1
|
Ren S, Wang Y, Shi L, Xu X, Zhong S, Hu K, Zhou H, Zhu ZS, Zhou P, Tian W, Zuo J, Yi J, Guan X, Duan X, Wang S. Transforming Plastics to Single Atom Catalysts for Peroxymonosulfate Activation: Axial Chloride Coordination Intensified Electron Transfer Pathway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415339. [PMID: 39757509 DOI: 10.1002/adma.202415339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Transforming plastics into single-atom catalysts is a promising strategy for upcycling waste plastics into value-added functional materials. Herein, a graphene-based single-atom catalyst with atomically dispersed FeN4Cl sites (Fe─N/Cl─C) is produced from high-density polyethylene wastes via one-pot catalytic pyrolysis. The Fe─N/Cl─C catalyst exhibited much higher turnover frequency and surface area normalized activity (Kac) compared with the Fe─N─C catalyst without axial Cl modulation. Both experiments and density functional theory (DFT) computations demonstrated that the axial incorporation of chloride fine-tuned the coordination environment of FeN4 sites and enhanced peroxymonosulfate (PMS) activation because of improved conductivity and modulated spin state. In situ, Raman, and infrared spectroscopic techniques revealed that PMS is activated by the Fe─N/Cl─C catalyst through an electron transfer process. The formation of a key PMS* intermediate at the Fe site effectively elevated the redox capacity of the catalyst surface to realize a fast degradation of diverse pollutants. The non-radical oxidation manner secures high selectivity toward target pollutants and high chemical utilization efficiency. A continuous operation in a column reactor also demonstrated the high efficiency and stability of the (Fe─N/Cl─C + PMS) system for practical water treatment.
Collapse
Affiliation(s)
- Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yantao Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Xu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kunsheng Hu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Peng Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jian Zuo
- School of Architecture and Built Environment, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, the University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiaohong Guan
- School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Palafox MA, Belskaya NP, Kostova IP. Study of the Molecular Architectures of 2-(4-Chlorophenyl)-5-(pyrrolidin-1-yl)-2 H-1,2,3-triazole-4-carboxylic Acid Using Their Vibrational Spectra, Quantum Chemical Calculations and Molecular Docking with MMP-2 Receptor. Pharmaceutics 2023; 15:2686. [PMID: 38140027 PMCID: PMC10747663 DOI: 10.3390/pharmaceutics15122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized by means of the B3LYP, M06-2X and MP2 quantum chemical methods, optimizing their monomer, cyclic dimer and stacking forms using the Gaussian16 program package. The molecular structure was found to be slightly out of plane. The good agreement between the IR and Raman bands experimentally observed in the solid state with those calculated theoretically confirms the synthesized structures. All of the bands were accurately assigned according to functional calculations (DFT) in the monomer and dimer forms, together with the polynomic scaling equation procedure (PSE). Therefore, the effect of the substituents on the triazole ring and the effect of the chlorine atom on the molecular structure and on the vibrational spectra were evaluated through comparison with its non-substituted form. Through molecular docking calculations, it was evaluated as to how molecule 1b interacts with few amino acids of the MMP-2 metalloproteinase receptor, using Sybyl-X 2.0 software. Thus, the relevance of triazole scaffolds in established hydrogen bond-type interactions was demonstrated.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nataliya P. Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., 620012 Yekaterinburg, Russia;
| | - Irena P. Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Alcolea Palafox M, Belskaya NP, Kostova IP. Peculiarities of the Spatial and Electronic Structure of 2-Aryl-1,2,3-Triazol-5-Carboxylic Acids and Their Salts on the Basis of Spectral Studies and DFT Calculations. Int J Mol Sci 2023; 24:14001. [PMID: 37762306 PMCID: PMC10531006 DOI: 10.3390/ijms241814001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular structure and vibrational spectra of six 1,2,3-triazoles-containing molecules with possible anticancer activity were investigated. For two of them, the optimized geometry was determined in the monomer, cyclic dimer and stacking forms using the B3LYP, M06-2X and MP2 methods implemented in the GAUSSIAN-16 program package. The effect of the para-substitution on the aryl ring was evaluated based on changes in the molecular structure and atomic charge distribution of the triazole ring. An increment in the positive N4 charge was linearly related to a decrease in both the aryl ring and the carboxylic group rotation, with respect to the triazole ring, and by contrast, to an increment in the pyrrolidine ring rotation. Anionic formation had a larger effect on the triazole ring structure than the electronic nature of the different substituents on the aryl ring. Several relationships were obtained that could facilitate the selection of substituents on the triazole ring for their further synthesis. The observed IR and Raman bands in the solid state of two of these compounds were accurately assigned according to monomer and dimer form calculations, together with the polynomic scaling equation procedure (PSE). The large red-shift of the C=O stretching mode indicates that strong H-bonds in the dimer form appear in the solid state through this group.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nataliya P. Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., 620012 Yekaterinburg, Russia;
| | - Irena P. Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav Str., 1000 Sofia, Bulgaria;
| |
Collapse
|
4
|
Palafox MA, Kattan D, de Pedraza Velasco ML, Isasi J, Posada-Moreno P, Rani K, Singh SP, Rastogi VK. Base pairs with 4-amino-3-nitrobenzonitrile: comparison with the natural WC pairs. Dimer and tetramer forms, Infrared and Raman spectra, and several proposed antiviral modified nucleosides. J Biomol Struct Dyn 2022:1-23. [PMID: 35583120 DOI: 10.1080/07391102.2022.2069864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Base pairs of 4-amino-3-nitrobenzonitrile (4A-3NBN) molecule with uracil, thymine and cytosine nucleobases were optimized and compared to natural Watson-Crick (WC) pairs. The slightly greater flexibility of the -NO2 group of 4A-3NBN than the N3-H group of the natural nucleobases together with a noticeable higher dipole moment of its pairs can facilitate disruption of the DNA/RNA helix formation. Several new mutagenic modified nucleosides with 4A-3NBN and 3-amino-2-nitrobenzonitrile (3A-2NBN) were proposed as antiviral prodrugs and their base pairs optimized. The special characteristics of these prodrugs appear appropriated for their clinical use. The counterpoise (CP) corrected interaction energies of the base pairs were calculated and compared to the natural ones. The M06-2X DFT method was used for this purpose. The molecular structure of 4A-3NBN was analyzed in detail and the crystal unit cell was simulated by a tetramer form and eight dimer forms. The performance of the B3LYP, X3LYP and M06-2X methods was tested on the vibrational wavenumbers in the monomer, dimer and tetramer forms of 4A-3NBN. The observed IR and Raman bands were assigned according to the optimum dimer II form determined by B3LYP and by the tetramer form calculated by M06-2X, which is the expected unit cell that forms the crystal net. The two best scaling procedures were used.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Alcolea Palafox
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - D Kattan
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - M L de Pedraza Velasco
- Dpto. de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, UCM, Madrid, Spain
| | - J Isasi
- Dpto. de Química Inorgánica, Facultad de Ciencias Químicas, UCM, Madrid, Spain
| | - P Posada-Moreno
- Dpto. de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, UCM, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Kaushal Rani
- Department of Physics, Meerut College, Meerut, India
| | - S P Singh
- Department of Physics, Dr B R Ambedkar College, Mainpuri, India
| | - V K Rastogi
- Indian Spectroscopy Society, Ghaziabad, India
| |
Collapse
|