1
|
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1,2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Mol Divers 2025; 29:1305-1321. [PMID: 38976121 PMCID: PMC11909056 DOI: 10.1007/s11030-024-10911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Six known products (4-9) were prepared from reaction of adipoyl chloride with 1,2,3-trimethoxybenzene according to the literature. From (2,3,4-trimethoxyphenyl)(2-(2,3,4-trimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4) of them, four new 1,2-disubstituted cyclopentane derivatives (10-13) with phenyl and benzyl units were synthesized by reactions such as hydrazonation, catalytic hydrogenation and bromination. The obtained compounds 4-13 were examined for their in vitro inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. All compounds 4-13 showed inhibition at nanomolar level with Ki values in the range of 45.53 ± 7.35-631.96 ± 18.88 nM for AChE, 84.30 ± 9.92-622.10 ± 35.14 nM for BChE, and 25.47 ± 4.46-48.87 ± 7.33 for α-Glu. In silico molecular docking studies of the potent compounds were performed in the active sites of AChE (PDB: 1E66), BChE (PDB: 1P0I), and α-glucosidase (PDB: 5ZCC) to compare the effect of bromine atom on the inhibition mechanism. The optimized molecular structures, HOMO-LUMO energies and molecular electrostatic potential maps for the compounds were calculated by using density functional theory with B3LYP/6-31 + G(d,p).
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey.
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkey.
| |
Collapse
|
2
|
Kuzu B, Alagoz MA, Demir Y, Gulcin I, Burmaoglu S, Algul O. Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies. Mol Divers 2025; 29:671-693. [PMID: 38554169 PMCID: PMC11785640 DOI: 10.1007/s11030-024-10828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/21/2024] [Indexed: 04/01/2024]
Abstract
An important research topic is the discovery of multifunctional compounds targeting different disease-causing components. This research aimed to design and synthesize a series of 2-aryl-6-carboxamide benzoxazole derivatives that inhibit cholinesterases on both the peripheral anionic and catalytic anionic sides. Compounds (7-48) were prepared from 4-amino-3-hydroxybenzoic acid in three steps. The Ellman test, molecular docking with Maestro, and molecular dynamics simulation studies with Desmond were done (Schrodinger, 12.8.117). Compound 36, the most potent compound among the 42 new compounds synthesized, had an inhibitory concentration of IC50 12.62 nM for AChE and IC50 25.45 nM for BChE (whereas donepezil was 69.3 nM and 63.0 nM, respectively). Additionally, compound 36 had docking values of - 7.29 kcal/mol for AChE and - 6.71 kcal/mol for BChE (whereas donepezil was - 6.49 kcal/mol and - 5.057 kcal/mol, respectively). Furthermore, molecular dynamics simulations revealed that compound 36 is stable in the active gorges of both AChE (average RMSD: 1.98 Å) and BChE (average RMSD: 2.2 Å) (donepezil had average RMSD: 1.65 Å and 2.7 Å, respectively). The results show that compound 36 is a potent, selective, mixed-type dual inhibitor of both acetylcholinesterase and butyrylcholinesterase. It does this by binding to both the catalytically active and peripheral anionic sites of cholinesterases at the same time. These findings show that target compounds may be useful for establishing the structural basis for new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, 65080, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey
| | - M Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnonu University, Malatya, 44280, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75000, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey.
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey.
