1
|
Thrinadh Kumar R, Mulani SC, Anwar S, Kottalanka RK. Design, synthesis, and apoptotic evaluation of spiro[indoline-3,3'-pyrazolo[1,2- a]indazole] derivatives via [3 + 2] N, N-cycloaddition. Org Biomol Chem 2025; 23:3583-3589. [PMID: 40104845 DOI: 10.1039/d5ob00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
An efficient protocol for the synthesis of spiro[indoline-3,3'-pyrazolo[1,2-a]indazole] derivatives was developed via a [3 + 2] N,N-cycloaddition strategy, utilizing substituted 2-(2-oxoindolin-3-ylidene)malononitrile derivatives and 1,2-dihydro-3H-indazol-3-one under mild conditions, yielding excellent results (3a-3l). Furthermore, selected derivatives (3e and 3h-3l) were evaluated for cytotoxicity against various cancer cell lines, including MCF-7 (breast cancer), A549 (lung cancer), Colo-205 (colon cancer), and A2780 (ovarian cancer). The IC50 values ranged from 1.34 ± 0.21 μM (for 3l against MCF-7) to 8.53 ± 1.49 μM (for 3h against A2780). Notably, derivative 3l demonstrated the most potent apoptotic activity, exhibiting the lowest IC50 values across all four cancer cell lines. Additionally, molecular docking studies corroborated the observed biological activity, suggesting that these compounds may interact with relevant cellular targets, potentially accounting for their cytotoxic effects.
Collapse
Affiliation(s)
- Rapeti Thrinadh Kumar
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
- Aragen Life Sciences Pvt. Ltd, 28A, IDA Nacharam, Hyderabad, Telangana-500076, India
| | - Sohel C Mulani
- Aragen Life Sciences Pvt. Ltd, 28A, IDA Nacharam, Hyderabad, Telangana-500076, India
| | - Shaik Anwar
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
| | - Ravi K Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
| |
Collapse
|
2
|
Peiman S, Maleki B, Ghani M. Fe 3O 4@gC 3N 4@Thiamine: a novel heterogeneous catalyst for the synthesis of heterocyclic compounds and microextraction of tebuconazole in food samples. Sci Rep 2024; 14:21488. [PMID: 39277597 PMCID: PMC11401885 DOI: 10.1038/s41598-024-72212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Graphite carbon nitride (g-C3N4) is a two-dimensional nano-sheet with electronic properties, which shows unique characteristics with high chemical and thermal stability in its structure. The functionalization of these compounds through covalent bonding is an important step towards significantly improving their properties and capabilities. To achieve this goal, a novel strategy for the covalent functionalization of Fe3O4@g-C3N4 with thiamine hydrochloride (vitamin B1) via cyanuric chloride (TCT), which is a divalent covalent linker, was presented. The efficiency of Fe3O4@gC3N4@Thiamine as a heterogeneous organic catalyst in the synthesis of spirooxindole-pyran derivatives and 2-amino-4H-pyran under solvent-free conditions was evaluated and the yields of high-purity products were presented. In addition, easy recycling and reuse for seven consecutive cycles without significant reduction in catalytic activity are other features of this catalyst. Moreover, the performance of the prepared sorbent in the microextraction technique (herein, magnetic solid phase extraction) was studied. The tebuconazole was selected as the target analyte. The target analyte was extracted and determined by HPLC-UV. Under the optimum condition, the linear range of the method (LDR) was estimated in the range of 0.2-100 μg L-1 (the coefficient of determination of 0.9962 for tebuconazole). The detection limit (LOD) of the method for tebuconazole was calculated to be 0.05 µg L-1. The limit of quantification (LOQ) of the method was also estimated to be 0.16 µg L-1. In order to check the precision of the proposed method, the intra-day and inter-day relative standard deviations (RSD%) were calculated, which were in the range of 1.5- 2.8%. The method was used for the successful extraction and determination of tebuconazole in tomato, cucumber, and carrot samples.
