1
|
Hui K, Hu W, Zhang J, Jiang Y, Wang H, Yuan Y, Fang F, Tan W. Synergy, antagonism, and feedback between soil properties and polychlorinated biphenyls. ENVIRONMENTAL RESEARCH 2025; 276:121523. [PMID: 40185264 DOI: 10.1016/j.envres.2025.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
In this paper, the migration and transformation behavior of polychlorinated biphenyls (PCBs) in soil environmental system and their interaction with environmental factors were reviewed. The migration and transformation of PCBs are mainly regulated by soil organic matter, temperature and microorganisms. Soil organic matter immobilizes PCBs through adsorption sites and functional groups (including carbonyl and carboxyl groups), and microorganisms reduce and dechlorinate PCBs by reducing dehalogenase (anaerobic), biphenyl dioxygenase (aerobic) and other biological enzymes. However, these mechanisms are influenced by pH, temperature, water content, microbial population, and PCBs structure. In addition, there are significant differences in the response of PCBs conversion to oxygen content (aerobic and anaerobic) in soil systems. However, most current studies focus on the environmental behavior of PCBs from the perspective of single factors such as pH, soil organic matter, and microorganisms, and the comprehensive analysis under the interaction of multiple factors is limited. Therefore, the synergistic, antagonistic and feedback effects of PCBs in soil systems are analyzed comprehensively for the first time in this paper, which fills the gap of existing research. The aim is to provide a theoretical framework for the future environmental behavior effect of PCBs in soil and the contribution ability of environmental factors to PCBs pollution.
Collapse
Affiliation(s)
- Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenxiang Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jie Zhang
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
2
|
Zheng Z, Li M, Zhang W, Zhang X, Liu J, Yang T. Influence of Silane Coupling Agent and Anionic Dispersant on the Dispersion Effect of Silicon Carbide Particles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:425. [PMID: 38255592 PMCID: PMC10819982 DOI: 10.3390/ma17020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Silicon carbide (SiC), as a widely used material, has great properties. To improve the flowability of ultrafine silicon carbide slurry, this study used sodium humate, tetramethylammonium hydroxide (TMAH), and N-(β-monoaminoethyl)-γ-aminopropyltrimethyl(ethoxysilane) (KH792) to modify the ultrafine silicon carbide powder produced by Qingzhou Micro Powder Company. The effects of different modifiers on improving the flowability of ultrafine silicon carbide slurry were investigated by means of viscosity tests, sedimentation experiments, and SEM observations. Their modification mechanisms were investigated by means of zeta potential tests, XPS tests, and so on. In this paper, the initial modification of SiC was carried out with KH792, followed by the secondary modification with anionic and cationic modifiers (tetramethylammonium hydroxide and sodium humate), and the optimal modification conditions were investigated by means of a viscosity test, which showed that the lowest viscosity of the modified SiC reached 0.076 Pa·s and that the absolute maximum value of the zeta potential increased from 47.5 at the time of no modification to 63.7 (maximum values) at the time of modification. This means it has an improved surface charge, which improves dispersion. The adsorption results of the modifier on the silicon carbide surface were also demonstrated by the XPS test results.
Collapse
Affiliation(s)
- Zheng Zheng
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (M.L.); (W.Z.); (X.Z.)
| | - Min Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (M.L.); (W.Z.); (X.Z.)
| | - Wenxiao Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (M.L.); (W.Z.); (X.Z.)
| | - Xuhui Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (M.L.); (W.Z.); (X.Z.)
| | - Jiaxiang Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (M.L.); (W.Z.); (X.Z.)
| | - Tianyu Yang
- Shandong Qingzhou Micropowder Co., Ltd., Qingzhou 262500, China;
| |
Collapse
|
3
|
Jin Z, Gu C, Fan X, Cai J, Bian Y, Song Y, Sun C, Jiang X. Novel insights into the predominant factors affecting the bioavailability of polycyclic aromatic hydrocarbons in industrial contaminated areas using PLS-developed model. CHEMOSPHERE 2023; 319:138033. [PMID: 36736478 DOI: 10.1016/j.chemosphere.2023.138033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bioavailability is recognized as a useful technical standard for risk assessment and pollution rehabilitation. However, knowledge on the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated site soils is still limited, especially concerning the influential mechanism. With an abundance of soil collections from nine industrial areas in China, the bioavailabilities, as conceptually defined as bioconcentration factors (BCFs) of PAHs were analyzed using biomimetic extraction of hydroxypropyl-β-cyclodextrin (HPCD). Apart from the total content of PAHs varying with the different pyrogenic sources, the BCFs were greatly dependent on the soil physicochemical properties from the spatial scale and inversely proportional to the number of rings. Pearson correlation analysis indicated a weak relationship between bioavailability and the soil dissolved organic matter (DOM), pH and particle size. To incorporate the soil physicochemical properties and structural characteristics of PAHs determined by density functional theory (DFT), the optimum model for bioavailability was developed for BCFs by partial least square (PLS) analysis. The PLS-derived model was shown to be predictive within the applicability domain (AD). The structural characteristics, e.g., molecular polarizability and frontier orbital energy level that favor the soil adsorption of PAH isomers via dispersion interactions, and electron exchanges were indicated to be more impactful on bioavailability than soil environmental factors. However, soil factors should not be neglected, because the pH, DOM, etc. were significantly influential. It makes sense that the higher DOM causes greater bioavailability via increasing the free-dissolved fractions of PAHs. Interestingly, the effect of pH on bioavailability was spectrally validated by excitation-emission matrix (EEM) fluorescence, showing that the interaction between DOM and pyrene strengthened the fluorescence quenching of chromophores with the decline in pH.
