1
|
El Moutaouakil Ala Allah A, Kariuki BM, Ameziane El Hassani I, Alsubari A, Guerrab W, Said MA, Ramli Y. 2-Chloro- N-(4-hy-droxy-phen-yl)acetamide. IUCRDATA 2024; 9:x241015. [PMID: 39712662 PMCID: PMC11660168 DOI: 10.1107/s2414314624010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hy-droxy-benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra-molecular C-H⋯O and N-H⋯Cl contacts. In the crystal, N-H⋯O hydrogen-bonding contacts between acetamide groups and O-H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].
Collapse
Affiliation(s)
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Issam Ameziane El Hassani
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatMorocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatMorocco
| | - Musa A. Said
- Department of Chemistry Faculty of Science Islamic University of Madinah, Madinah 42351 Saudi Arabia
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatMorocco
| |
Collapse
|
2
|
Assila H, Zaoui Y, Kalonji Mubengayi C, Guerrab W, Alsubari A, Mague JT, Ramli Y, Ansar M. Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro-phen-yl)meth-yl]-3-methyl-6-oxopyridazin-1-yl}- N-phenyl-acetamide. Acta Crystallogr E Crystallogr Commun 2024; 80:1221-1225. [PMID: 39712150 PMCID: PMC11660474 DOI: 10.1107/s2056989024010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
In the title mol-ecule, C20H18ClN3O2, the 2-chloro-phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl-acetamide moiety is nearly planar due to a weak, intra-molecular C-H⋯O hydrogen bond. In the crystal, N-H⋯O hydrogen bonds and π-stacking inter-actions between pyridazine and phenyl rings form helical chains of mol-ecules in the b-axis direction, which are linked by C-H⋯O hydrogen bonds and C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter-actions to dominate the inter-molecular contacts in the crystal.
Collapse
Affiliation(s)
- Hamza Assila
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Younes Zaoui
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Camille Kalonji Mubengayi
- Laboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales Kinshasa, Republique Democratique, du, Congo
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Mhammed Ansar
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| |
Collapse
|
3
|
Mortada S, Guerrab W, Missioui M, Salhi N, Naceiri Mrabti H, Rouass L, Benkirane S, Hassane M, Masrar A, Mezzour H, Faouzi MEA, Ramli Y. Synthesis, design, in silico, in vitro and in vivo (streptozotocin-induced diabetes in mice) biological evaluation of novels N-arylacetamide derivatives. J Biomol Struct Dyn 2024; 42:6711-6725. [PMID: 37583282 DOI: 10.1080/07391102.2023.2246574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
The organic compounds 2-chloro-N-(aryl)acetamide (Ps13-Ps18) and 2-azido-N-(aryl)acetamide (148-153) were synthesized and analyzed using 1 H, 13C NMR. The acute oral toxicity study was carried out according to OECD guidelines, which approve that the compounds (Ps18 and 153) were nontoxic. In addition, the compounds were evaluated for its antidiabetic and antihyperglycemic properties (in vitro and in vivo) and for antioxidant activity by utilizing several tests as 1,1-diphenyl2-picrylhydrazyl DPPH, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid) ABTS, reducing power test FRAP and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of Ps18 and 153 and compared with the experimental results. These compounds are a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of Ps18 and 153 have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- The Higher Institute of Nursing Professions and Health Techniques (ISPITS), Casablanca, Morocco
| | - Lamiaa Rouass
- UPR D'anatomie et Cytologie Pathologiques, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Souad Benkirane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Mamad Hassane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Azlarab Masrar
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Hicham Mezzour
- Laboratoire de Biologie de Larache (LBL), Larache, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| |
Collapse
|
4
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
5
|
Kothari M, Kannan K, Sahadevan R, Sadhukhan S. Novel molecular hybrids of EGCG and quinoxaline: Potent multi-targeting antidiabetic agents that inhibit α-glucosidase, α-amylase, and oxidative stress. Int J Biol Macromol 2024; 263:130175. [PMID: 38360242 DOI: 10.1016/j.ijbiomac.2024.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 μM (IC50 of acarbose 190 μM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 μM), much better than vitamin C (IC50 = 33.04 μM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 μM. No cytotoxicity was observed for 15c (up to 40 μM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Physical & Chemical Biology Laboratory and Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| |
Collapse
|
6
|
Mohd Radzuan SN, Phongphane L, Abu Bakar MH, Che Omar MT, Nor Shahril NS, Supratman U, Harneti D, Wahab HA, Azmi MN. Synthesis, biological activities, and evaluation molecular docking-dynamics studies of new phenylisoxazole quinoxalin-2-amine hybrids as potential α-amylase and α-glucosidase inhibitors. RSC Adv 2024; 14:7684-7698. [PMID: 38444963 PMCID: PMC10912921 DOI: 10.1039/d3ra08642a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 μM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 μM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 μM) and α-glucosidase (IC50 = 31.6 ± 0.4 μM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
Collapse
Affiliation(s)
| | - Lacksany Phongphane
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohammad Tasyriq Che Omar
- Biological Section, School of Distance Education, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Nor Shafiqah Nor Shahril
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| |
Collapse
|
7
|
Phongphane L, Mohd Radzuan SN, Abu Bakar MH, Che Omar MT, Supratman U, Harneti D, A Wahab H, Azmi MN. Synthesis, biological evaluation, and molecular modelling of novel quinoxaline-isoxazole hybrid as anti-hyperglycemic. Comput Biol Chem 2023; 106:107938. [PMID: 37542847 DOI: 10.1016/j.compbiolchem.2023.107938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.
