1
|
Yoon SY, Kim H, Valiyaveettil Basheer R, Abd Rahman N, Jang SB, Wong KT, Moon DH, Choong CE, Jang M. Mg/Si- and Ag-Doped Carbon-Based Media Rainwater Filtration System for Multiple Pollutants Removal. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5638. [PMID: 39597461 PMCID: PMC11595580 DOI: 10.3390/ma17225638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
In this study, the removal performances of a multi-pollutant elimination cartridge system (MPECS) composed of palm shell waste-based activated carbon (PSAC), magnesium (Mg)/silicon (Si)-doped PSAC (Mg/Si-PSAC), and silver (Ag)-doped PSAC (Ag-PSAC) for heavy metals, organic pollutants, and Escherichia coli were investigated. Mg/Si impregnation significantly improved heavy metal removal using PSAC by increasing the surface area and adding more sorption sites to the magnesium silicate nanolayer. Fixed-bed column experiments showed that the MPECS column outperformed PSAC and commercial activated carbon (DJAC), with a 1.5 to 2.0 times higher E. coli removal and a higher removal of organic pollutants and heavy metals. The MPECS column, with its disinfection ability and adsorption of heavy metals and organic matter, is a promising system for removing multiple pollutants from rainwater.
Collapse
Affiliation(s)
- So Yeon Yoon
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyeseong Kim
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
| | - Reneesha Valiyaveettil Basheer
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
| | - Nurhaslina Abd Rahman
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seok Byum Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
| | - Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea;
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; (S.Y.Y.); (H.K.); (R.V.B.); (N.A.R.); (S.B.J.); (K.T.W.)
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
2
|
Peiman S, Maleki B, Ghani M. Dendrimer templated ionic liquid nanomagnetic for efficient coupling reactions. Sci Rep 2024; 14:25082. [PMID: 39443602 PMCID: PMC11499887 DOI: 10.1038/s41598-024-75629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
In this research, a logical strategy with a recyclable synthetic perspective of view and a rational design to prepare a nanocatalyst with a dendrimer template containing ionic liquid is presented. Magnetic silica nanoparticles were prepared using the Stober method. Their surface was modified with the help of cyanuric chloride, melamine, and 1-methylimidazole as Linkers. Finally, the nanocatalyst was decorated with affordable copper metal. The dendrimer-templated nanocatalyst was identified by different analyses, such as FT-IR, SEM, TEM, XRD, EDX, TGA, CHN, and ICP-OES. Fe3O4@SiO2@NTMP-IL-Cu was used as a heterogeneous nanocatalyst with good performance and reusable in coupling syntheses. The synthesis of A3-coupling and Ullmann coupling was performed under solvent-free and THF conditions, respectively, with high yields. Reusability and high efficiency of products in the vicinity of this catalyst, the use of cheap and available metal are desirable features of this synthetic catalyst.
