1
|
Revathi G, Sangari NU, Keerthana C. Influence of surface texture: A comparative study on antibacterial activities of morphologically tailored zinc oxide. Biochem Biophys Res Commun 2024; 734:150612. [PMID: 39217813 DOI: 10.1016/j.bbrc.2024.150612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The morphology-dependent antibacterial activity of zinc oxide (ZnO) nanoparticles with three different morphologies, nanowall (NW), nanosphere (NS), and, nanorod (NR) was rigorously investigated to elucidate the influence of shape and size on their performance. Their morphological, surface, and structural characteristics were meticulously analyzed using SEM, BET, and XRD techniques. The antibacterial activity of synthesized ZnO samples was initially investigated and validated through in silico docking studies against nine bacterial strains, specifically targeting 1GCI, 2DCJ, 6KMM and 3T07, 6KVQ, 1MWT from gram-positive Bacillus sp. and Staphylococcus sp. respectively, 6N38, 6CRT, 6GRH from gram-negative E. coli. The docking simulations were performed using Autodock 4.2 software, yielding promising results characterized by negative binding energies, indicative of favorable interactions. The invitro studies were assessed against three same bacteria mentioned above using the disk diffusion method. The results demonstrated a pronounced dependency of antibacterial activity on the surface area, average crystallite size, and surface roughness of ZnO samples. ZnO (NW) exhibited markedly superior antibacterial properties. This enhanced efficacy is attributed to their higher surface area to volume ratio, smaller average crystallite size and increased surface roughness facilitating more efficient interactions with bacterial cell membranes. ZnO (NR) nanoparticles exhibited enhanced antibacterial activity despite minimal surface area.
Collapse
Affiliation(s)
- G Revathi
- PG and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - N Uma Sangari
- PG and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| | - C Keerthana
- PG and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
2
|
Mutukwa D, Taziwa RT, Khotseng L. A Review of Plant-Mediated ZnO Nanoparticles for Photodegradation and Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1182. [PMID: 39057861 PMCID: PMC11279911 DOI: 10.3390/nano14141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review focuses on the synthesis of plant-mediated zinc oxide nanoparticles (ZnO NPs) and their applications for antibacterial and photocatalytic degradation of dyes, thereby addressing the need for sustainable and eco-friendly methods for the preparation of NPs. Driven by the significant rise in antibiotic resistance and environmental pollution from dye pollution, there is a need for more effective antibacterial agents and photocatalysts. Therefore, this review explores the synthesis of plant-mediated ZnO NPs, and the influence of reaction parameters such as pH, annealing temperature, plant extract concentration, etc. Additionally, it also looks at the application of plant-mediated ZnO NPs for antibacterial and photodegradation of dyes, focusing on the influence of the properties of the plant-mediated ZnO NPs such as size, shape, and bandgap on the antibacterial and photocatalytic activity. The findings suggest that properties such as shape and size are influenced by reaction parameters and these properties also influence the antibacterial and photocatalytic activity of plant-mediated ZnO NPs. This review concludes that plant-mediated ZnO NPs have the potential to advance green and sustainable materials in antibacterial and photocatalysis applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| | - Raymond Tichaona Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
3
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Rashid MH, Sujoy SI, Rahman MS, Haque MJ. Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon 2024; 10:e25438. [PMID: 38322891 PMCID: PMC10844577 DOI: 10.1016/j.heliyon.2024.e25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential of utilizing Aloe vera-assisted green synthesis with transition metal dopants of Ag and Cu for greater efficiency and sustainability in advanced scientific applications utilizing ZnO nanoparticles. Samples were prepared using the co-precipitation method, maintaining a basic pH media of 10. Aloe vera gel extract was chosen for its acclaimed role as a stabilizing and reducing agent and its proven antioxidant, antibacterial, and anticancer properties. The XRD report revealed the hexagonal Wurtzite crystal structure of nanoparticles, exhibiting a crystallite size range of 17-23 nm with substantial alterations in lattice parameters, dislocation density, and bond lengths when dopants were added. Additionally, EDX analysis confirmed the perfect doping of Ag and Cu in ZnO without any impurities. SEM analysis indicated a reduction in agglomeration, accompanied by a transition in particle morphology from columnar to globular. Additionally, the optical study showed a band gap range of 3.18-3.27 eV, confirming it to be a wide band gap semiconductor. The effect of dopants resulted in an increase in transparency and band gap, while a decrease in absorption coefficient in the visible wavelength region. With increasing temperature, a decline in electrical resistivity was noted, with co-doped nanoparticles consistently exhibiting the lowest resistivity, affirming semiconductor characteristics. Most importantly, A remarkable antibacterial efficacy was noticed at low concentrations against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The zone of inhibition produced by nanoparticles exhibited values akin to the antibiotic control, even at substantially lower doses. This research offers a comprehensive analysis of the effects of Ag and Cu in Aloe vera-assisted green-synthesized ZnO nanoparticles, concurrently addressing their potential applications in biomedical, energy storage, and optoelectronic devices.
