1
|
Alotaibi MO, Alotaibi NM, Alwaili MA, Alshammari N, Adnan M, Patel M. Natural sapogenins as potential inhibitors of aquaporins for targeted cancer therapy: computational insights into binding and inhibition mechanism. J Biomol Struct Dyn 2025; 43:3613-3634. [PMID: 38174738 DOI: 10.1080/07391102.2023.2299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| |
Collapse
|
2
|
Washmin N, Sarmah P, Konwar P, Borah T, Saikia J, Phukan A, Banik D. Impact of Different Drying Techniques on Parkia timoriana Pods: Physicochemical, Nutritional, and Bioactive Insights Through In Vitro and In Silico Approaches. J Food Sci 2025; 90:e70228. [PMID: 40285454 DOI: 10.1111/1750-3841.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Parkia timoriana (Yongchak) is a nutrient-rich, underutilized tree bean widely consumed in northeast India and used traditionally against various ailments. In this study, the different parts of P. timoriana pods (outer pulp [OP], seeds, and whole pods) were processed through four different drying techniques: sun-, oven-, microwave-, and freeze-drying. Further, the study aimed to evaluate the effect of these drying techniques on the physicochemical and nutritional properties of P. timoriana pods, along with the antioxidant and antidiabetic potential of their extracts. In addition, a computational approach, incorporating molecular docking and molecular dynamics simulation, was conducted on 42 previously reported bioactive compounds of P. timoriana pods against α-amylase as target protein, with acarbose as reference. The findings indicated that the seeds of P. timoriana showed the highest protein (31.73 mg/100 g dry weight [DW]) and fat (21.48 mg/100 g DW) contents, whereas carbohydrate (42.59 mg/100 g DW), crude fiber (22.40 mg/100 g DW), and ash (10.40 mg/100 g DW) contents were highest in OP. Moreover, highest phenolic contents (47.68 mg GAE/g), with stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging (IC50: 19.12 µg/mL) and α-amylase inhibitory (IC50: 319.55 µg/mL) activities, were observed in OP extracts. Among the drying methods, sun- and freeze-drying provided higher yield, better rehydration, physical stability, enhanced antioxidant properties, and α-amylase inhibition. All the dehydration methods showed good retention of all the minerals. Further, molecular docking and MD simulation determined stigmasterol (-9.5 kcal/mol) as the potential inhibitor against α-amylase. This study can be helpful in the future utilization of the pods as food additives and as dietary supplements for managing diabetes. PRACTICAL APPLICATION: This study validated the nutritional, physicochemical, and antidiabetic properties of Parkia timoriana pods through in vitro and in silico approaches. These pods can be helpful in the future utilization in functional food development as nutrient-rich food additives and dietary supplements for managing diabetes. This study also concluded that sun- and freeze-drying techniques proved to be commercially beneficial in increasing the shelf life and preserving the nutritional quality of P. timorina pods.
Collapse
Affiliation(s)
- Nooreen Washmin
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prasanna Sarmah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Parthapratim Konwar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Twinkle Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankana Phukan
- Analytical Chemistry Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Huang B, Lin B, Zheng H, Zheng B, Xue X, Liu M. Discovery of natural products as influenza neuraminidase inhibitors: in silico screening, in vitro validation, and molecular dynamic simulation studies. Mol Divers 2025:10.1007/s11030-025-11115-8. [PMID: 39888540 DOI: 10.1007/s11030-025-11115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025]
Abstract
Influenza is a highly contagious respiratory illness that imposes a significant global burden. Antiviral neuraminidase inhibitors (NAIs) such as oseltamivir (OC) have been proven essential, but the emergence of resistant viral strains necessitates the development of novel therapies. This study explored the potential of natural products as alternative NAIs. We used virtual screening against the Chinese Ethnic Characteristic Drug Database, followed by Quantum Mechanics/Molecular Mechanics Generalized Born Surface Area (QM/MM-GBSA) rescoring with ligands treated as QM region. Compounds preserved from docking-based virtual screening were reranked based on QM/MM-GBSA scores, and the top 15 compounds with binding free energy lower than that of native inhibitor OC were selected for NA inhibitory assay. Among the tested compounds, compounds T6S0444 (Salvianolic acid A) demonstrated significant inhibitory activity against both wild-type and H274Y-mutated influenza NAs, suggesting their potential as novel anti-influenza agents. Specifically, compound T6S0444 exhibited greater inhibitory activity against N2-H274Y than the wild-type N2, with IC50 values of 5.3 ± 0.4 µM and 12.8 ± 1.2 µM, respectively. This distinctive selectivity for mutant viral strains is not observed in current antiviral drugs for influenza. Furthermore, these compounds demonstrated low cytotoxicity, indicating their potential as safe anti-influenza agents. In summary, we have identified a promise NA inhibitor, T6S0444, a potential therapeutic for the treatment of oseltamivir-resistant influenza.