Collapse
Affiliation(s)
- Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Hamdi S, Issaoui M, Hammami S, Míguez-González A, Cela-Dablanca R, Barreiro A, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Removal of the Highly Toxic Anticoccidial Monensin Using Six Different Low-Cost Bio-Adsorbents. TOXICS 2024; 12:606. [PMID: 39195708 PMCID: PMC11360468 DOI: 10.3390/toxics12080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The anticoccidial monensin (MON) is a high-concern emerging pollutant. This research focused on six low-cost bio-adsorbents (alfa, cactus, and palm fibers, and acacia, eucalyptus, and zean oak barks), assessing their potential for MON removal. Batch adsorption/desorption tests were carried out, and the results were fitted to the Freundlich, Langmuir, Linear, Sips, and Temkin models. The concentrations adsorbed by the six materials were very similar when low doses of antibiotic were added, while they differed when adding MON concentrations higher than 20 µmol L-1 (adsorption ranging 256.98-1123.98 μmol kg-1). The highest adsorption corresponded to the sorbents with the most acidic pH (<5.5) and the highest organic matter and effective cation exchange capacity values (eucalyptus bark and acacia bark, reaching 92.3% and 87.8%), whereas cactus and palm fibers showed the lowest values (18.3% and 10.17%). MON desorption was below 8.5%, except for cactus and palm fibers. Temkin was the model showing the best adjustment to the experimental data, followed by the Langmuir and the Sips models. The overall results indicate that eucalyptus bark, alfa fiber, and acacia bark are efficient bio-adsorbents with potential for MON removal, retaining it when spread in environmental compartments, reducing related risks for human and environmental health.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Sonia Hammami
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Ainoa Míguez-González
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - María J. Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| |
Collapse
|
4
|
Promkatkaew M, Baiya S, Tongwanichniyom S, Kitjaruwankul S. Experimental and Molecular Dynamics Simulation Insights into Adsorption of Co(II), Cr(III), and Cu(II) on Chitosan and Chitosan/Tripolyphosphate Nanoparticles. ACS OMEGA 2024; 9:4019-4026. [PMID: 38284062 PMCID: PMC10809792 DOI: 10.1021/acsomega.3c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Chitosan (CS)/tripolyphosphate (TPP) nanoparticles were synthesized using the ionic gelation method based on the mass ratio and volume ratio between CS and TPP and then subsequently characterized using XRD, FT-IR, and SEM. The interaction between the metal ions Co(II), Cr(III), and Cu(II) on CS and 2CS/TPP was simulated using molecular dynamics (MD), and the findings were compared with the experimental data. CS/TPP nanoparticles were more favorable than using pure chitosan at a % removal efficiency of 91.47, 89.11, and 78.11 for Cu(II), Cr(III), and Co(II), respectively. The binding energy between 2CS/TPP and the metals was more favorable than that for CS at -214.95, -106.87, and -58.11 kcal/mol for Cr(III), Co(II), and Cu(II), respectively. The CS/TPP nanoparticles greatly affect metal adsorption and are therefore considered materials for wastewater treatment.
Collapse
Affiliation(s)
- Malinee Promkatkaew
- Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Supaporn Baiya
- Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Suree Tongwanichniyom
- Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Sunan Kitjaruwankul
- Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| |
Collapse
|
5
|
Shen Q, Wu T, Zhang GB, Ma HE, Wang W, Pan GX, Zhang YF. Synthesis of magnetic bentonite-gelatin hydrogel beads and their applications in Cu 2+ capturing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125702-125717. [PMID: 38001295 DOI: 10.1007/s11356-023-31112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Heavy metal ions that exist in groundwater and farmland jeopardize the ecological environment and are very difficult to remove because of the complicated actual environment. Raw bentonite-gelatin beads (RB-GT) and magnetic bentonite-gelatin beads (MB-GT) synthesized in this work would be an appropriate tool to solve this problem. Those beads are synthesized by a facile hybrid injection method. Their adsorption behaviors on Cu(II) ions were systematically investigated using the batch adsorption method. The beads were characterized by scan electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption isotherm and adsorption kinetic study showed that the Cu2+ adsorption by MB-GT beads fitted the Langmuir model and the pseudo-second model. The adsorption maximum capacities reached 192.5 mg/g and 236.5 mg/g with Cu concentration of 1000 mg/L for RB-GT and MB-GT beads, respectively. The competitive adsorption with other heavy metal ions (Ni(II), Pd(II) and Cd(II)) were compared. The adsorption of Cu(II) mechanisms is also further discussed.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Tao Wu
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China.