Collapse
Affiliation(s)
- Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box, Babolsar, 47416-95447, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box, Babolsar, 47416-95447, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
3
|
Rezaei F, Alinezhad H, Maleki B. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one-pot multicomponent synthesis of 2-amino-4H-chromene and 1,2,3,6-tetrahydropyrimidine. Sci Rep 2023; 13:20562. [PMID: 37996476 PMCID: PMC10667485 DOI: 10.1038/s41598-023-47794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Captopril (CAP) is a safe, cost-effective, and environmentally organic compound that can be used as an effective organo-catalyst. Functional groups of captopril make it capable to attach to solid support and acting as promoters in organic transformations. In this work, captopril was attached to the surface of magnetic graphene nitride by employing a linker agent. The synthesized composite efficiently catalyzed two multicomponent reactions including the synthesis of 1,2,3,6-tetrahydropyrimidine and 2-amino-4H-chromene derivatives. A large library of functional targeted products was synthesized in mild reaction conditions. More importantly, this catalyst was stable and magnetically recycled and reused for at least five runs without losing catalytic activity.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Heshmatollah Alinezhad
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
4
|
Zolgharnein J, Goudarzy F, Ghasemi JB. A New Sensitive Fluorescence Sensor and Photocatalyst for Determination and Degradation of Sodium Valproate Using g-C3N4@Fe3O4@CuWO4 Nanocomposite and FCCD Optimization. J Fluoresc 2023; 33:1777-1801. [PMID: 36826727 DOI: 10.1007/s10895-023-03168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
In this research, carbon nitride nanocomposite coupled with Fe3O4 and CuWO4 was thermally synthesized and characterized by different techniques, including SEM, TEM, XRD, EDX, and FTIR. Due to sodium valproate's luminescence quenching of this nanocomposite, a reliable, accurate, sensitive, selective, and fast-acting sodium valproate assay was proposed. Optimization of this fluorescent sensor was carried out by the FCCD approach. In the optimum conditions, the plot of sodium valproate concentration versus nanocomposite fluorescence emission showed a linear response (R2 = 0.9918), with a range of 0-0.55 µM, the limit of detection (S/N = 3) equal to 0.85 nM and limit of qualification equal to 2.82 nM. Photocatalytic activity of g-C3N4@Fe3O4@CuWO4 (40%) nanocomposite exhibited a good potency to sodium valproate degradation. Active species of degradation including superoxide radicals, holes, and hydroxyl radicals were investigated using ammonium oxalate, benzoquinone, and 2-propanol to identify the mechanism of photodegradation action. The activity of benzoquinone in the photocatalytic process led to a reduction in the rate of analyte degradation, which indicates the prominent role of superoxide radicals compared to other species in the degradation process. The degradation rate of the analyte using the Fenton reagent was found to be around two times more than in the Fenton reagent-free process. The possible mechanism for the fluorescence sensor and photocatalytic degradation reaction was also discussed.
Collapse
Affiliation(s)
- J Zolgharnein
- Department of Chemistry, Faculty of Sciences, Arak University, P.O. Box 38156-8-8394, Arak, I.R., Iran.
| | - F Goudarzy
- Department of Chemistry, Faculty of Sciences, Arak University, P.O. Box 38156-8-8394, Arak, I.R., Iran
| | - J B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, I.R., Iran.
