthesis, crystal structure, Hirshfeld surface analysis and theoretical investigation of polynuclear coordination polymers of cobalt and manganese complexes with nitrobenzene and pyrazine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Imran M, Khalid M, Jawaria R, Ali A, Asghar MA, Shafiq Z, Assiri MA, Lodhi HM, Braga AA. Exploration of Photophysical and Nonlinear Properties of Salicylaldehyde-Based Functionalized Materials: A Facile Synthetic and DFT Approach. ACS OMEGA 2021; 6:33914-33922. [PMID: 34926938 PMCID: PMC8674987 DOI: 10.1021/acsomega.1c04984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The current research presents the synthesis of novel salicylaldehyde thiosemicarbazones (1-6) and their spectroscopic characterization employing UV-visible, Fourier transform infrared spectroscopy, and NMR techniques. Experimental results are compared and validated with the results obtained theoretically by employing density functional theory at the M06 level with the 6-311G (d,p) basis set. Further, various parameters [natural bond orbital (NBO)], linear and nonlinear optical (NLO) properties, and global reactivity parameters (GRPs) are computationally calculated. The NBO approach has confirmed the stability of compounds on account of charge delocalization and hyper conjugative interaction network. Frontier molecular orbital analysis has explained the charge transfer and chemical reactivity capability, while GRPs have led to the analysis of kinetic stability of the studied molecules. Further, the probability of being NLO-active has been theoretically proved by the HOMO/LUMO energy difference (4.133-4.186 eV) and β values (192.778-501.709 a.u). These findings suggest that the studied compounds possess potential NLO applications as they have shown larger NLO values in comparison with that of the urea molecule, and such distinct properties prove their technological importance.
Collapse
Affiliation(s)
- Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rifat Jawaria
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Asif Ali
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hafiza Munazza Lodhi
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ataualpa Albert
Carmo Braga
- Departamento
de Química Fundamental, Instituto
de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
22
|
Concepcion O, Ali A, Khalid M, F. de la Torre A, Khan MU, Raza AR, Kamal GM, Rehman MF, Alam MM, Imran M, Braga AA, Pertino MW. Facile Synthesis of Diversely Functionalized Peptoids, Spectroscopic Characterization, and DFT-Based Nonlinear Optical Exploration. ACS OMEGA 2021; 6:26016-26025. [PMID: 34660963 PMCID: PMC8515372 DOI: 10.1021/acsomega.1c02962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 05/03/2023]
Abstract
Compounds having nonlinear optical (NLO) characteristics have been proved to have a significant role in many academic and industrial areas; particularly, their leading role in surface interfaces, solid physics, materials, medicine, chemical dynamics, nuclear science, and biophysics is worth mentioning. In the present study, novel peptoids (1-4) were prepared in good yields via Ugi four-component reaction (Ugi-4CR). In addition to synthetic studies, computational calculations were executed to estimate the molecular electrostatic potential, natural bond orbital (NBO), frontier molecular orbital analysis, and NLO properties. The NBO analysis confirmed the stability of studied systems owing to containing intramolecular hydrogen bonding and hyperconjugative interactions. NLO analysis showed that investigated molecules hold noteworthy NLO response as compared to standard compounds that show potential for technology-related applications.