| |
Collapse
|
3
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
4
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Behçet A, Taslimi P, Şen B, Taskın-Tok T, Aktaş A, Gök Y, Aygün M, Gülçin İ. New palladium complexes with N-heterocyclic carbene and morpholine ligands: Synthesis, characterization, crystal structure, molecular docking, and biological activities. J Biochem Mol Toxicol 2024; 38:e23554. [PMID: 37855258 DOI: 10.1002/jbt.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
This work includes the synthesis of a new series of palladium-based complexes containing both morpholine and N-heterocyclic carbene (NHC) ligands. The new complexes were characterized using NMR (1 H and 13 C), FTIR spectroscopic, and elemental analysis techniques. The crystal structure of complex 1b was obtained by utilizing the single-crystal X-ray diffraction method. X-ray studies show that the coordination environment of palladium atom is completed by the carbene carbon atom of the NHC ligand, the nitrogen atom of the morpholine ring, and a pair of bromide ligand, resulting in the formation of slightly distorted square planar geometry. All complexes were determined for some metabolic enzyme activities. Results indicated that all the synthetic complexes exhibited powerful inhibitory actions against all aims as compared to the control molecules. Ki values of new morpholine-liganded complexes bearing 4-hydroxyphenylethyl group 1a-e for hCA I, hCA II, AChE, BChE, and α-glycosidase enzymes were obtained in the ranges 0.93-2.14, 1.01-2.03, 4.58-10.27, 7.02-13.75, and 73.86-102.65 µM, respectively. Designing of reported complexes is impacted by molecular docking study, and interaction with the current enzymes also proclaimed that compounds 1e (-12.25 kcal/mol for AChE and -11.63 kcal/mol for BChE), 1c (-10.77 kcal/mol and -9.26 kcal/mol for α-Gly and hCA II, respectively), and 1a (-8.31 kcal/mol for hCA I) are showing binding affinity and interaction from the synthesized five novel complexes.
Collapse
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Türkiye
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - Tuğba Taskın-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, Malatya, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Türkiye
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, Buca, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
6
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
7
|
Gök Y, Taslimi P, Şen B, Bal S, Aktaş A, Aygün M, Sadeghi M, Gülçin İ. Design, Synthesis, Characterization, Crystal Structure, In silico Studies, and Inhibitory Properties of the PEPPSI Type Pd(II)NHC Complexes Bearing Chloro/Fluorobenzyl Group. Bioorg Chem 2023; 135:106513. [PMID: 37030104 DOI: 10.1016/j.bioorg.2023.106513] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work contains synthesis, characterization, crystal structure, and biological activity of a new series of the PEPPSI type Pd(II)NHC complexes [(NHC)Pd(II)(3-Cl-py)]. NMR, FTIR, and elemental analysis techniques were used to characterize all (NHC)Pd(II)(3-Cl-py) complexes. Also, molecular and crystal structures of complex 1c were established by single-crystal X-ray diffraction. Regarding the X-ray studies, the palladium(II) atom has a slightly distorted square-planar coordination environment. Additionally, the enzyme inhibitory effect of new (NHC)Pd(II)(3-Cl-py) complexes (1a-1g) was studied. They exhibited highly potent inhibition effect on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carbonic anhydrases (hCAs) (Ki values are in the range of 0.08 ± 0.01 to 0.65 ± 0.06 µM, 10.43 ± 0.98 to 22.48 ± 2.01 µM, 6.58 ± 0.30 to 10.88 ± 1.01 µM and 6.34 ± 0.37 to 9.02 ± 0.72 µM for AChE, BChE, hCA I, and hCA II, respectively). Based on the molecular docking, among the seven synthesized complexes, 1c, 1b, 1e, and 1a significantly inhibited AChE, BChE, hCA I, and hCA II enzymes, respectively. The findings highpoint that (NHC)Pd(II)(3-Cl-py) complexes can be considered as possible inhibitors via metabolic enzyme inhibition.
Collapse
|
8
|
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon ( Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel) 2023; 13:136. [PMID: 36676085 PMCID: PMC9865886 DOI: 10.3390/life13010136] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.