| | - Guo-Bang Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Hao-En Ma
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Wei Wang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Guo-Xiang Pan
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Yi-Fan Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| |
Collapse
|
6
|
Altıkulaç A, Turhan Ş. Assessment of the Levels of Potentially Toxic Elements Contained in Natural Bentonites Collected from Quarries in Turkey. ACS OMEGA 2023; 8:20979-20986. [PMID: 37332829 PMCID: PMC10269241 DOI: 10.1021/acsomega.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Potentially toxic elements (PTEs) are an important type of pollutant, causing constant and far-reaching concerns around the world due to their increase in the mining process. Bentonite formed by the alteration of glass-rich volcanic rocks is a smectite clay consisting mostly of montmorillonite. Bentonite is an important mineral used in a wide range of applications in many fields such as oil and gas, agriculture, food, pharmacological, cosmetic, and construction industries due to its unique qualities. Given the widespread distribution of bentonite in nature and its use in a wide variety of consumer products, it is inevitable that the general population will be exposed to PTEs contained in bentonites. In this study, concentrations of PTEs in 69 bentonite samples collected from quarries located in different geographical regions of Turkey were analyzed by an energy-dispersive X-ray fluorescence spectrometric method. The average concentrations of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Zr, and Pb in bentonite samples were found to be 3510, 95, 129, 741, 30,569, 67, 168, 25, 62, 9, 173, and 28 mg/kg dry weight, respectively. Results of the enrichment factor relating to Earth's crust average indicated moderate enrichment with Cr, Ni, and Pb and significant enrichment with Co and As.
Collapse
Affiliation(s)
- Aydan Altıkulaç
- Ula
Ali Koçman Vocational School, Muğla
Sıtkı Koçman University, Ula, 48640 Muğla, Turkey
| | - Şeref Turhan
- Department
of Physics, Faculty of Science, Kastamonu
University, 37150 Kastamonu, Turkey
| |
Collapse
|
7
|
Painer F, Baldermann A, Gallien F, Eichinger S, Steindl F, Dohrmann R, Dietzel M. Synthesis of Zeolites from Fine-Grained Perlite and Their Application as Sorbents. MATERIALS 2022; 15:ma15134474. [PMID: 35806596 PMCID: PMC9267695 DOI: 10.3390/ma15134474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
The hydrothermal alteration of perlite into zeolites was studied using a two-step approach. Firstly, perlite powder was transformed into Na-P1 (GIS) or hydro(xy)sodalite (SOD) zeolites at 100 °C and 24 h using 2 or 5 M NaOH solutions. Secondly, the Si:Al molar ratio of the reacted Si-rich solution was adjusted to 1 by Na-aluminate addition to produce zeolite A (LTA) at 65 or 95 °C and 6 or 24 h at an efficiency of 90 ± 9% for Al and 93 ± 6% for Si conversion. The performance of these zeolites for metal ion removal and water softening applications was assessed by sorption experiments using an artificial waste solution containing 4 mmol/L of metal ions (Me2+: Ca2+, Mg2+, Ba2+ and Zn2+) and local tap water (2.1 mmol/L Ca2+ and 0.6 mmol/L Mg2+) at 25 °C. The removal capacity of the LTA-zeolite ranged from 2.69 to 2.86 mmol/g for Me2+ (=240–275 mg/g), which is similar to commercial zeolite A (2.73 mmol/g) and GIS-zeolite (2.69 mmol/g), and significantly higher compared to the perlite powder (0.56 mmol/g) and SOD-zeolite (0.88 mmol/g). The best-performing LTA-zeolite removed 99.8% Ca2+ and 93.4% Mg2+ from tap water. Our results demonstrate the applicability of the LTA-zeolites from perlite for water treatment and softening applications.
Collapse
Affiliation(s)
- Florian Painer
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (A.B.); (S.E.); (F.S.); (M.D.)
- Correspondence:
| | - Andre Baldermann
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (A.B.); (S.E.); (F.S.); (M.D.)
| | | | - Stefanie Eichinger
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (A.B.); (S.E.); (F.S.); (M.D.)
| | - Florian Steindl
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (A.B.); (S.E.); (F.S.); (M.D.)
| | - Reiner Dohrmann
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hanover, Germany;
- State Authority of Mining, Energy and Geology (LBEG), Stilleweg 2, 30655 Hanover, Germany
| | - Martin Dietzel
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (A.B.); (S.E.); (F.S.); (M.D.)
