1
|
Porolnik W, Karpinska N, Murias M, Piskorz J, Kucinska M. Novel BODIPY Dyes with a Meso-Benzoxadiazole Substituent: Synthesis, Photophysical Studies, and Cytotoxic Activity Under Normoxic and Hypoxic Conditions. Biomedicines 2025; 13:297. [PMID: 40002710 PMCID: PMC11853430 DOI: 10.3390/biomedicines13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Novel boron dipyrromethene derivatives with a heterocyclic, benzoxadiazole substituent were obtained as potential candidates for the photodynamic therapy (PDT) of cancers. Photochemical properties (e.g., singlet oxygen generation quantum yields (ΦΔ), absorption, and emission spectra) and cytotoxic activity studies in normoxic and hypoxic conditions were performed to verify the potential of novel BODIPYs as photosensitizers for PDT. Methods: Obtained dyes were characterized using mass spectrometry and various NMR techniques. The relative method with Rose Bengal as a reference and 1,3-diphenylisobenzofuran as a singlet oxygen quencher was used to determine ΦΔ values. The in vitro studies were conducted on human ovarian carcinoma (A2780) and human breast adenocarcinoma (MDA-MB-231) cells. Results: Photochemical studies showed that the presence of benzoxadiazole moiety only slightly affected the localization of the absorption maxima but resulted in fluorescence quenching compared with meso-phenyl-substituted analogs. In addition, brominated and iodinated analogs revealed a high ability to generate singlet oxygen. Anticancer studies showed high light-induced cytotoxicity of BODIPYs containing heavy atoms with very low IC50 values in the 3.5-10.3 nM range. Further experiments revealed that both compounds also demonstrated phototoxic activity under hypoxic conditions. The most potent cytotoxic effect in these conditions was observed in the iodinated BODIPY analog with IC50 values of about 0.3 and 0.4 μM for A2780 and MDA-MB-231 cells, respectively. Conclusions: The results of this study highlighted the advantages and some potential drawbacks of BODIPY compounds with heavy atoms and benzoxadiazole moiety as a useful scaffold in medicinal chemistry for designing new photosensitizers.
Collapse
Affiliation(s)
- Weronika Porolnik
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| | - Natalia Karpinska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (W.P.); (M.M.)
| |
Collapse
|
2
|
Porolnik W, Ratajczak M, Mackowiak A, Murias M, Kucinska M, Piskorz J. Liposomal Formulations of Novel BODIPY Dimers as Promising Photosensitizers for Antibacterial and Anticancer Treatment. Molecules 2024; 29:5304. [PMID: 39598693 PMCID: PMC11596046 DOI: 10.3390/molecules29225304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Synthesis, photochemical properties, liposomal encapsulation, and in vitro photodynamic activity studies of novel BODIPY dimer connected at meso-meso positions and its brominated and iodinated analogs were described. UV-Vis measurements indicated that the dimeric structure of obtained BODIPYs did not significantly influence the positions of the absorption maxima. Emission properties and singlet oxygen generation studies revealed a strong heavy atom effect of brominated and iodinated BODIPY dimers, manifested by fluorescence intensity reduction and increased singlet oxygen generation ability compared to analog without halogen atoms. For the in vitro photodynamic activity studies, dimers were incorporated into two different types of liposomes: positively charged DOTAP:POPC and negatively charged POPG:POPC. The photoinactivation studies revealed high activity of brominated and iodinated dimers incorporated into DOTAP:POPC liposomes on both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Anticancer studies on human breast adenocarcinoma MDA-MB-231 and human ovarian carcinoma A2780 cells revealed that DOTAP:POPC liposomes containing brominated and iodinated dimers were active even at low nanomolar concentrations. In addition, they were more active against MDA-MB-231 cells than A2780 cells, which is particularly important since the MDA-MB-231 cell line represents triple-negative breast cancer, which has limited therapeutic options.
Collapse
Affiliation(s)
- Weronika Porolnik
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Magdalena Ratajczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Aleksandra Mackowiak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
| | - Malgorzata Kucinska
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.M.); (M.K.)
| | - Jaroslaw Piskorz
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
3
|
Karanlık CC, Karanlık G, Gok B, Budama-Kilinc Y, Kecel-Gunduz S, Erdoğmuş A. Exploring anticancer properties of novel Nano-Formulation of BODIPY Compound, Photophysicochemical, in vitro and in silico evaluations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122964. [PMID: 37302199 DOI: 10.1016/j.saa.2023.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
A new BODIPY complex (C4) composed of meso- thienyl-pyridine substituted core unit diiodinated from 2- and 6- positions and distyryl moieties at 3- and 5- positions is synthesized. Nano-sized formulation of C4 is prepared by single emulsion method using poly(ε-caprolactone)(PCL) polymer. Encapsulation efficiency and loading capacity values of C4 loaded PCL nanoparticles (C4@PCL-NPs) are calculated and in vitro release profile of C4 is determined. The cytotoxicity and anti-cancer activity are conducted on the L929 and MCF-7 cell lines. Cellular uptake study is performed and interaction between C4@PCL-NPs and MCF-7 cell line is investigated. Anti-cancer activity of C4 is predicted with molecular docking studies and the inhibition property on EGFR, ERα, PR and mTOR are investigated for its anticancer properties. Molecular interactions, binding positions and docking score energies between C4 and EGFR, ERα, PR and mTOR targets are revealed using in silico methods. The druglikeness and pharmacokinetic properties of C4 are evaluated using the SwissADME and its bioavailability and toxicity profiles are assessed using the SwissADME, preADMET and pkCSM servers. In conclusion, the potential use of C4 as an anti-cancer agent is evaluated in vitro and in silico methods. Also, photophysicochemical properties are studied to investigate the potential of using Photodynamic Therapy (PDT). In photochemical studies, the calculated singlet oxygen quantum yield (ΦΔ) value was 0.73 for C4 and in photopysical studies, the calculated fluorescence quantum yield ΦF value was 0.19 for C4.