Collapse
Affiliation(s)
- Md Hasnat Rashid
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Saiful Islam Sujoy
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Saifur Rahman
- Department of Physics, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Jahidul Haque
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| |
Collapse
|
5
|
Yoon D, Jung HJ, Lee J, Kim HJ, Park HS, Park YJ, Kang MK, Kim GY, Kang D, Park Y, Chun P, Chung HY, Moon HR. In vitro and in vivo anti-pigmentation effects of 2-mercaptobenzimidazoles as nanomolar tyrosinase inhibitors on mammalian cells and zebrafish embryos: Preparation of pigment-free zebrafish embryos. Eur J Med Chem 2024; 266:116136. [PMID: 38244374 DOI: 10.1016/j.ejmech.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recently, 10 2-mercaptobenzo[d]imidazole (2-MBI) compounds (1-10) were synthesized. Although all 2-MBI compounds are tyrosinase inhibitors that inhibit mushroom tyrosinase at extremely low concentrations (IC50 values: 20-740 nM) and effectively inhibit the browning of apples, to our knowledge, no studies have determined whether 2-MBI compounds inhibit mammalian tyrosinase. Mammalian tyrosinase is different from mushroom tyrosinase in its distribution within the cell and has structural characteristics that are different from mushroom tyrosinase in amino acid sequence and in the presence of a quaternary structure. Thus, the effect of the 10 2-MBI compounds on mammalian tyrosinase activity was investigated in B16F10 cells. Six compounds (1-6) exhibited stronger intracellular tyrosinase inhibition than that of kojic acid and phenylthiourea (PTU), which are known to be the most potent tyrosinase inhibitors; their strong tyrosinase inhibitory activity robustly inhibited intracellular melanin production in B16F10 cells. None of the tested 2-MBI compounds exhibited appreciable cytotoxicity in HaCaT and B16F10 cells. To confirm the anti-melanogenic efficacy of the 2-MBI compounds in vivo, a zebrafish embryo model was used. At concentrations 100 times lower than kojic acid, most 2-MBI compounds demonstrated much stronger depigmentation efficacy than that of kojic acid, and three 2-MBI compounds (2-4) showed depigmentation activity similar to or more potent than that of PTU, resulting in nearly pigment-free zebrafish embryos. These results suggest that 2-MBI compounds may be potential therapeutic agents for hyperpigmentation-related disorders.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ga Young Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Shaheen I, Hussain I, Zahra T, Javed MS, Shah SSA, Khan K, Hanif MB, Assiri MA, Said Z, Arifeen WU, Akkinepally B, Zhang K. Recent advancements in metal oxides for energy storage materials: Design, classification, and electrodes configuration of supercapacitor. JOURNAL OF ENERGY STORAGE 2023; 72:108719. [DOI: 10.1016/j.est.2023.108719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, Feklistova IN, Strelnikov VN. Influence of Synthesis Conditions on the Properties of Zinc Oxide Obtained in the Presence of Nonionic Structure-Forming Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2537. [PMID: 37764565 PMCID: PMC10536475 DOI: 10.3390/nano13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This work investigated the influence of synthesis conditions, including the use of nonionic structure-forming compounds (surfactants) with different molecular weights (400-12,600 g/mol) and various hydrophilic/hydrophobic characteristics, as well as the use of a glass substrate and hydrothermal exposure on the texture and structural properties of ZnO samples. By X-ray analysis, it was determined that the synthesis intermediate in all cases is the compound Zn5(OH)8(NO3)2∙2H2O. It was shown that thermolysis of this compound at 600 °C, regardless of the physicochemical properties of the surfactants, leads to the formation of ZnO with a wurtzite structure and spherical or oval particles. The particle size increased slightly as the molecular weight and viscosity of the surfactants grew, from 30 nm using Pluronic F-127 (MM = 12,600) to 80 nm using Pluronic L-31 (MM = 1100), PE-block-PEG (MM = 500) and PEG (MM = 400). Holding the pre-washed synthetic intermediates (Zn5(OH)8(NO3)2∙2H2O) under hydrothermal conditions resulted in the formation of hexagonal ZnO rod crystal structures of various sizes. It was shown that the largest ZnO particles (10-15 μm) were observed in a sample obtained during hydrothermal exposure using Pluronic P-123 (MM = 5800). Atomic adsorption spectroscopy performed comparative quantitative analysis of residual Zn2+ ions in the supernatant of ZnO samples with different particle sizes and shapes. It was shown that the residual amount of Zn2+ ions was higher in the case of examining ZnO samples which have spherical particles of 30-80 nm. For example, in the supernatant of a ZnO sample that had a particle size of 30 nm, the quantitative content of Zn2+ ions was 10.22 mg/L.