Collapse
Affiliation(s)
- Lacksany Phongphane
- Natural Products and Synthesis Organic Research Laboratory (NPSO), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Siti Nurshahira Mohd Radzuan
- Natural Products and Synthesis Organic Research Laboratory (NPSO), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohammad Tasyriq Che Omar
- Biological Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Jatinangor, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Jatinangor, Indonesia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nurul Azmi
- Natural Products and Synthesis Organic Research Laboratory (NPSO), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
8
|
Sheikhi-Mohammareh S, Oroojalian F, Beyzaei H, Moghaddam-Manesh M, Salimi A, Azizollahi F, Shiri A. Domino protocol for the synthesis of diversely functionalized derivatives of a novel fused pentacyclic antioxidant/anticancer fluorescent scaffold: Pyrazolo[5'',1'':2',3']pyrimido[4',5':5,6][1,4]thiazino[2,3-b]quinoxaline. Talanta 2023; 262:124723. [PMID: 37245433 DOI: 10.1016/j.talanta.2023.124723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Rising to the challenge of formidable multi-step reaction needed for the synthesis of polycyclic compounds, an efficient one-pot two-step procedure for the synthesis of densely functionalized novel pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6] [1,4]thiazino[2,3-b]quinoxalines from synthetically accessible starting materials 6-bromo-7-chloro-3-cyano-2-(ethylthio)-5-methylpyrazolo[1,5-a]pyrimidine, 3-aminoquinoxaline-2-thiol and some readily accessible alkyl halides was established. The domino reaction pathway involves cyclocondensation/N-alkylation sequence in K2CO3/N,N-dimethyl formamide under heating condition. DPPH free radical scavenging activity of all synthesized pyrazolo[5″,1'':2',3']pyrimido[4',5':5,6][1,4]thiazino[2,3-b]quinoxalines was evaluated to determine their antioxidant potentials. IC50 values were recorded in the range of 29-71 μM. N-benzyl substituted derivative represented the most effective antioxidant activity as well as antiproliferative activity against MCF-7 cells. Moreover, fluorescence in solution for these compounds exhibited strong red emission in the visible region (λflu. = 536-558 nm) with good to excellent quantum yields (61-95%). Due to their interesting fluorescence properties, these novel pentacyclic fluorophores can be used as fluorescent markers and probes for studies in biochemistry and pharmacology.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Alireza Salimi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Azizollahi
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Nchioua I, Alsubari A, Mague JT, Ramli Y. Crystal structure and Hirshfeld surface analysis of N-(2,6-di-methyl-phen-yl)-2-[3-hy-droxy-2-oxo-3-(2-oxoprop-yl)indolin-1-yl]acetamide. Acta Crystallogr E Crystallogr Commun 2022; 78:922-925. [PMID: 36072528 PMCID: PMC9443800 DOI: 10.1107/s2056989022007848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The cup-shaped conformation of the title mol-ecule, C21H22N2O4, is largely determined by an intra-molecular N-H⋯O hydrogen bond. In the crystal, double layers of mol-ecules are formed by O-H⋯O and C-H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed, which confirms the regions that are active for inter-molecular inter-actions.