| |
Collapse
|
8
|
Du J, Zhou A, Lin X, Bu Y. Adsorption mechanism of Pb 2+ in montmorillonite nanopore under various temperatures and concentrations. ENVIRONMENTAL RESEARCH 2022; 209:112817. [PMID: 35092742 DOI: 10.1016/j.envres.2022.112817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Adsorption of lead (Pb2+) onto the montmorillonite (Mt) surface is one of the key approaches to remove Pb2+ in geological and environmental engineering. Temperature and initial Pb2+ concentration are two essential factors that influence the adsorption capacity of Mt on absorbing Pb2+. However, the nanoscale governing mechanism of temperature and initial concentration on Pb2+ adsorbing of Mt is still unclear. This research performed comprehensively molecular dynamics (MD) simulations to investigate how temperature and initial concentration affect the dynamic Pb2+ adsorption of Mt nanopore. The Pb2+ removal ratio shows a two-stage variation with the increase of initial Pb2+ concentration. Temperature controls the maximum initial Pb2+ concentration for complete Pb2+ removal by changing the maximum adsorption energy of Mt. Temperature also influences the maximum adsorption capacity and Pb2+ removal ratio of Mt nanopore indirectly by changing diffusion and hydration state of Pb2+. The initial Pb2+ concentration corresponding to the maximum adsorption energy coincides with the maximum initial Pb2+ concentration determined by the Pb2+ removal ratio. Lower adsorption energy and higher level of hydration and diffusion make Pb2+ absorbing on Mt surface become more difficult, reducing the Pb2+ adsorbing capacity of Mt. The initial Pb2+ concentration influences adsorption capacity and Pb2+ removal ratio not only via altering the quantity of Pb2+ but also through controlling the adsorption energy of Mt, as well as the diffusion and hydration state of Pb2+. With the increase of initial Pb2+ concentration, the hydration of Pb2+ is weakened while the adsorption energy of Mt and diffusion of Pb2+ are enhanced.
Collapse
Affiliation(s)
- Jiapei Du
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Annan Zhou
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Xiaoshan Lin
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuhuan Bu
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
9
|
Wang B, Zhang H, Xu Z, Xu Y, Hu X, Wang H, Wang C, Chen L. La/Al engineered bentonite composite for efficient phosphate separation from aqueous media: Preparation optimization, adsorptive behavior and mechanism insight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sadjadi S, Tarighi S, Moussavi NS, Ahadi N. Heteropolyacid supported on the composite of bentonite and ionic liquid containing acidic polymer: A highly selective catalyst for glycerol acetalization to solketal. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Fadhel Ali F, Al-Rawi AS, Aljumialy AM. Limestone residues of sculpting factories utilization as sorbent for removing Pb(II) ion from aqueous solution. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Mohareri MM, Ghaffari M, Sattarzadeh E, Kakaei S. Preparation and application of Fe3O4@Acetamidoxanthate as a unique nanosorbent in heavy metal removing. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chelating agents are one of the most important substances in metal extraction, but separation is the main problem in the use of these agents as an adsorbent. After the adsorption of metals by an external magnet, magnetic NPs provide the possibility of easy collecting and isolating the adsorbent nanomaterial for many applications. Given the immense importance of magnetic NPs, there has been widespread interest in accessing the above adsorbent. In the present study, an attempt was made to synthesize acetamido xanthate which was coupled to NPs and has the potential to be used as a nano-adsorbent for the removal of heavy metals. This novel nano sorbent was characterized by scanning electron microscopy (SEM), Fourier transforms infrared (FT-IR), and Nuclear Magnetic Resonance (NMR) spectroscopy. The effect of some parameters such as temperature, time, pH, and the amount of adsorbent on the extraction reaction was investigated. The optimized condition for extraction of cerium was temperature of 30°C, pH = 8, reaction time of 45 minutes using 7.5 mg of the prepared nanosorbent, that in such condition the yield of reaction achieved up to 97%. The prepared adsorbent showed high efficiency in the adsorption of heavy metals specifically.