Collapse
Affiliation(s)
- Odette Concepcion
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad
de Concepción, Concepción 4030000, Chile
| | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad-38000, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Alexander F. de la Torre
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad
de Concepción, Concepción 4030000, Chile
| | | | - Abdul Rauf Raza
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ghulam Mustafa Kamal
- Department
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Mohammed Mujahid Alam
- Department
of Chemistry, Faculty of Science, King Khalid
University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Ataualpa Albert
Carmo Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil
| | - Mariano W. Pertino
- Institute
of Natural Resources Chemistry, Universidad
de Talca, Casilla 747, Avenida Lircay, Talca P.C. 3462227, Chile
| |
Collapse
|
23
|
Mahamoud Aouled I, Uysal S. Investigation of [MSalen/salophen] (M = Cr3+, Fe3+ or Co3+) capped dinuclear complexes of two novel tetraoxocalix[2](m-hydroxymethyl)arene[2]triazine compounds. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1988107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Saban Uysal
- Chemistry Department, Science Faculty, Karabuk University, Karabuk, Turkey
| |
Collapse
|
24
|
Kırca BK, Kaştaş ÇA, Ersanlı CC. Molecular and electronic structures of two new Schiff base compounds: (E)-2-bromo-6-[(2-bromo-4-methylphenylimino) methyl]-4-chlorophenol and (E)-2-bromo-6-[(4-bromo-3-methylphenylimino) methyl]-4-chlorophenol. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Soliman KA, Aal SA. Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. DIAMOND AND RELATED MATERIALS 2021; 117:108458. [PMID: 34025036 PMCID: PMC8123382 DOI: 10.1016/j.diamond.2021.108458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 05/16/2023]
Abstract
Smart implementation of novel advanced nanocarriers such as functionalized C24 and B12N12 nanocages is used supplement for antiviral activity 5-Fluoro-2-hydroxypyrazine-3-carboxamide (Favipiravir; Avigan; T-705), as treatment of COVID-19. The interaction energies of Favipiravir with perfect (B12N12 and C24) and doped (BC23 and CB11N12) nanocages were studied at temperatures equal to 310.15 K and 298.15 K using DFT. Our results have shown that the interaction of the Favipiravir (C[bond, double bond]O group) with BC23 and CB11N12 is more favorable than with the C24 and B12N12 nanocages in the gas and aqueous environments. Additionally, the natural bond orbital, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), energy gap, chemical reactivity, molecular electrostatic potential, and thermodynamic parameters of the optimized structure have been examined. Furthermore, the UV-Vis and infrared spectroscopy have been evaluated for the investigation of the molecular orbitals Participated in the absorption spectrum of the Favipiravir before and after the interaction with the C24, BC23, B12N12, and CB11N12, sites at maximum wavelength utilizing the time-dependent density functional theory (TD-B3LYP and TD-CAM-B3LYP). The intermolecular interactions have been analyzed by non-covalent interactions (NCI) and also, the electron localization function (ELF) is discussed.
Collapse
Affiliation(s)
- Kamal A Soliman
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - S Abdel Aal
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
- Department of Chemistry, College of Science, Qassim University, Saudi Arabia
| |
Collapse
|
26
|
Khan I, Khalid M, Adeel M, Niaz SI, Shafiq I, Muhammad S, Braga AAC. Palladium-catalyzed synthesis of 5-(arylated) pyrimidines, their characterization, electronic communication, and non-linear optical evaluations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Khalid M, Jawaria R, Khan MU, Braga AA, Shafiq Z, Imran M, Zafar HM, Irfan A. An Efficient Synthesis, Spectroscopic Characterization, and Optical Nonlinearity Response of Novel Salicylaldehyde Thiosemicarbazone Derivatives. ACS OMEGA 2021; 6:16058-16065. [PMID: 34179651 PMCID: PMC8223424 DOI: 10.1021/acsomega.1c01938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 05/30/2023]
Abstract
In this study, seven derivatives of salicylaldehyde thiosemicarbazones (1-7) were synthesized by refluxing substituted thiosemicarbazide and salicylaldehyde in an ethanol solvent. Different spectral techniques (UV-vis, IR, and NMR) were used to analyze the prepared compounds (1-7). Accompanied by the experimental study, quantum chemical studies were also carried out at the M06/6-311G(d,p) level. A comparative analysis of the UV-visible spectra and vibrational frequencies between computational and experimental findings was also performed. These comparative data disclosed that both studies were observed to be in excellent agreement. Furthermore, natural bond orbital investigations revealed that nonbonding transitions were significant for the stability of prepared molecules. In addition, frontier molecular orbital (FMO) findings described that a promising charge transfer phenomenon was found in 1-7. The energies of FMOs were further used to determine global reactivity parameters (GRPs). These GRP factors revealed that all synthesized compounds (1-7) contain a greater hardness value (η = 2.1 eV) and a lower softness value (σ = 0.24 eV), which indicated that these compounds were less reactive and more stable. Nonlinear optical (NLO) evaluation displayed that compound 5 consisted of greater values of linear polarizability ⟨α⟩ and third-order polarizability ⟨γ⟩ of 324.93 and 1.69 × 105 a.u., respectively, while compound 3 exhibited a larger value of second-order polarizability (βtotal) of 508.41 a.u. The NLO behavior of these prepared compounds may be significant for the hi-tech NLO applications.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rifat Jawaria
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Ataualpa Albert
Carmo Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, 60800 Multan, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hafiz Muhammad
Ahmad Zafar
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ahmad Irfan
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
28
|
Ali B, Khalid M, Asim S, Usman Khan M, Iqbal Z, Hussain A, Hussain R, Ahmed S, Ali A, Hussain A, Imran M, Assiri MA, Fayyaz ur Rehman M, Wang C, Lu C. Key Electronic, Linear and Nonlinear Optical Properties of Designed Disubstituted Quinoline with Carbazole Compounds. Molecules 2021; 26:2760. [PMID: 34067122 PMCID: PMC8125273 DOI: 10.3390/molecules26092760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (β) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.