| |
Collapse
|
5
|
Zheng C, Song X, Gan Q, Lin J. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. J Colloid Interface Sci 2023; 630:121-133. [DOI: 10.1016/j.jcis.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
6
|
Westphal R, Venturini Filho E, Loureiro LB, Tormena CF, Pessoa C, Guimarães CDJ, Manso MP, Fiorot RG, Campos VR, Resende JALC, Medici F, Greco SJ. Green Synthesis of Spiro Compounds with Potential Anticancer Activity through Knoevenagel/Michael/Cyclization Multicomponent Domino Reactions Organocatalyzed by Ionic Liquid and Microwave-Assisted. Molecules 2022; 27:molecules27228051. [PMID: 36432151 PMCID: PMC9697156 DOI: 10.3390/molecules27228051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
In this work a microwave-assisted Knoevenagel/Michael/cyclization multicomponent domino methodology, using ethanol as solvent and the ionic liquid 1-methylimidazolium chloride as catalyst was developed for the synthesis of spiro compounds. The reaction conditions considered ideal were determined from a methodological study varying solvent, catalyst, amount of catalyst, temperature, and heating mode. Finally, the generality of the methodology was evaluated by exploring the scope of the reaction, varying the starting materials (isatin, malononitrile, and barbituric acid). Overall, the twelve spiro compounds were synthesized in good yields (43-98%) and the X-ray structure of compound 1b was obtained. In addition, the in vitro antiproliferative activities of the spirocycles against four types of human cancer cell lines including HCT116 (human colon carcinoma), PC3 (prostate carcinoma), HL60 (promyelocytic leukemia), and SNB19 (astrocytoma) were screened by MTT-based assay. It is noteworthy that spiro compound 1c inhibited the four cell lines tested with the lowest IC50 values: 52.81 µM for HCT116, 74.40 µM for PC3, 101 µM for SNB19, and 49.72 µM for HL60.
Collapse
Affiliation(s)
- Regina Westphal
- Chemistry Department, Federal University of Espírito Santo, Fernando Ferrari Avenue 514, Vitória 29075-910, ES, Brazil
| | - Eclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Fernando Ferrari Avenue 514, Vitória 29075-910, ES, Brazil
| | - Laiza Bruzadelle Loureiro
- Institute of Chemistry, University of Campinas, Josué de Castro Street, Campinas 13083-970, SP, Brazil
| | - Cláudio Francisco Tormena
- Institute of Chemistry, University of Campinas, Josué de Castro Street, Campinas 13083-970, SP, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Celina de Jesus Guimarães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Mariana Palmeira Manso
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Rodolfo Goetze Fiorot
- Campus do Valonguinho, Institute of Chemistry, Fluminense Federal University, Niterói 24020-141, RJ, Brazil
| | - Vinicius Rangel Campos
- Campus do Valonguinho, Institute of Chemistry, Fluminense Federal University, Niterói 24020-141, RJ, Brazil
| | | | - Fabrizio Medici
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Sandro José Greco
- Chemistry Department, Federal University of Espírito Santo, Fernando Ferrari Avenue 514, Vitória 29075-910, ES, Brazil
- Correspondence:
| |
Collapse
|
7
|
Xu H, Qian C, Tan X, Xia W, Wu Y. Photocatalytic oxidation for efficient 4-chloro-guaiacol degradation over Co-doped graphitic carbon nitride and the effect of Co-doping concentration on optical properties of carbon nitride. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Magnetic silica nanocomposite supported W6O19/amine: A powerful catalyst for the synthesis of biologically active spirooxindole-pyrans. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Galehban MH, Zeynizadeh B, Mousavi H. Introducing Fe3O4@SiO2@KCC-1@MPTMS@CuII catalytic applications for the green one-pot syntheses of 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones and 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ganesh M, Suraj S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org Biomol Chem 2022; 20:5651-5693. [PMID: 35792116 DOI: 10.1039/d2ob00767c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spirocyclic frameworks have attracted synthetic practitioners due to their unique three-dimensional assembly, improved metabolic stability, solubility, and increased molecular complexity with regard to planar architectures. A recent surge in the number of spirocyclic oxindoles inhibiting enzymes, moderating unique protein-protein interactions, modulating receptors and transporters is testament to their prevalence. Against this background, the construction of spirocyclic frameworks containing an oxindole moiety as a torsional switch via stereoselective methods is in great demand. Herein we present a summary of the past three years in the progress of metal, organic molecule, nanostructured particle mediated, and even uncatalyzed versions of the highly diastereo- and enantioselective pathways leading to oxindole spirocycles.