Collapse
Affiliation(s)
- Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelişim University, Istanbul 34315, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Turkey
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
9
|
Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Zahedi NA, Mohammadi-Khanaposhtani M, Rezaei P, Askarzadeh M, Alikhani M, Adib M, Mahdavi M, Larijani B, Niakan S, Tehrani MB, Taslimi P, Gulçin I. Dual functional cholinesterase and carbonic anhydrase inhibitors for the treatment of Alzheimer's disease: Design, synthesis, in vitro, and in silico evaluations of coumarin-dihydropyridine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Hamide M, Gök Y, Demir Y, Yakalı G, Tok TT, Aktaş A, Sevinçek R, Güzel B, Gülçin İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Durmaz L, Kiziltas H, Guven L, Karagecili H, Alwasel S, Gulcin İ. Antioxidant, Antidiabetic, Anticholinergic, and Antiglaucoma Effects of Magnofluorine. Molecules 2022; 27:5902. [PMID: 36144638 PMCID: PMC9502953 DOI: 10.3390/molecules27185902] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Magnofluorine, a secondary metabolite commonly found in various plants, has pharmacological potential; however, its antioxidant and enzyme inhibition effects have not been investigated. We investigated the antioxidant potential of Magnofluorine using bioanalytical assays with 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD•+), and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging abilities and K3[Fe(CN)6] and Cu2+ reduction abilities. Further, we compared the effects of Magnofluorine and butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-Tocopherol, and Trolox as positive antioxidant controls. According to the analysis results, Magnofluorine removed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC50 value of 10.58 μg/mL. The IC50 values of BHA, BHT, Trolox, and α-Tocopherol were 10.10 μg/mL, 25.95 μg/mL, 7.059 μg/mL, and 11.31 μg/mL, respectively. Our results indicated that the DPPH· scavenging effect of Magnofluorine was similar to that of BHA, close to that of Trolox, and better than that of BHT and α-tocopherol. The inhibition effect of Magnofluorine was examined against enzymes, such as acetylcholinesterase (AChE), α-glycosidase, butyrylcholinesterase (BChE), and human carbonic anhydrase II (hCA II), which are linked to global disorders, such as diabetes, Alzheimer's disease (AD), and glaucoma. Magnofluorine inhibited these metabolic enzymes with Ki values of 10.251.94, 5.991.79, 25.411.10, and 30.563.36 nM, respectively. Thus, Magnofluorine, which has been proven to be an antioxidant, antidiabetic, and anticholinergic in our study, can treat glaucoma. In addition, molecular docking was performed to understand the interactions between Magnofluorine and target enzymes BChE (D: 6T9P), hCA II (A:3HS4), AChE (B:4EY7), and α-glycosidase (C:5NN8). The results suggest that Magnofluorine may be an important compound in the transition from natural sources to industrial applications, especially new drugs.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Leyla Guven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Science, Siirt University, Siirt 56100, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
13
|
Obaid RJ, Mughal EU, Naeem N, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Aktaş A, Yakalı G, Demir Y, Gülçin İ, Aygün M, Gök Y. The palladium-based complexes bearing 1,3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: synthesis, characterization, structure and enzyme inhibitions. Heliyon 2022; 8:e10625. [PMID: 36185151 PMCID: PMC9520214 DOI: 10.1016/j.heliyon.2022.e10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
The palladium-based complexes bearing N-heterocyclic carbene (NHC) ligand have long attracted attention as active catalysts for many catalytic reactions. Recently, the biological activities of these complexes, which are stable to air and moisture, have also been wondered. With the aim, we report the synthesis of a series of (NHC)Pd(Br2)(L) complexes (NHC: 1,3-dibenzylbenzimidazolium, L: morpholine, triphenylphosphine, pyridine, 3-chloropyridine, and 2-aminopyridine). All complexes were characterized by NMR (1H and 13C), FTIR spectroscopic and elemental analysis techniques. In addition, the single crystal structures of the complex 3, 4, and 6 were determined through single crystal x-ray crystallographic method. Furthermore, the carbonic anhydrase I and II isoenzymes (hCAs) and acetylcholinesterase (AChE) inhibition effects of these palladium-based complexes bearing NHC ligand were investigated. They showed highly potent inhibition effect with Ki values are between 10.06 ± 1.49-68.56 ± 11.53 nM for hCA I isoenzyme, 7.74 ± 0.66 to 49.39 ± 6.50 nM for hCA II isoenzyme and 22.83 ± 3.21 to 64.09 ± 9.05 nM for AChE enzyme.