Collapse
Affiliation(s)
- Ceren Can Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Gürkan Karanlık
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey.
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| | | | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
4
|
Özçelik Ş, Yurttaş AG, Kahveci MU, Sevim AM, Gül A. Aza-BODIPY photosensitizer substituted with phthalonitrile groups: Synthesis, photophysical properties and in vitro tests for breast cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Can Karanlık C, Karanlık G, Erdoğmuş A. Water-Soluble Meso-Thienyl BODIPY Therapeutics: Synthesis, Characterization, Exploring Photophysicochemical and DNA/BSA Binding Properties. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Improvement of photochemical and enzyme inhibition properties of new BODIPY compound by conjugation with cisplatin. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Ekmekci Z, Eris S. A New Boron 2‐(2′‐pyridyl) Imidazole Complex as a Candidate Photosensitizer for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zeynep Ekmekci
- Department of Biomedical Engineering Isparta University of Applied Sciences Isparta 32260 Turkey
| | - Semanur Eris
- Department of Biomedical Engineering Isparta University of Applied Sciences Isparta 32260 Turkey
| |
Collapse
|
8
|
Schäfer C, Mony J, Olsson T, Börjesson K. Effect of the Aza-N-Bridge and Push-Pull Moieties: A Comparative Study between BODIPYs and Aza-BODIPYs. J Org Chem 2022; 87:2569-2579. [PMID: 35188769 PMCID: PMC8902755 DOI: 10.1021/acs.joc.1c02525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the field of fluorescent dyes, difluoroboron-dipyrromethenes (BODIPY) have a highly respected position. To predict their photophysical properties prior to synthesis and therefore to successfully design molecules specifically for one's needs, a solid structure-function understanding based on experimental observations is vital. This work delivers a photophysical evaluation of BODIPY and aza-BODIPY derivatives equipped with different electron-withdrawing/-donating substituents. Using combinatorial chemistry, pyrroles substituted with electron-donating/-withdrawing substituents were condensed together in two different manners, thus providing two sets of molecules. The only difference between the two sets is the bridging unit providing a so far lacking comparison between BODIPYs and aza-BODIPYs structural homologues. Replacing the meso-methine bridge with an aza-N bridge results in a red-shifted transition and considerably different, temperature-activated, excited-state relaxation pathways. The effect of electron-donating units on the absorption but not emission for BODIPYs was suppressed compared to aza-BODIPYs. This result could be evident in a substitution pattern-dependent Stokes shift. The outlook of this study is a deeper understanding of the structure-optics relationship of the (aza)-BODIPY-dye class, leading to an improvement in the de novo design of tailor-made molecules for future applications.
Collapse
Affiliation(s)
- Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Jürgen Mony
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Thomas Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
9
|
Yüzeroğlu M, Keser Karaoğlan G, Gümrükçü Köse G, Erdoğmuş A. Synthesis of new zinc phthalocyanines including schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
ÇINAR ME. Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. GAZI UNIVERSITY JOURNAL OF SCIENCE 2021. [DOI: 10.35378/gujs.846075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Tian D, Pan H, Zhang Y, Ren XK, Chen Z. NIR absorbing dimeric aza-BODIPY dye with J-type aggregation and photothermal properties. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Shamova LI, Zatsikha YV, Nemykin VN. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Trans 2021; 50:1569-1593. [DOI: 10.1039/d0dt03964k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This mini-review summarizes the synthesis strategies for the preparation and post-functionalization of aza-BODIPYs, BOPHYs, “half-Pcs”, biliazines, MB-DIPYs, semihemiporphyrazines, BOIMPYs, BOPPYs, BOPYPYs, BOAHYs, and BOAPYs.
Collapse
Affiliation(s)
| | | | - Victor N. Nemykin
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Department of Chemistry
| |
Collapse
|
13
|
Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, Fan Q, Li L, Huang W. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem Soc Rev 2020; 49:7533-7567. [DOI: 10.1039/d0cs00234h] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the empirical design guidelines and photophysical property manipulation of Aza-BODIPY dyes and the latest advances in their bioapplications.
Collapse
Affiliation(s)
- Zhenxiong Shi
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Xu Han
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- P. R. China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|