Collapse
Affiliation(s)
- Madhu Ganesh
- Sudhanva Technologies Private Limited, No. 7, Weavers Colony, Basavanapura, Bengaluru, Karnataka 560083, India.
| | - Shammy Suraj
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
11
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
12
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
13
|
Environmentally friendly synthesis of Ag/SiO2 nanoparticles using Thymus kotschyanus extract and its application as a green catalyst for synthesis of spirooxindoles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Poor Heravi MR, Aghamohammadi P, Vessally E. Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro2-oxindole derivatives by highly efficient Fe3O4@SiO2@NH2@Pd(OCOCH3)2 nanocatalyst. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tian K, Hu L, Li L, Zheng Q, Xin Y, Zhang G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Dandia A, Mahawar DK, Saini P, Saini S, Gupta SL, Rathore KS, Parewa V. Site-specific role of bifunctional graphitic carbon nitride catalyst for the sustainable synthesis of 3,3-spirocyclic oxindoles in aqueous media. RSC Adv 2021; 11:28452-28465. [PMID: 35478581 PMCID: PMC9038049 DOI: 10.1039/d1ra03881h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphitic carbon nitride (Sg-C3N4) has been manufactured and used as a reusable catalyst for the one-pot production of various spiro-pyrano chromenes and spiro indole-3,1′-naphthalene tetracyclic systems in aqueous media. An ultrasound-assisted method has been used for the functionalization of g-C3N4. The catalytic functionalities and the structural integrity of the catalyst were characterized via different analytical tools. The catalytic site-specific role of Sg-C3N4 was confirmed via various control experiments in one-pot reaction sequences. We recognized that Sg-C3N4 acts as a bifunctional acid–base catalyst for the first reaction sequence whereas it is an acidic catalyst for the second reaction sequence during the one-pot production of various spiro-pyrano chromenes. In addition, the bifunctional acid–base catalytic role of Sg-C3N4 has been confirmed for the first reaction sequence whereas it has a basic catalytic role for the second reaction sequence during the one-pot production of spiro indole-3,1′-naphthalene tetracyclic systems. Diverse C–C, C–O, and C–N bonds, six-membered cycles, stereogenic centers, and spiro frameworks were formed in a single reaction, enhancing the biocidal profile and possibly resulting in the discovery of new medicinal properties. The mild reaction environment, simple workup, easy separation, low cost, heterogeneity, and recyclability of Sg-C3N4 are some rewards of this approach. Functionalized graphitic carbon nitride (Sg-C3N4) has been manufactured and used as a reusable catalyst for the one-pot production of various spiro-pyrano chromenes and spiro indole-3,1′-naphthalene tetracyclic systems in aqueous media.![]()
Collapse
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Dinesh Kumar Mahawar
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Pratibha Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Surendra Saini
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| | - Shyam L Gupta
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India .,Government Polytechnic College Near Itarana Fly Over, Kalimori Alwar Rajasthan 301001 India
| | - Kuldeep S Rathore
- Department of Physics, Arya College of Engineering and IT Jaipur India
| | - Vijay Parewa
- Centre of Advanced Studies, Department of Chemistry, University of Rajasthan Jaipur India
| |
Collapse
|
17
|
Sarkar FK, Gupta A, Jamatia R, Anal JMH, Pal AK. A green and sustainable approach for the synthesis of 1,5-benzodiazepines and spirooxindoles in one-pot using a MIL-101(Cr) metal–organic framework as a reusable catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj03176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Green and efficient protocols for the synthesis of 1,5-benzodiazepines and spirooxindoles were developed utilizing MIL-101(Cr) in SFRC and water as solvent respectively.
Collapse
Affiliation(s)
- Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Department of Chemistry, St. Joseph's College (Autonomous), #36 Lal Bagh Main Road, Shanti Nagar, Bangaluru 560027, Karnataka, India
| | - Ramen Jamatia
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Jasha Momo H. Anal
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Canal Road, Jammu 180001, India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|