Collapse
Affiliation(s)
- Aydın Aktaş
- Inonu University, Vocational School of Health Service, 44280, Malatya, Turkey
| | - Gül Yakalı
- Department of Engineering Sciences, Faculty of Engineering, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75000, Ardahan, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240, Erzurum, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, 35150, Izmir, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
15
|
Şahin N, Çelebi MS, Ayvaz MÇ, Üstün E. Antioxidant Activity, Enzyme Inhibition, Electrochemical and Theoretical Evaluation of Novel PEPPSI Type N-Heterocyclic Carbene Complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Behçet A, Taslimi P, Gök Y, Aktaş A, Taskin‐Tok T, Gülçin İ. New PEPPSI‐Pd‐NHC complexes bearing 4‐hydroxyphenylethyl group: Synthesis, characterization, molecular docking, and bioactivity properties. Arch Pharm (Weinheim) 2022; 355:e2200276. [DOI: 10.1002/ardp.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Türkiye
| | - Aydın Aktaş
- Vocational School of Health Service Inonu University Malatya Türkiye
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences Gaziantep University Gaziantep Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Türkiye
| |
Collapse
|
17
|
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Kazancioglu MZ, Kendirli EC. Synthesis, characterization, and enzyme inhibition activities of 4-(methylthio)-N-propylaniline-phenylpiperazine and sulfonamide derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Sun Y, Yang Z, Liu Q, Sun X, Chen L, Sun L, Gu W. Design, Synthesis, and Fungicidal Evaluation of Novel 1,3-Benzodioxole-Pyrimidine Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7360-7374. [PMID: 35671047 DOI: 10.1021/acs.jafc.2c00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of novel 1,3-benzodioxole-pyrimidine derivatives were designed and synthesized. The in vitro bioassay indicated that compounds 4e, 4g, 4n, 5c, and 5e displayed excellent fungicidal activities against test fungal strains. Especially, in the in vitro experiments, 5c exhibited a broad spectrum of fungicidal activity against Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Alternaria solani, and Gibberella zeae with EC50 values of 0.44, 6.96, 6.99, 0.07, and 0.57 mg/L, respectively, which were significantly more potent than those of positive control boscalid (EC50: 5.02, >50, >50, 0.16, and 1.28 mg/L). In vivo testing on tomato fruits and leaves showed that 5c displayed considerable protective and curative efficacy against A. solani. Scanning electron microscopy analysis indicated that 5c possessed a strong ability to destroy the surface morphology of mycelia and seriously interfere with the growth of the fungal pathogen. In the in vitro enzyme inhibition assay, 5c exhibited pronounced succinate dehydrogenase (SDH) inhibitory activity with an IC50 value of 3.41 μM, equivalent to that of boscalid (IC50: 3.40 μM). In addition, fluorescence quenching experiment further confirmed the strong interaction of 5c with SDH. Through chiral resolution, 5c was separated into two enantiomers. Among them, (S)-5c exhibited stronger fungicidal activity (EC50: 0.06 mg/L) and SDH inhibitory (2.92 μM) activity than the R-enantiomer (EC50: 0.17 mg/L and SDH IC50: 3.68 μM), which was in accordance with the molecular docking study (CDOCKER Interaction Energy for (R)-5c and (S)-5c: -28.23 and -29.98 kcal/mol, respectively). These results presented a promising lead for the discovery of novel SDHIs as antifungal pesticides.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingsong Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linlin Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
20
|
Gulcin İ, Petrova OV, Taslimi P, Malysheva SF, Schmidt EY, Sobenina LN, Gusarova NK, Trofimov BA, Tuzun B, Farzaliyev VM, Alwasel S, Sujayev AR. Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- İlhami Gulcin
- Department of Chemistry Faculty of Science Ataturk University TR 25240 Erzurum Turkey
| | - Olga V. Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - Svetlana F. Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Elena Yu. Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Lyubov N. Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Nina K. Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Boris A. Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Vagif M. Farzaliyev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| | - Saleh Alwasel
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Afsun R. Sujayev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| |
Collapse
|
21
|
Tezcan B, Gök Y, Sevinçek R, Taslimi P, Taskin‐Tok T, Aktaş A, Güzel B, Aygün M, Gülçin I. Benzimidazolium salts bearing the trifluoromethyl group as organofluorine compounds: Synthesis, characterization, crystal structure, in silico study, and inhibitory profiles against acetylcholinesterase and α‐glycosidase. J Biochem Mol Toxicol 2022; 36:e23001. [DOI: 10.1002/jbt.23001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science Inonu University Malatya Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Tugba Taskin‐Tok
- Department of Chemistry, Faculty of Arts and Sciences Gaziantep University Gaziantep Turkey