Collapse
Affiliation(s)
- Mohammad Moein Mohareri
- Polymer Engineering Group, Faculty of Technology and Engineering, Golestan University, Gorgan, Iran
| | - Mehdi Ghaffari
- Polymer Engineering Group, Faculty of Technology and Engineering, Golestan University, Gorgan, Iran
| | - Elham Sattarzadeh
- Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran, Iran
| | - Saeed Kakaei
- Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran, Iran
| |
Collapse
|
13
|
Tong L, Fan R, Yang S, Zhang Q, Pan Y. A technology review on treatment of acid mine drainage with bentonite–steel slag composite. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AbstractAcid mine drainage (AMD) which produced in the process of mining seriously pollutes the water resources and endangers the ecological environment due to its physicochemical characteristics, such as low pH, high salinity and high heavy metal concentrations. In recent decades, the treatment of AMD has become a key issue in the field of environmental protection. One important method of AMD treatment is adsorption method, and the selection of adsorbent is the key of this technique. Bentonite and steel slag are usually sintered at high temperatures to prepare bentonite–steel slag composite. AMD treatment with bentonite–steel slag composite, as a new adsorbent, is emerging as a promising treatment method by physical adsorption, ion exchange and chemical neutralization. The bentonite–steel slag composites mainly include bicomponent composite with bentonite–steel slag and multicomponent composite with bentonite–steel slag modifier. The author found that this important research question was rarely paid attention to, therefore, and the author combined with previous research and theories to promote the explanation of this problem. In this review, the technology of treatment of AMD with bentonite–steel slag composite is comprehensively discussed. Also, the role of its mechanism is also discussed in-depth. This paper provides a scientific reference on the remediation of contaminated environments.
Collapse
|
14
|
Du W, Yang Y, Hu L, Chang B, Cao G, Nasir M, Lv J. Combined determination analysis of surface properties evolution towards bentonite by pH treatments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Shen Q, Xu MH, Wu T, Pan GX, Tang PS. Adsorption behavior of tetracycline on carboxymethyl starch grafted magnetic bentonite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01839-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Samuel MS, Shang M, Klimchuk S, Niu J. Novel Regenerative Hybrid Composite Adsorbent with Improved Removal Capacity for Lead Ions in Water. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Melvin S. Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mingwei Shang
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Stanislav Klimchuk
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Junjie Niu
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
17
|
Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D. Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141490. [PMID: 32810808 DOI: 10.1016/j.scitotenv.2020.141490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Electrolytic manganese residues (EMR) is produced from the electrolysis manganese industry. In this study, the thermal activated EMRs (T-EMR) were used to adsorb cadmium and lead from aqueous solution. X-ray diffractometer (XRD), scanning electron microscope-Energy Dispersive Spectrometer (SEM-EDS), X-ray photoelectron spectroscopy (XPS) were adopted to characterize EMR before and after the modification, and the performance and adsorption mechanisms of T-EMR for cadmium and lead were determined. Results show that the pH has a strong influence on the adsorption of cadmium and lead and the maximum adsorption capacity can be achieved at pH 6. The adsorption of Cd(II) can be better fitted by the Lagergren pseudo-first-order dynamic model, while that of Pb(II) fits the pseudo-second-order kinetic model better. The Freundlich isotherm model fits the adsorption of two metals better than Langmuir model. The thermodynamic results demonstrate that the adsorption of Cd(II) or Pb(II) on T-EMR is endothermic and spontaneous. As the nitric acid with pH 0.5 was used, nearly all of the adsorbed Cd(II) and 75% Pb(II) can be desorbed from the loaded T-EMR. It is concluded that the adsorption of Cd(II) and Pb(II) on T-EMR is in virtue of electrostatic attraction, ion-exchange and surface precipitation. The heavy metals are mainly adsorbed on ferric and manganese oxides and silicate minerals in T-EMR by electrostatic attraction. In addition, cadmium and lead also can be adsorbed via the ion exchange reaction. Moreover, some Pb(II) are adsorbed by forming lead sulfate. Thus, T-EMR may be an environmentally-friendly, effective adsorbent for the removal of heavy metals from aqueous solution.