Collapse
Affiliation(s)
- Intissar Nchioua
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, 8 Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
10
|
Al-Radadi NS. Single-step green synthesis of gold conjugated polyphenol nanoparticle using extracts of Saudi's myrrh: Their characterization, molecular docking and essential biological applications. Saudi Pharm J 2022; 30:1215-1242. [PMID: 36249941 PMCID: PMC9562988 DOI: 10.1016/j.jsps.2022.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/25/2022] [Indexed: 01/16/2023] Open
Abstract
The progress in the innovative nanocrystal synthesis process by using environmentally benign and low-priced nontoxic chemicals, solvents, and renewable sources remains a challenging task for researchers worldwide. The majority of the existing synthesis techniques engage in the potentially dangerous, for either human health or the environment. Current investigation has been centered on green synthesis processes to create novel nanomaterials, which are eco-friendly as well as safer for sustainable marketable feasibility. The current work provides the green synthesis method for gold nanoparticle (GNPs) synthesis using Commiphora myrrh (C.myrrh) extract. This simple method includes 6 ml of HAuCl4·3H2O treated with 4 ml C.myrrh extract having pH 4.5 after 80 min at 25 °C temperature. In this novel method, green synthesized GNPs characterized by UV-Vis, X_ray diffraction spectroscopy (XRD), zeta potential, fourier transform infrared (FT_IR), high_resolution transmission electron microscopy (HR_TEM), energy dispersive X_ray spectroscopy (EDXA), and dynamic light scattering (DLS). During the development successful antioxidant assay, the DPPH assay was applied. The cell toxicity of green synthesized GNPs was evaluated following an MTT assay against HCT-116 (colon cancer) and MCF-7 (breast cancer). Besides molecular docking in the δ-elemene for inhibitor to VEGFR-2 domain revealed more negative docking score (-3.976) which is an excellent binding affinity to the C.myrrh@GNP. The synthesized GNPs showed antidiabetic, antibiotic, and antibacterial properties and anti_inflammatory inhibition against inhibiting COX-1, and COX-2 enzymes. In addition, molecular docking by Lindestrene (-3.806) and Furanoeudesma-1,3-dien (-3.912) against COX1 and COX2 respectively showed strong binding affinity. The molecular docking study evidenced the anti-inflammatory and cell toxicity study.
Collapse
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawarah 14177, Saudi Arabia
| |
Collapse
|
11
|
Missioui M, Guerrab W, Alsubari A, Mague JT, Ramli Y. Crystal structure and Hirshfeld surface analysis of 2-azido- N-(4-fluoro-phen-yl)acetamide. Acta Crystallogr E Crystallogr Commun 2022; 78:855-859. [PMID: 35974836 PMCID: PMC9361366 DOI: 10.1107/s2056989022006764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The asymmetric unit of the title compound, C8H7FN4O, consists of two independent mol-ecules differing in the orientation of the azido group. Each mol-ecule forms N-H⋯O hydrogen-bonded chains along along the c-axis direction with its symmetry-related counterparts and the chains are connected by C-F⋯π(ring), C=O⋯π(ring) and slipped π-stacking inter-actions. A Hirshfeld surface analysis of these inter-actions was performed.
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
12
|
Tok F, Küçükal B, Baltaş N, Tatar Yılmaz G, Koçyiğit-Kaymakçıoğlu B. Synthesis of novel thiosemicarbazone derivatives as antidiabetic agent with enzyme kinetic studies and antioxidant activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2099857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Bahar Küçükal
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Gizem Tatar Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
13
|
Missioui M, Guerrab W, Alsubari A, Mague JT, Ramli Y. 2-Azido- N-(4-methyl-phen-yl)acetamide. IUCRDATA 2022; 7:x220621. [PMID: 36341048 PMCID: PMC9635410 DOI: 10.1107/s2414314622006216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
The asymmetric unit of the title compound, C9H10N4O, comprises three independent mol-ecules, two pairs of which differ significantly in the rotational orientation of the azido group and one pair having very similar conformations; the N-N-C-C torsion angles are -173.9 (2), -102.7 (2) and -173.6 (2)°. In the crystal, each independent mol-ecule forms N-H⋯O hydrogen bonds with its glide-plane-related counterparts, forming zigzag chains extending along the c-axis direction.