Collapse
Affiliation(s)
- Viktor A. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia V. Sivtseva
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Natalia B. Kondrashova
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Artem S. Shamsutdinov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia S. Averkina
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Igor V. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | | | - Vladimir N. Strelnikov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| |
Collapse
|
8
|
Yang C, Li P, Wei Y, Wang Y, Jiang B, Wu W. Preparation of Nitrogen and Phosphorus Doped Porous Carbon from Watermelon Peel as Supercapacitor Electrode Material. MICROMACHINES 2023; 14:1003. [PMID: 37241626 PMCID: PMC10222317 DOI: 10.3390/mi14051003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The use of green and sustainable biomass-derived compounds to obtain excellent electrochemical properties is important to address growing environmental and energy issues. In this paper, cheap and abundant watermelon peel was used as a raw material to successfully synthesize nitrogen-phosphorus double-doped bio-based porous carbon by a one-step carbonization method and explore it as a renewable carbon source for low-cost energy storage devices. The supercapacitor electrode exhibited a high specific capacity of 135.2 F/g at a current density of 1 A/g in a three-electrode system. A variety of characterization methods and electrochemical tests indicate that porous carbon prepared by this simple method has great potential as electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Yanting Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
| | - Bo Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (P.L.); (Y.W.); (Y.W.); (B.J.)
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Rani N, Rawat K, Saini M, Yadav S, Syeda S, Saini K, Shrivastava A. Comparative In Vitro Anticancer Study of Cisplatin Drug with Green Synthesized ZnO Nanoparticles on Cervical Squamous Carcinoma (SiHa) Cell Lines. ACS OMEGA 2023; 8:14509-14519. [PMID: 37125098 PMCID: PMC10134227 DOI: 10.1021/acsomega.2c08302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
In this article, we aimed to develop a unique treatment approach to cure cervical cancer without harming healthy normal cells and overcome the limitations of currently available therapies/treatments. Recently, chemotherapeutics based on metal oxides have gained attention as a promising approach for treating cancer. Herein, ZnO nanoparticles were synthesized with the leaf extract of Azadirachta indica. These green synthesized ZnO nanoparticles were used for a cytotoxic study on the cervical squamous carcinoma cell line SiHa and murine macrophage cell line RAW 264.7. Moreover, a hemolytic assay was performed to check the biocompatibility of ZnO nanoparticles. The biosynthesized ZnO nanoparticles were labeled as L1, L2, L5, and L10 nanoparticles. Various assays like crystal violet, MTT assay, and AO/PI dual staining method were performed to assess the anticancer potential of ZnO. The concentration of ZnO nanoparticles was taken in the range of 100-250 μg/mL in the in vitro anticancer study on SiHa cancer cell lines. The findings of the MTT assay revealed that biosynthesized ZnO nanoparticles exhibited significant cytotoxicity against SiHa cancer cell lines dose-dependently at two incubation times (24 and 48 h). Also, a decrease in cell viability was observed with an increased concentration of ZnO. The IC50 values obtained were 141 μg/mL for L1, 132 μg/mL for L2, 127 μg/mL for L5, and 115 μg/mL for L10 nanoparticles. In addition, cisplatin drug (10 μg/mL) was also used to compare the anticancer activity with the biosynthesized L1, L2, L5, and L10 nanoparticles. The results of the crystal violet assay and AO/PI dual staining method revealed that morphological changes like cell shrinkage, poor cell adhesion, and induction of apoptosis occurred in the SiHa cancer cell lines. Furthermore, the stability of the ZnO nanoparticles at physiological pH has been assessed by recording the UV-visible spectrum at various pH values. Hence, the overall findings suggested that biosynthesized ZnO nanoparticles can be utilized for cervical squamous cancer treatment in addition to the current treatment strategies/techniques.