Collapse
Affiliation(s)
- Bakhat Ali
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Zahid Iqbal
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Sarfraz Ahmed
- KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Akbar Ali
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (A.A.); (M.F.u.R.)
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | | | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
29
|
Non-covalent interactions abetted supramolecular arrangements of N-Substituted benzylidene acetohydrazide to direct its solid-state network. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Theoretical Investigation of Jack-in-the-Box Electro-Optical Compounds: In-Silico Design of Mixed-Argon Benzonitriles Towards the Template of Clusters. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ali A, Khalid M, Tahir MN, Imran M, Ashfaq M, Hussain R, Assiri MA, Khan I. Synthesis of Diaminopyrimidine Sulfonate Derivatives and Exploration of Their Structural and Quantum Chemical Insights via SC-XRD and the DFT Approach. ACS OMEGA 2021; 6:7047-7057. [PMID: 33748618 PMCID: PMC7970555 DOI: 10.1021/acsomega.0c06323] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
Two heterocyclic compounds named 2,6-diaminopyrimidin-4-ylnaphthalene-2-sulfonate (A) and 2,6-diaminopyrimidin-4-yl4-methylbenzene sulfonate (B) were synthesized. The structures of heterocyclic molecules were established by the X-ray crystallographic technique, which showed several noncovalent interactions as N···H···N, N···H···O, and C-H···O bonding and parallel offset stacking interaction. Hydrogen-bonding interactions were further explored by the Hirshfeld surface (HS) analysis. Nonlinear optical (NLO) and natural bond orbital (NBO) properties were calculated utilizing the B3LYP/6-311G(d,p) level. Frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) were calculated utilizing the time-dependent density functional theory (TD-DFT) at the same level. The NBO analysis showed that the molecular stabilities of compounds A and B were attributed to their large stabilization energy values. The second hyperpolarizability (γtot) values for A and B were obtained as 3.7 × 104 and 2.7 × 104 au, respectively. The experimental X-ray crystallographic and theoretical structural parameters of A and B were found to be in close correspondence. Both the molecules reveal substantial NLO responses that can be significant for their utilization in advanced applications.