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
14
|
Synthesis, anti-cancer activity and molecular docking studies of new nicotinamide containing EP4 antagonists. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Missioui M, Guerrab W, Nchioua I, El Moutaouakil Ala Allah A, Kalonji Mubengayi C, Alsubari A, Mague JT, Ramli Y. Crystal structure and Hirshfeld surface analysis of 2-chloro- N-(4-meth-oxy-phen-yl)acetamide. Acta Crystallogr E Crystallogr Commun 2022; 78:687-690. [PMID: 35855360 PMCID: PMC9260361 DOI: 10.1107/s205698902200576x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022]
Abstract
In the title mol-ecule, C9H10ClNO2, the meth-oxy group lies very close to the plane of the phenyl ring while the acetamido group is twisted out of this plane by 28.87 (5)°. In the crystal, a three-dimensional structure is generated by N-H⋯O, C-H⋯O and C-H⋯Cl hydrogen bonds plus C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis of the inter-molecular inter-actions was performed and indicated that C⋯H/H⋯C inter-actions make the largest contribution to the surface area (33.4%).
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Intissar Nchioua
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | | | - Camille Kalonji Mubengayi
- Laboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
16
|
Dabhi RA, Dhaduk MP, Bhatt VD, Bhatt BS. Synthetic approach toward spiro quinoxaline-β-lactam based heterocyclic compounds: Spectral characterization, SAR, pharmacokinetic and biomolecular interaction studies. J Biomol Struct Dyn 2022:1-17. [PMID: 35699269 DOI: 10.1080/07391102.2022.2086176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Series of spiro quinoxaline-β-lactam based heterocyclic compounds (QL 1 - QL 21) were synthesized and characterized by spectroscopic techniques like 1H-NMR, LC-MS, FT-IR spectroscopy and elemental analysis. The binding mode and binding strength between compounds and calf thymus-DNA were estimated by UV-visible spectroscopy, viscosity measurement and molecular docking studies. The compounds bind with the DNA through partial intercalation mode. In the absorption titration experiment, the Kb values for all the synthesized compounds were found in the range of 0.24-0.64 × 105 M-1. The protein binding studies of all the synthesized compounds were evaluated by absorption titration experiment, and the Kb value for all the compounds was obtained in the range of 0.030-1.571 × 104 M-1. The compounds were screened against two Gram (+ve) and three Gram (-ve) bacteria for antimicrobial activity. The MIC values for all the synthesized compounds were found in 95-255 µM. The LC50 values (cytotoxicity) of the synthesized compounds (QL 1-QL 21) were found in the range of 4.00-12.89 µg/mL. The ADME study was carried out using the online platform SwissADME and admetSAR to evaluate the pharmacokinetic profile of all the synthesized compounds. All the compounds were screened for anticancer activity against the human osteosarcoma (MG-63) cell line. The result shows that all the compounds exhibit effective anticancer activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi A Dabhi
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Milan P Dhaduk
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
17
|
Sharma RP, Mahajan S, Slathia N, Kapoor KK. FeCl 3 as an efficient catalyst for the synthesis of styrylquinoxalin-2(1 H)-ones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Sheena Mahajan
- CSIR-Indian Institute of Integrative Medicine, Natural Product and Medicinal Chemistry Division, Jammu, India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
18
|
Lahmidi S, Anouar EH, Mortada S, El Hafi M, My El Abbes F, Essassi EM, Mague JT. Synthesis, structural characterization, antioxidant and antidiabetic activities, DFT calculation, and molecular docking of novel substituted phenolic and heterocyclic compounds. J Biomol Struct Dyn 2022; 41:4167-4179. [PMID: 35442168 DOI: 10.1080/07391102.2022.2064913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current work describes the preparation of three unexpected compounds: a tetrasubstituted phenolic compound, an isocoumarin, and a pyranopyridine, bearing various substituent groups obtained through the condensation of 6-methyl-4-hydroxypyran-2-one 1 with 2-aminopyridine 2 under mild conditions. Plausible mechanisms explaining the formation of these compounds have been presented. Their structures have been elucidated using spectral data and confirmed by crystallographic studies. Furthermore, optimized geometries of and electronic distribution of FMOs orbitals are investigated in the PCM solvent model at the B3LYP/6-311++G(d,p) level of theory. The compounds were tested for their antioxidant and antidiabetic activities. Moreover, the binding interactions between the compounds and α-glucosidase and α-amylase were determined through their docking into the binding sites of the target enzymes using the Autodock package.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanae Lahmidi
- Laboratoire de Chimie Organique Hétérocyclique, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salma Mortada
- Laboratoire de Pharmacologie et Toxicology, Université Mohammed V de Rabat, Faculté de Médecine et de Pharmacie, Rabat, Morocco
| | - Mohamed El Hafi
- Laboratoire de Chimie Organique Hétérocyclique, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Faouzi My El Abbes