Collapse
Affiliation(s)
- Nutan Rani
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Kavita Rawat
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| | - Mona Saini
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Sapna Yadav
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Saima Syeda
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| | - Kalawati Saini
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Anju Shrivastava
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| |
Collapse
|
10
|
Villegas-Fuentes A, Garrafa-Gálvez H, Quevedo-Robles R, Luque-Morales M, Vilchis-Nestor A, Luque P. Synthesis of semiconductor ZnO nanoparticles using Citrus microcarpa extract and the influence of concentration on their optical properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Strachowski T, Baran M, Małek M, Kosturek R, Grzanka E, Mizeracki J, Romanowska A, Marynowicz S. Hydrothermal Synthesis of Zinc Oxide Nanoparticles Using Different Chemical Reaction Stimulation Methods and Their Influence on Process Kinetics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217661. [PMID: 36363254 PMCID: PMC9654224 DOI: 10.3390/ma15217661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
The aim of this work was to study the effect of the applied chemical reaction stimulation method on the morphology and structural properties of zinc oxide nanoparticles (ZnONPs). Various methods of chemical reaction induction were applied, including microwave, high potential, conventional resistance heater and autoclave-based methods. A novel, high potential-based ZnONPs synthesis method is herein proposed. Structural properties-phase purity, grain size-were examined with XRD methods, the specific surface area was determined using BET techniques and the morphology was examined using SEM. Based on the results, the microwave and autoclave syntheses allowed us to obtain the desired phase within a short period of time. The impulse-induced method is a promising alternative since it offers a non-equilibrium course of the synthesis process in an highly energy-efficient manner.
Collapse
Affiliation(s)
- Tomasz Strachowski
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Magdalena Baran
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marcin Małek
- Faculty of Civil and Engineering and Geology, Research Laboratory of WIG, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Robert Kosturek
- Faculty of Mechanical Engineering, Institute of Robots & Machine Design, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Ewa Grzanka
- Institute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-141 Warsaw, Poland
| | - Jan Mizeracki
- Institute of High Pressure Physics PAS, ul. Sokołowska 29/37, 01-141 Warsaw, Poland
| | - Agata Romanowska
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Stefan Marynowicz
- Lukasiewicz Research Network–Institute of Microelectronics and Photonics IMIF, Research Group of Graphene and Composites, al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
12
|
Construction of ZnO@mSiO2 antibacterial nanocomposite for inhibition of microorganisms during Zea mays storage and improving the germination. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Sharma P, Hasan MR, Mehto NK, Deepak, Bishoyi A, Narang J. 92 years of zinc oxide: has been studied by the scientific community since the 1930s- An overview. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Sazanova TS, Mochalov LA, Logunov AA, Kudryashov MA, Fukina DG, Vshivtsev MA, Prokhorov IO, Yunin PA, Smorodin KA, Atlaskin AA, Vorotyntsev AV. Influence of Temperature Parameters on Morphological Characteristics of Plasma Deposited Zinc Oxide Nanoparticles. NANOMATERIALS 2022; 12:nano12111838. [PMID: 35683699 PMCID: PMC9182487 DOI: 10.3390/nano12111838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/14/2023]
Abstract
Zinc oxide nanoparticles were obtained by plasma-enhanced chemical vapor deposition (PECVD) under optical emission spectrometry control from elemental high-purity zinc in a zinc–oxygen–hydrogen plasma-forming gas mixture with varying deposition parameters: a zinc source temperature, and a reactor temperature in a deposition zone. The size and morphological parameters of the zinc oxide nanopowders, structural properties, and homogeneity were studied. The study was carried out with use of methods such as scanning electron microscopy, X-ray structural analysis, and Raman spectroscopy, as well as statistical methods for processing and analyzing experimental data. It was established that to obtain zinc oxide nanoparticles with a given size and morphological characteristics using PECVD, it is necessary (1) to increase the zinc source temperature to synthesize more elongated structures in one direction (and vice versa), and (2) to decrease the reactor temperature in the deposition zone to reduce the transverse size of the deposited structures (and vice versa), taking into account that at relatively low temperatures instead of powder structures, films can form.
Collapse
Affiliation(s)
- Tatyana Sergeevna Sazanova
- Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin Str. 24, 603950 Nizhny Novgorod, Russia;
- Correspondence:
| | - Leonid Alexandrovich Mochalov
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Alexander Alexandrovich Logunov
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Mikhail Alexandrovich Kudryashov
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Diana Georgievna Fukina
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Maksim Anatolevich Vshivtsev
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Igor Olegovich Prokhorov
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Pavel Andreevich Yunin
- Department for Technology of Nanostructures and Devices, Institute for Physics of Microstructures of the Russian Academy of Science, Academic Str. 7, Afonino, 603087 Nizhny Novgorod, Russia;
| | - Kirill Alexandrovich Smorodin
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| | - Artem Anatolevich Atlaskin
- Laboratory of SMART Polymeric Materials and Technologies, Mendeleev University of Chemical Technology, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Andrey Vladimirovich Vorotyntsev
- Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin Str. 24, 603950 Nizhny Novgorod, Russia;
- Chemical Engineering Laboratory, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603022 Nizhny Novgorod, Russia; (L.A.M.); (A.A.L.); (M.A.K.); (D.G.F.); (M.A.V.); (I.O.P.); (K.A.S.)