Collapse
Affiliation(s)
- Mengyu Ma
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| | - Yaguang Du
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| | - Shenxu Bao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, China, 430070
| | - Jia Li
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074; School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA, 06511.
| | - Hua Wei
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| | - Ying Lv
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| | - Xiaolong Song
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| | - Tiancheng Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, USA, 68182
| | - Dongyun Du
- School of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, Hubei, China, 430074
| |
Collapse
|
18
|
Chopda LV, Dave PN. Fe(III)/Bentonite as a Heterogeneous Catalyst for the Synthesis of 3,4‐dihydropyrimidin‐2‐(1H)‐ones. ChemistrySelect 2020. [DOI: 10.1002/slct.202003890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lakha V Chopda
- Department of Chemistry KSKV Kachchh University Bhuj India
| | - Pragnesh N. Dave
- Department of Chemistry KSKV Kachchh University Bhuj India
- Department Of Chemistry Sardar Patel University, Vallabh Vidyanagar India
| |
Collapse
|
19
|
Alotaibi AA, Abdel-Baset TA, Bashal AH. Structural, dielectric and electrical characterization of (Co)x(Ni/bentonite) composites. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1809200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abdullah A. Alotaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Ad- Dawadmi, Saudi Arabia
| | - T. A. Abdel-Baset
- Department of Physics, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
- Physics Department, Fayoum University, Fayoum, Egypt
| | - Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
20
|
Baldermann A, Fleischhacker Y, Schmidthaler S, Wester K, Nachtnebel M, Eichinger S. Removal of Barium from Solution by Natural and Iron(III) Oxide-Modified Allophane, Beidellite and Zeolite Adsorbents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2582. [PMID: 32516994 PMCID: PMC7321624 DOI: 10.3390/ma13112582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/18/2023]
Abstract
Efficient capture of barium (Ba) from solution is a serious task in environmental protection and remediation. Herein, the capacity and the mechanism of Ba adsorption by natural and iron(III) oxide (FeO) modified allophane (ALO), beidellite (BEI) and zeolite (ZEO) were investigated by considering the effects of contact time, temperature, pH, Ba2+ concentration, adsorbent dosage, the presence of competitive ions and adsorption-desorption cycles (regenerability). Physicochemical and mineralogical properties of the adsorbents were characterized by XRD, FTIR, SEM with EDX and N2 physisorption techniques. The Ba2+ adsorption fitted to a pseudo-first-order reaction kinetics, where equilibrium conditions were reached within <30 min. BEI, ALO and ZEO with(out) FeO-modification yielded removal efficiencies for Ba2+ of up to 99.9%, 97% and 22% at optimum pH (pH 7.5-8.0). Adsorption isotherms fitted to the Langmuir model, which revealed the highest adsorption capacities for BEI and FeO-BEI (44.8 mg/g and 38.6 mg/g at 313 K). Preferential ion uptake followed in the order: Ba2+ > K+ > Ca2+ >> Mg2+ for all adsorbents; however, BEI and FeO-BEI showed the highest selectivity for Ba2+ among all materials tested. Barium removal from solution was governed by physical adsorption besides ion exchange, intercalation, surface complexation and precipitation, depending mainly on the absorbent type and operational conditions. BEI and FeO-BEI showed a high regenerability (>70-80% desorption efficiency after 5 cycles) and could be considered as efficient sorbent materials for wastewater clean-up.
Collapse
Affiliation(s)
- Andre Baldermann
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Yvonne Fleischhacker
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Silke Schmidthaler
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Katharina Wester
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| | - Manfred Nachtnebel
- Institute of Electron Microscopy and Nanoanalysis, Graz Centre for Electron Microscopy (FELMI-ZFE), Steyrergasse 17, 8010 Graz, Austria;
| | - Stefanie Eichinger
- Institute of Applied Geosciences & NAWI Graz Geocenter, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria; (Y.F.); (S.S.); (K.W.); (S.E.)
| |
Collapse
|
21
|
Determination of surface protonation-deprotonation behavior, surface charge, and total surface site concentration for natural, pillared and porous nano bentonite heterostructure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|