- Laboratoire de Pharmacologie et Toxicology, Université Mohammed V de Rabat, Faculté de Médecine et de Pharmacie, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratoire de Chimie Organique Hétérocyclique, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| |
Collapse
|
19
|
Missioui M, Mortada S, Guerrab W, Demirtaş G, Mague JT, Ansar M, El Abbes Faouzi M, Essassi E, Mehdar YT, Aljohani FS, Said MA, Ramli Y. Greener Pastures in Evaluating Antidiabetic Drug for a Quinoxaline Derivative: Synthesis, Characterization, Molecular Docking, in Vitro and HSA/DFT/XRD Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Mortada S, Missioui M, Guerrab W, Demirtaş G, Mague JT, Faouzi MEA, Ramli Y. New styrylquinoxaline: synthesis, structural, biological evaluation, ADMET prediction and molecular docking investigations. J Biomol Struct Dyn 2022; 41:2861-2877. [PMID: 35174770 DOI: 10.1080/07391102.2022.2040592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organic compound (E)-3-(4-methylstyryl)quinoxalin-2(1H)-one (SQO) with molecular formula C17H14N2O was synthesized and analyzed using single crystal X-ray diffraction, 1H, 13C NMR and FTIR spectroscopic techniques. The geometric parameters of the molecule was optimized by density-functional theory (DFT) choosing B3LYP with 6-31++G(d,p) basis set. For compatibility, the theoretical structure and experimental structure were overlapped with each other. Frontier molecular orbitals of the title compound were made, and energy gap between HOMO and LUMO was calculated. Molecular electrostatic potential map was generated finding electrophilic and nucleophilic attack centers using DFT method. Hirshfeld surface analysis (HSA) confirms active regions at the circumference of N1 atoms and O1 atoms that form intermolecular N1-H1···O1 hydrogen bond. The acute oral toxicity study was carried out according to OECD guideline, which approve that the compound SQO was non-toxic. In addition, this quinoxaline derivative was evaluated for its in vitro antidiabetic activity against α-glucosidase and α-amylase enzymes and for antioxidant activity by utilizing several tests as 1,1-diphenyl-2-picryl hydrazyl, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid), reducing power test (FRAP) and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of SQO and compared with the experimental results. SQO is a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of SQO have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Güneş Demirtaş
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - My El Abbes Faouzi
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
21
|
Direct C‐2 arylation of quinoxaline with arylhydrazine salts as arylation reagents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
23
|
Missioui M, Said MA, Demirtaş G, Mague JT, Al-Sulami A, Al-Kaff NS, Ramli Y. A possible potential COVID-19 drug candidate: Diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate: Docking of disordered independent molecules of a novel crystal structure, HSA/DFT/XRD and cytotoxicity. ARAB J CHEM 2022; 15:103595. [PMID: 34909067 PMCID: PMC8627592 DOI: 10.1016/j.arabjc.2021.103595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 01/25/2023] Open
Abstract
This study reports the synthesis, characterization and importance of a novel diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate (MQOAHM). Two independent molecular structures of the disordered MQOAHM have been established by XRD‑single‑crystal analysis in a ratio of 0.596(3)/0.404(3), MQOAHM (a) and MQOAHM (b), respectively. MQOAHM was characterized by means of various spectroscopic tools ESI-MS, IR, 1H &13C NMR analyses. Density Functional Theory (DFT) method, B3LYP, 6-311++G(d,p) basis set was used to optimize MQOAHM molecule. The obtained theoretical structure and experimental structure were superimposed on each other, and the correlation between them was calculated. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) were created, and the energy gap between these orbitals was calculated. For analyzing intermolecular interactions, Molecular Electrostatic Potential (MEP) and Hirshfeld Surface Analysis were studied. For a fair comparative study, the two forms of the title compound were docked together with 18 approved drugs and N3 under precisely the same conditions. The disordered molecule structure's binding scores against 7BQY were -7.0 and -6.9 kcal/mol-1 for MQOAHM (a) and MQOAHM (b), respectively. Both the forms show almost identical superimposed structures and scores indicating that the disorder of the molecule, in this study, has no obvious effect. The high binding score of the molecule was attributed to the multi-hydrogen bond and hydrophobic interactions between the ligand and the receptor's active amino acid residues. Worth pointing out here that the aim of using the free energy in Silico molecular docking approach is to rank the title molecule compared to the wide range of approved drugs and a well-established ligand N3. The binding scores of all the molecules used in this study are ranged from -9.9 to -4.5 kcal/mol-1. These results and the supporting statistical analyses suggest that this malonate-based ligand merits further research in the context of possible therapeutic agents for COVID-19. Cheap computational techniques, PASS, Way2drug and ADMET, online software tools, were used in this study to uncover the title compound's potential biological activities and cytotoxicity.