Collapse
Affiliation(s)
- Akbar Ali
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- ,
| | | | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Riaz Hussain
- Division
of Science and Technology University of Education Lahore, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Imran Khan
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
32
|
Khalid M, Ali A, Abid S, Tahir MN, Khan MU, Ashfaq M, Imran M, Ahmad A. Facile Ultrasound‐Based Synthesis, SC‐XRD, DFT Exploration of the Substituted Acyl‐Hydrazones: An Experimental and Theoretical Slant towards Supramolecular Chemistry. ChemistrySelect 2020. [DOI: 10.1002/slct.202003589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of Chemistry University of Malakand Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry University of Sargodha, 40100 Pakistan
| | - Saba Abid
- Department of Chemistry Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | | | - Muhammad Usman Khan
- Department of Applied Chemistry Government College University Faisalabad 38000 Pakistan
| | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha Pakistan
| | - Muhammad Imran
- Department of Chemistry Faculty of Science King Khalid University, P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Anees Ahmad
- Instituto de Química de Sao Carlos Universidade de Sao Paulo CEP 13560-970 Sao Carlos SP Brazil
| |
Collapse
|
33
|
Khalid M, Ali A, Tariq J, Tahir MN, Aliabad HAR, Hussain I, Ashfaq M, Khan MU. Stabilization of Supramolecular Assembly of N‐Substituted Benzylidene Acetohydrazide Analogs by Non‐Covalent Interactions: A Concise Experimental and Theoretical Approach. ChemistrySelect 2020. [DOI: 10.1002/slct.202002653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of Chemistry University of Malakand Chakdara 18800 Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry University of Sargodha 40100 Pakistan
| | - Jahrukh Tariq
- Department of Chemistry Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | | | | | - Ishtiaq Hussain
- Department of Pharmaceutical Sciences Abbottabad University of Science and Technology KPK Pakistan
| | - Muhammad Ashfaq
- Department of Physics University of Sargodha Sargodha Pakistan
| | | |
Collapse
|
34
|
Khalid M, Ali A, Rehman MFU, Mustaqeem M, Ali S, Khan MU, Asim S, Ahmad N, Saleem M. Exploration of Noncovalent Interactions, Chemical Reactivity, and Nonlinear Optical Properties of Piperidone Derivatives: A Concise Theoretical Approach. ACS OMEGA 2020; 5:13236-13249. [PMID: 32548510 PMCID: PMC7288701 DOI: 10.1021/acsomega.0c01273] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 05/05/2023]
Abstract
The organic compounds with a π-bond system lead to electric charge delocalization which enables them to reveal fascinating nonlinear optical properties. Mono-carbonyl curcuminoids also have an appealing skeleton from the conjugation view point. Interesting chemical structures of the 3,5-bis(arylidene)-N-benzenesulfonyl-4-piperidone derivatives motivated us to perform density functional theory (DFT)-based studies. Therefore, computations using the B3LYP/6-311G(d,p) functional of DFT were executed to explore geometric parameters, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, and natural bond orbital (NBO) analyses. Moreover, three different functionals such as HF, B3LYP, and M06 with the 6-311G(d,p) basis set were used to investigate the average polarizability ⟨α⟩ and first hyperpolarizability (βtot)-based properties of all compounds. A good concurrence among calculated and experimental parameters was obtained through root mean square error calculations. The molecular stability of piperidone derivatives was examined using the Hirshfeld surface and NBO analyses. Natural population analysis was also performed to obtain insights about atomic charges. Calculated HOMO-LUMO energies showed that charge transfer interactions take place within the molecules. Moreover, global reactivity parameters including electronegativity, chemical hardness, softness, ionization potential, and electrophilicity were calculated using the HOMO and LUMO energies. The average polarizability ⟨α⟩ and first hyperpolarizability (βtot) values of all compounds were observed to be larger in magnitude at the aforesaid functional than the standard compound.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Akbar Ali
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha Bhakkar Campus, Bhakkar 30000, Pakistan
| | - Shehbaz Ali
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Naseeb Ahmad
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Saleem
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
35
|