- Department of Bioinformatics and Computational Biology Institute of Health Sciences, Gaziantep University Gaziantep Turkey
| | - Aydın Aktaş
- Department of Pathology, Vocational School of Health Service Inonu University Malatya Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science Cukurova University Adana Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science Dokuz Eylul University İzmir Buca Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science Atatürk University Erzurum Turkey
| |
Collapse
|
22
|
Qurrat-Ul-Ain, Abid A, Lateef M, Rafiq N, Eijaz S, Tauseef S. Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-Alzheimer, and anti-microbial agents: Structure, stability and bioactivity comparison with pallado-hydrazides. Biomed Pharmacother 2021; 146:112561. [PMID: 34965504 DOI: 10.1016/j.biopha.2021.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Herein, we report a comparative study based on structure, thermal and solution stability, and biopotency against lipoxygenase (LOX), butyrylcholinesterase (BChE) and microbes for Pd(II) compounds of N,O,S bearing 5-(C5H4XR)-1,3,4-oxadiazole-2-thiones (L') of type [PdL'Cl2] (P'n) and N,O bearing respective hydrazides (L) of type trans-[PdL2Cl2] (Pn) {X = C, R = 4-I, 2-Br, 4-NO2, 3-NO2, 2-Cl, 3-Cl (n = 1-6, serially); X = N (n = 7)}. Spectral techniques (IR, EI-MS, NMR) and physicochemical evaluations successfully characterized the new compounds. The L' behaved as bidentate S-N donors bonded through exocyclic sulfur and N-3' nitrogen, while L acted as amino N donors. UV-vis (solution speciation) and thermal degradation profiles consistently confirmed the greater stability for P'n than Pn compounds. These compounds manifested varying degree in vitro potential to inhibit LOX, BChE and several bacteria and fungi, affected mainly by Pd(II) presence, M-L binding mode, nature and position of R, or halo groups electronegativity. Molecular docking with human 5-LOX and BChE further validated the respective experimental inhibition findings and explored several putative mechanistic interactions (H-bonding, π-stacking, π-alkyl, π-S, etc.) at the enzyme active sites. Pn generally offered superior antimicrobial and anti-LOX (anti-inflammatory) potential than respective P'n compounds, with P3/P'5, P(2,3,7)/P'3, and P6 being comparable, better and equivalent to ampicillin, nystatin and baicalein, the reference antibacterial, antifungal and anti-LOX drugs, respectively. Contrarily, the anti-BChE activity of P'n was found better than Pn compounds, showing P'2/P1 as the most promising anti-Alzheimer drug candidates. This study bares important structural and mechanistic aspects in optimizing antimicrobial, anti-inflammatory and anti-Alzheimer activities, highlighting some potential future pallado-drug candidates.
Collapse
Affiliation(s)
- Qurrat-Ul-Ain
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | - Aisha Abid
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Mehreen Lateef
- Multi-Disciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Karachi 75500, Pakistan
| | - Naushaba Rafiq
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sana Eijaz
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saima Tauseef
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi 75300, Pakistan
| |
Collapse
|
23
|
Çağlılar T, Behçet A, Celepci DB, Aktaş A, Gök Y, Aygün M. Benzimidazole-functionalized PEPPSI type Pd(II)NHC complexes bearing nitrophenylethyl and hidroxyphenylethyl group: Synthesis, characterization, crystal structure and it's catalytic activity on direct arylation reaction. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Yavari MA, Adiloglu Y, Saglamtas R, Tutar A, Gulcin I, Menzek A. Synthesis and some enzyme inhibition effects of isoxazoline and pyrazoline derivatives including benzonorbornene unit. J Biochem Mol Toxicol 2021; 36:e22952. [PMID: 34783117 DOI: 10.1002/jbt.22952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Four new and four known isoxazoline derivatives were synthesized from the reactions of benzonorbornadiene with nitrile oxides formed from the corresponding benzaldehydes. Three new and one known pyrazoline derivatives were also synthesized from the reactions of the benzonorbornadiene with nitrile imines formed from the corresponding compounds. The synthesized nitrogen-based novel heterocyclic compounds were evaluated against the human carbonic anhydrase isoenzymes I and II (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. The synthesized nitrogen-based novel heterocyclic compounds showed IC50 values in the range of 2.69-7.01 against hCA I, 2.40-4.59 against hCA II, 0.81-1.32 µM against AChE, and 20.83-1.70 µM against BChE enzymes. On the contrary, nitrogen-based novel heterocyclic compounds demonstrated Ki values between 2.93 ± 0.59-8.61 ± 1.39 against hCA I, 2.05 ± 0.62-4.97 ± 0.95 against hCA II, 0.34 ± 0.02-0.92 ± 0.17 nM against AChE, and 0.50 ± 0.04-1.20 ± 0.16 µM against BChE enzymes. The synthesized nitrogen-based novel heterocyclic compounds exhibited effective inhibition profiles against both indicated metabolic enzymes. These results may contribute to the development of new drugs particularly to treat some disorders, which are widespread in the world including glaucoma and Alzheimer's diseases.