| |
Collapse
|
15
|
Mousavi SM, Behbudi G, Gholami A, Hashemi SA, Nejad ZM, Bahrani S, Chiang WH, Wei LC, Omidifar N. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomater Res 2022; 26:4. [PMID: 35109931 PMCID: PMC8812270 DOI: 10.1186/s40824-022-00252-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
Zinc nanostructures (ZnONSs) have attracted much attention due to their morphological, physicochemical, and electrical properties, which were entailed for various biomedical applications such as cancer and diabetes treatment, anti-inflammatory activity, drug delivery. ZnONS play an important role in inducing cellular apoptosis, triggering excess reactive oxygen species (ROS) production, and releasing zinc ions due to their inherent nature and specific shape. Therefore, several new synthetic organometallic method has been developed to prepare ZnO crystalline nanostructures with controlled size and shape. Zinc oxide nanostructures' crystal size and shape can be controlled by simply changing the physical synthesis condition such as microwave irradiation time, reaction temperature, and TEA concentration at reflux. Physicochemical properties which are determined by the shape and size of ZnO nanostructures, directly affect their biological applications. These nanostructures can decompose the cell membrane and accumulate in the cytoplasm, which leads to apoptosis or cell death. In this study, we reviewed the various synthesis methods which affect the nano shapes of zinc particles, and physicochemical properties of zinc nanostructures that determined the shape of zinc nanomaterials. Also, we mentioned some macromolecules that controlled their physicochemical properties in a green and biological approaches. In addition, we present the recent progress of ZnONSs in the biomedical fields, which will help centralize biomedical fields and assist their future research development.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Gity Behbudi
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Zohre Mousavi Nejad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan.
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Hamidian K, Sarani M, Barani M, Khakbaz F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021; 7:275. [PMID: 34940335 PMCID: PMC8700921 DOI: 10.3390/gels7040275] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sol-Gel is a low cost, well-established and flexible synthetic route to produce a wide range of micro- and nanostructures. Small variations in pH, temperature, precursors, time, pressure, atmosphere, among others, can lead to a wide family of compounds that share the same molecular structures. In this work, we present a general review of the synthesis of LaMnO3, SrTiO3, BaTiO3 perovskites and zinc vanadium oxides nanostructures based on Sol-Gel method. We discuss how small changes in the parameters of the synthesis can modify the morphology, shape, size, homogeneity, aggregation, among others, of the products. We also discuss the different precursors, solvents, working temperature, reaction times used throughout the synthesis. In the last section, we present novel uses of Sol-Gel with organic materials with emphasis on carbon-based compounds. All with a perspective to improve the method for future applications in different technological fields.
Collapse
Affiliation(s)
- Daniel Navas
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Sandra Fuentes
- Departamento de Ciencias Farmaceúticas, Facultad de Ciencias, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta 1270709, Chile
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Libertador Bernardo O’Higgins 3363, Santiago 9160000, Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
18
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
20
|
Facile Synthesis of ZnO Nanoparticles for the Photodegradation of Rhodamine-B. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.6.185-191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
River pollution is a problem that is still very poorly handled. Industrial growth is the most significant contributor to produce this wastewater. The industry produces liquid waste such as dyes that do not meet handling standards because of the high cost. Photocatalyst is way better than other methods such as adsorption, coagulation, fluctuation, and others. However, there are still many shortcomings of the existing methods, such as high cost, high temperature, and dangerous by-products. This research seeks to provide a solution by synthesizing zinc oxide (ZnO) nanoparticles as a photocatalyst to reduce rhodamine B dye under visible light irradiation. ZnO nanoparticles were successfully synthesized through a simple sol-gel method in the form of a white powder by heating at a low temperature, 60°C. The XRD results show that the results have a diffraction peak that follows the standard ZnO with a hexagonal wurtzite crystal structure. According to the Scherrer equation, the crystal has a size of 22.61 nm. SEM analysis showed that the particle morphology and particle size were homogeneous with a spherical shape, ranging from 22-24 nm. Optimal ZnO photocatalytic activity at 90 minutes with an efficiency of 98.83%.
Collapse
|
21
|
Huang D, Huang M, Sun D, Liu B, Xuan R, Liu J, Sun R, Li J, Zhang G, Yu D. Selective metallization of glass with improved adhesive layer and optional hydrophobic surface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|