Tariq S, Khalid M, Raza AR, Rubab SL, Morais SFDA, Khan MU, Tahir MN, Braga AAC. Experimental and computational investigations of new indole derivatives: A combined spectroscopic, SC-XRD, DFT/TD-DFT and QTAIM analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127803] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Raza AR, Nisar B, Khalid M, Gondal HY, Khan MU, de Alcântara Morais SF, Tahir MN, Braga AAC. A facile microwave assisted synthesis and structure elucidation of (3R)-3-alkyl-4,1-benzoxazepine-2,5-diones by crystallographic, spectroscopic and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:117995. [PMID: 31958608 DOI: 10.1016/j.saa.2019.117995] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 05/18/2023]
Abstract
The use of microwave (MW) irradiation in organic synthesis has become increasingly popular within the pharmaceutical and academic arenas because it is a new enabling technology for drug discovery and development. It is a rapid way of synthesis, which involves faster reaction rates and high selectivity to conventional heating method of syntheses. The MW-assisted 7-exo-tet cyclization of N-acylanthranilic acids afforded (3R)-3-alkyl-4,1-benzoxazepines-2,5-diones in very short duration (20 min) with extraordinary high yields in comparison to conventional heating mode of synthesis. The method development, comparative yields of MW-assisted and thermal method of syntheses, crystallographic, spectroscopic and density functional theory (DFT) studies are reported herein. Four novel compounds with chemical formulas C10H9BrClNO35m, C19H19NO36e, C13H14ClNO36h and C12H11Br2NO36h were synthesized, validated by 1HNMR, 13CNMR, FT-IR, UVVis, EIMS spectroscopic techniques and confirmed by using single crystal X-ray diffraction (SC-XRD) study. The DFT and TDDFT calculations at B3LYP/6-311 + G(d,p) level of theory were performed for comparative analysis of spectroscopic data, optimized geometries, frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of 5m, 6e, 6h and 6o. Overall, experimental findings were supported nicely by corresponding DFT computed results. The NBO analysis confirmed that the presence of non-covalent interactions, hydrogen bonding and hyper- conjugative interactions are pivotal cause for the existence of 5m, 6e, 6h and 6o in the solid-state. NLO analysis showed that 5m, 6e, 6h and 6o have significant NLO properties as compared to prototype standard compound which disclosed their potential for technology related applications.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Bushra Nisar
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan.
| | - Humaira Yasmeen Gondal
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Sara Figueirêdo de Alcântara Morais
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Muhammad Nawaz Tahir
- Ibn-ul-Hathim Block, Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
37
|
Khalid M, Ali A, Adeel M, Din ZU, Tahir MN, Rodrigues-Filho E, Iqbal J, Khan MU. Facile preparation, characterization, SC-XRD and DFT/DTDFT study of diversely functionalized unsymmetrical bis-aryl-α, β-unsaturated ketone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127755] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Khan E, Khalid M, Gul Z, Shahzad A, Tahir MN, Asif HM, Asim S, Braga AAC. Molecular structure of 1,4-bis(substituted-carbonyl)benzene: A combined experimental and theoretical approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Sumrra SH, Hassan AU, Imran M, Khalid M, Mughal EU, Zafar MN, Tahir MN, Raza MA, Braga AA. Synthesis, characterization, and biological screening of metal complexes of novel sulfonamide derivatives: Experimental and theoretical analysis of sulfonamide crystal. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sajjad H. Sumrra
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Abrar U. Hassan
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of ScienceKing Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ehsan U. Mughal
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Muhammad N. Zafar
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | | | - Muhammad A. Raza
- Department of ChemistryUniversity of Gujrat Gujrat 50700 Pakistan
| | - Ataualpa A.C. Braga
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Av. Prof.LineuPrestes, 748 São Paulo 05508‐000 Brazil
| |
Collapse
|
40
|
Khalid M, Ali A, De la Torre AF, Marrugo KP, Concepcion O, Kamal GM, Muhammad S, Al‐Sehemi AG. Facile Synthesis, Spectral (IR, Mass, UV−Vis, NMR), Linear and Nonlinear Investigation of the Novel Phosphonate Compounds: A Combined Experimental and Simulation Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muhammad Khalid
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of ChemistryUniversity of Sargodha, 40100 Pakistan
| | - Alexander F. De la Torre
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Kelly P. Marrugo
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Odette Concepcion
- Departamento de Química Orgánica, Facultad de Ciencias QuímicasUniversidad de Concepción, Concepción, Chile
| | - Ghulam Mustafa Kamal
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Shabbir Muhammad
- Department of Physics, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| | - Abdullah G. Al‐Sehemi
- Department of Chemistry, College of ScienceKing Khalid University Abha 61413, P.O. Box 9004 Saudi Arabia