Collapse
Affiliation(s)
- Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Lei T, Zhang H, Yang R, Dong G, Liu H, Wu N. Separation of the overlapped humic acid and BGP characteristic peaks using two-dimensional correlation fluorescence-UV-vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121999. [PMID: 36279797 DOI: 10.1016/j.saa.2022.121999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fluorescence spectroscopy has been widely used to detect polycyclic aromatic hydrocarbons (PAHs) in the environment. However, the interference of coexisting humic acids (HA) in the environment poses a great challenge to the qualitative and quantitative detection of PAHs using fluorescence spectroscopy. In this study, the spectral properties of benzo [ghi] perylene (BGP) and HA were investigated based on fluorescence and UV-vis spectroscopy combined with two-dimensional (2D) correlation analysis. Under the external disturbance of HA concentration, the homo-2D (fluorescence, UV-visible) correlation and hetero-2D fluorescence-UV-visible correlation spectral characteristics of the mixed samples of HA and BGP were studied, and the effect of HA on the fluorescence of BGP was investigated. It can be inferred that the fluorescence peak at 478 nm come from BGP, and the fluorescence peaks at 442 nm and 533 nm, UV absorption peak at 233 nm come from HA. Meanwhile, asynchronous two-trace two-dimensional (2T2D) fluorescence correlation slice spectra at 533 nm were obtained. The slice spectral intensity at 478 nm was extracted to quantify the BGP concentration in mixture. The results showed that the slice spectral intensity and BGP concentration had a good linear relationship with the coefficient of determination R2 = 0.96. This research provides a way to further study the separation method of HA and PAHs or explore the correction method of the effect of HA on PAHs.
Collapse
Affiliation(s)
- Tao Lei
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Han Zhang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Renjie Yang
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| | - Guimei Dong
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Haixue Liu
- Laboratory of Agricultural Analysis, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China
| |
Collapse
|
5
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Liu S, Shi Y, Li X, Wang Z. Humic Acids Affect the Detection of Metal Ions by Cyanobacteria Carbon Quantum Dots Differently. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10225. [PMID: 36011858 PMCID: PMC9408800 DOI: 10.3390/ijerph191610225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A "top-down" synthesis of carbon quantum dots (CQDs), novel fluorescent C materials from waste biomass, is both cost-effective and environmentally friendly. N-rich cyanobacteria are promising precursors to produce CQDs with high fluorescence (FL) intensity for the detection of metal ions. Herein, we synthesized cyanobacteria-based CQDs using a hydrothermal process and evidenced their high FL intensity and stability. The cyanobacteria-based CQDs showed powerful sensitivity for the specific detection of Fe3+ and Cr6+, which could be ascribed to (i) static FL quenching as a result of the interaction between -OH, -NH2, and -COOH groups with the metal ions, (ii) internal filtering effects between the CQDs and Fe3+ or Cr6+, and (iii) fluorescence resonance energy transfer between CQDs and Cr6+. Humic acids (HAs) coexisting led to an underestimation of Fe3+ but an overestimation of Cr6+ by the CQDs due to the different FL quenching mechanisms of the CQDs. HAs sorbed Fe3+ and wrapped the CQDs to form a barrier between them, inhibiting FL quenching of CQDs by Fe3+. As for Cr6+, HAs reduced Cr6+ and also led to FL quenching; the sorbed HAs on the CQDs acted as a carrier of electrons between Cr6+ and the CQDs, enhancing FL quenching of the CQDs. This study is the first work to evidence the interference of HAs in the detection of metal ions by CQDs derived from cyanobacteria, which would enlighten the application of CQDs in a natural aqueous environment.
Collapse
Affiliation(s)
- Simin Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yishen Shi
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|