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Musa A. Said
- College of Science, Taibah University, PO Box 30002, Al-Madinah Al Munawarah, 1417, Saudi Arabia
| | - Güneş Demirtaş
- Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Ahlam Al-Sulami
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nadia S. Al-Kaff
- College of Science, Taibah University, PO Box 30002, Al-Madinah Al Munawarah, 1417, Saudi Arabia
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco,Corresponding author
| |
Collapse
|
24
|
Satyanarayana N, Boddu R, Sathish K, Nagaraju S, K D, Pawar R, Shirisha T, Kashinath D. Synthesis of 2-styryl-quinazoline and 3-styryl-quinoxaline based sulfonate esters via sp3 C-H activation and their evaluation for α-glucosidase inhibition. NEW J CHEM 2022. [DOI: 10.1039/d1nj05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 2-styryl-quinazolines and 3-styryl-quinoxaline based sulfonates is reported via sp3 C-H functionalization in the presence of triethylamine (10 mol%). The resulting compounds were tested for the α-glucosidase enzyme inhibition...
Collapse
|
25
|
Ahamed JI, Ramkumaar G, Kamalarajan P, Narendran K, Valan M, Sundareswaran T, Sundaravadivel T, Venkatadri B, Bharathi S. Novel quinoxaline derivatives of 2, 3-diphenylquinoxaline-6-carbaldehyde and 4, 4′-(6-methylquinoxaline-2,3-diyl)bis(N,N-diphenylaniline): Synthesis, structural, DFT-computational, molecular docking, antibacterial, antioxidant, and anticancer studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Missioui M, Said MA, Demirtaş G, Mague JT, Ramli Y. Docking of disordered independent molecules of novel crystal structure of (N-(4-methoxyphenyl)-2-(3-methyl-2-oxo-3,4-dihydroquinoxalin-1(2H)-yl)acetamide as anti-COVID-19 and anti-Alzheimer's disease. Crystal structure, HSA/DFT/XRD. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
28
|
Üstün E, Şahin N, Çelik C, Tutar U, Özdemir N, Gürbüz N, Özdemir İ. Synthesis, characterization, antimicrobial and antibiofilm activity, and molecular docking analysis of NHC precursors and their Ag-NHC complexes. Dalton Trans 2021; 50:15400-15412. [PMID: 34647935 DOI: 10.1039/d1dt02003j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microorganisms attach to surfaces and interfaces and form biofilms which create a sheltered area for host cell response. Therefore, biofilms provide troubles in fields such as medicine, food, and pharmaceuticals. Inhibition of formation of biofilms through hindering of quorum sensing could be a method for the production of new generation antibiotics. In this study, four new benzimidazole type NHC precursors (1-allyl-3-benzyl-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,4,6-trimethylbenzyl)-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,3,5,6-tetramethylbenzyl)-5,6-dimethylbenzimidazolium chloride, and 1-allyl-3-(2,3,4,5,6-pentamethylbenzyl)-5,6-dimethylbenzimidazolium chloride and Ag-NHC complexes of these molecules were synthesized and characterized by elemental analysis, FT-IR spectroscopy, 1H, and 13C{1H} NMR spectroscopy, LC-MS, and single crystal crystallography. Antimicrobial and biofilm formation inhibition activities of the molecules were evaluated. In addition, the activities of the molecules were examined in detail by molecular docking analysis. According to the results obtained, higher activity was achieved with the complex molecules when compared with the benzimidazole derivative ligands.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey.
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
| | - Cem Çelik
- Department of Medical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Uğur Tutar
- Department of Botanica, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| |
Collapse
|