| |
Collapse
|
41
|
Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127438] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Synthesis, crystal structure, spectroscopic, electronic and nonlinear optical properties of potent thiazole based derivatives: Joint experimental and computational insight. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Hussain A, Khan MU, Ibrahim M, Khalid M, Ali A, Hussain S, Saleem M, Ahmad N, Muhammad S, Al-Sehemi AG, Sultan A. Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: A comparison between DFT/TDDFT and experimental study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Asad M, Arshad MN, Khan SA, Oves M, Khalid M, Asiri AM, Braga AA. Cyclization of chalcones into N-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Sales TA, Ramalho TC. Computational design of synthetic receptors for drug detection: interaction between molecularly imprinted polymers and MDMA (3,4-methylenedioxymethamphetamine). Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2543-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Zarei L, Asadi Z, Eigner V, Dusek M. Crystal structure of a supramolecular dimer of Co(III) complex and evaluation of the DNA /BSA interaction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Molecular salts of terephthalic acids with 2-aminopyridine and 2-aminothiazole derivatives as potential antioxidant agents; Base-Acid-Base type architectures. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
The role of methyl and benzyl substituted dithiocarbazate of 2-acetyl pyridine for the formation of bridged dimeric and unbridged monomeric copper(II) complexes and catecholase mimetic activity of the complexes. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Khan B, Khalid M, Shah MR, Tahir MN, Asif HM, Rahnamaye Aliabad HA, Hussain A. Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of potent hydrazide derivatives: A comparative experimental and DFT/TD-DFT exploration. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Khalid M, Ali A, Jawaria R, Asghar MA, Asim S, Khan MU, Hussain R, Fayyaz ur Rehman M, Ennis CJ, Akram MS. First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv 2020; 10:22273-22283. [PMID: 35516655 PMCID: PMC9054527 DOI: 10.1039/d0ra02857f] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
Materials with nonlinear optical (NLO) properties have significant applications in different fields, including nuclear science, biophysics, medicine, chemical dynamics, solid physics, materials science and surface interface applications. Quinoline and carbazole, owing to their electron-deficient and electron-rich character respectively, play a role in charge transfer applications in optoelectronics. Therefore, an attempt has been made herein to explore quinoline–carbazole based novel materials with highly nonlinear optical properties. Structural tailoring has been made at the donor and acceptor units of two recently synthesized quinoline–carbazole molecules (Q1, Q2) and acceptor–donor–π–acceptor (A–D–π–A) and donor–acceptor–donor–π–acceptor (D–A–D–π–A) type novel molecules Q1D1–Q1D3 and Q2D2–Q2D3 have been quantum chemically designed, respectively. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) computations are performed to process the impact of acceptor and donor units on photophysical, electronic and NLO properties of selected molecules. The λmax values (321 and 319 nm) for Q1 and Q2 in DSMO were in good agreement with the experimental values (326 and 323 nm). The largest shift in absorption maximum is displayed by Q1D2 (436 nm). The designed compounds (Q1D3–Q2D3) express absorption spectra with an increased border and with a reduced band gap compared to the parent compounds (Q1 and Q2). Natural bond orbital (NBO) investigations showed that the extended hyper conjugation and strong intramolecular interaction play significant roles in stabilising these systems. All molecules expressed significant NLO responses. A large value of βtot was elevated in Q1D2 (23 885.90 a.u.). This theoretical framework reveals the NLO response properties of novel quinoline–carbazole derivatives that can be significant for their use in advanced applications. Materials with nonlinear optical properties have significant applications in nuclear science, biophysics, medicine, chemical dynamics, solid physics & materials science. We show how π bridges, donors & acceptors can be reconfigured to improve optical properties.![]()
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | - Akbar Ali
- Department of Chemistry
- University of Sargodha
- Sargodha 40100
- Pakistan
| | - Rifat Jawaria
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | | | - Sumreen Asim
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | | | - Riaz Hussain
- Department of Chemistry
- University of Okara
- Okara-56300
- Pakistan
| | | | | | - Muhammad Safwan Akram
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
- National Horizons Centre
| |
Collapse
|