Collapse
Affiliation(s)
- Mirali A Yavari
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yadigar Adiloglu
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ruya Saglamtas
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ahmet Tutar
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
25
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
26
|
Serdaroğlu G, Şahin N, Üstün E, Tahir MN, Arıcı C, Gürbüz N, Özdemir İ. PEPPSI type complexes: Synthesis, x-ray structures, spectral studies, molecular docking and theoretical investigations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Bal S, Demirci Ö, Şen B, Taşkın Tok T, Taslimi P, Aktaş A, Gök Y, Aygün M, Gülçin İ. Silver
N
‐heterocyclic carbene complexes bearing fluorinated benzyl group: Synthesis, characterization, crystal structure, computational studies, and inhibitory properties against some metabolic enzymes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Selma Bal
- Department of Chemistry, Faculty of Science and Arts University of Kahramanmaraş Sütçü Imam Kahramanmaraş Turkey
| | - Özlem Demirci
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
| | - Betül Şen
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - Tuğba Taşkın Tok
- Faculty of Arts and Sciences, Department of Chemistry Gaziantep University Gaziantep Turkey
- Institute of Health Sciences, Department of Bioinformatics and Computational Biology Gaziantep University Gaziantep Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
- Department of Chemistry, Faculty of Science Istinye University Istanbul Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
- Vocational School of Health Service Inonu University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts Inonu University Malatya Turkey
| | - Muhittin Aygün
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry Atatürk University Erzurum Turkey
| |
Collapse
|
28
|
Bingol Z, Kızıltaş H, Gören AC, Kose LP, Topal M, Durmaz L, Alwasel SH, Gulcin İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed ( Convulvulus betonicifolia Miller subsp.) - profiling of phenolic compounds by LC-HRMS. Heliyon 2021; 7:e06986. [PMID: 34027185 PMCID: PMC8129935 DOI: 10.1016/j.heliyon.2021.e06986] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
In order to evaluate the antioxidant activity of evaporated ethanolic extract (EESB) and lyophilized water extract (WESB) of Shaggy bindweed (Convulvulus betonicifolia Mill. Subs), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging effect, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+) binding activities were separately performed. Also, ascorbic acid, α-tocopherol and BHT were used as the standard compounds. Additionally, some phenolic compounds that responsible for antioxidant abilities of EESB and WESB were screened by liquid chromatography-high resolution mass spectrometry (LC-HRMS). At the same concentration, EESB and WESB demonstrated effective antioxidant abilities when compared to standards. In addition, EESB demonstrated IC50 values of 1.946 μg/mL against acetylcholinesterase (AChE), 0.815 μg/mL against α-glycosidase and 0.675 μg/mL against α-amylase enzymes.
Collapse
Affiliation(s)
- Zeynebe Bingol
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Hatice Kızıltaş
- Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Ahmet C Gören
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul 34500, Turkey
| | - Meryem Topal
- Vocational School of Health Services, Gumushane University, Gumushane 29000, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan 24500, Turkey
| | - Saleh H Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
29
|
LC-HRMS Profiling and Antidiabetic, Anticholinergic, and Antioxidant Activities of Aerial Parts of Kınkor ( Ferulago stellata). Molecules 2021; 26:molecules26092469. [PMID: 33922645 PMCID: PMC8122897 DOI: 10.3390/molecules26092469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.
Collapse
|
30
|
Bal S, Demirci Ö, Şen B, Taslimi P, Aktaş A, Gök Y, Aygün M, Gülçin İ. PEPPSI type Pd(II)NHC complexes bearing chloro-/fluorobenzyl group: Synthesis, characterization, crystal structures, α-glycosidase and acetylcholinesterase inhibitory properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|