Collapse
Affiliation(s)
- Binglin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Bijuan Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Hansen Zheng
- Department of Information Management, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Bin Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
4
|
Unsal V, Oner E, Yıldız R, Mert BD. Comparison of new secondgeneration H1 receptor blockers with some molecules; a study involving DFT, molecular docking, ADMET, biological target and activity. BMC Chem 2025; 19:4. [PMID: 39755645 DOI: 10.1186/s13065-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating. Since drug development is an extremely risky, costly and time-consuming process, the data obtained in this study will facilitate and guide future studies. It will also enable researchers to focus on the most promising compounds, providing an effective design strategy. Their pharmacological activity was carried out using computer-based computational techniques including DFT, molecular docking, ADMET analysis, biological targeting, and activity methods. The best binding sites of Desloratadine, Levocetirizine, Fexofenadine, CAPE, Quercetin, Melatonin, curcumin, Vitamin C ligands to Desmoglein 1, Human Histamine H1 receptor, IgE and IL13 protons were determined by molecular docking method and binding energy and interaction states were analyzed. Fexofenadine and Quercetin ligand showed the most effective binding affinity. Melatonin had the best Caco-2 permeability PPB values of Quercetin, CAPE and Curcumin were at optimal levels. On the OATP1B1 and OATP1B3 of curcumin and CAPE, Quercetin was found to have strong inhibition effects on BCRP. Melatonin and CAPE were found to have the highest inhibition values on CYP1A2, while CAPE had the highest inhibition values on CYP2C19 and CYP2C9. Vitamin C and Quercetin were found to be safer in terms of cardiac toxicity and mutagenic risks, while Desloratadine and Levocetirizine carried high risks of neurotoxicity and hematotoxicity, while CAPE was noted for its high enzyme inhibitory activities and low toxicity profiles, while the hERG blockade, DILI, and cytotoxicity values of other compounds pointed to various safety concerns. This study demonstrated the potential of machine learning methods in understanding and discovering H1 receptor blockers. The results obtained provide important clues in the development of important strategies in the clinical use of H1 receptor blockers. In the light of these data, CAPE and Quercetin are remarkable molecules.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye.
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, 02000, Adıyaman, Türkiye
| | - Reşit Yıldız
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye
| | - Başak Doğru Mert
- Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye
| |
Collapse
|
5
|
Reheim MAMA, Ghazal B, Abdelhamid SA, Elhagali GAM, El-Gaby MSA. Fluorinated Sulfonamides: Synthesis, Characterization, In Silico, Molecular Docking, ADME, DFT Predictions, and Structure-Activity Relationships, as Well as Assessments of Antimicrobial and Antioxidant Activities. Drug Dev Res 2024; 85:e70029. [PMID: 39676585 DOI: 10.1002/ddr.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
The design and synthesis of unique two series of fluorinated sulfonamides 3a-f and 5a-g utilizing nucleophilic aromatic substitution reactions of tetrafluorophthalonitrile 1 with various sulfonamides 2 under a variety of different reactions conditions were the key goals of the current research. The chemical composition of the generated products has been investigated via mass spectroscopy, 1HNMR, 13CNMR, infrared, and elemental analyzes. Antimicrobial studies were conducted in vitro to evaluate the activity of all new synthesized compounds against resistant strains. The first series showed high potency in very low concentrations. All compounds were studied against DPPH Radical Scavenging Activity and the other series showed high activity even in low molar ratio. In silico molecular docking was used to investigate the potential binding pathways for different receptors: dihydroprotien synthase protein (ID Code: 1AJ0) as an antibacterial and EGFRWT co-crystallized with erlotinib [PDB ID code 1m17]. Furthermore, synthesized compounds with good ADME predictions to the Lipinski rule of five demonstrated that the recently synthesized compounds had high drug-likeness qualities when the physicochemical parameter for the most powerful novel candidates was determined. Moreover, the DFT/B3LYP method functionalized with a 6-31G (d, p) basis set was employed to calculate quantum parameters, MEP analysis, HUMO, and LUMO.
Collapse
Affiliation(s)
| | - Basma Ghazal
- Organometallic and Organometalloid Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Gameel A M Elhagali
- Chemistry Department, Faculty of Science (Boys), Nasr City, Al-Azhar University, Cairo, Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Nasr City, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Sonu, YT K, Gautam GK, Mishra AK, Parveen BR, Kumar A, Singh M, Singh H. Synthesis, characterization, molecular docking and pharmacological evaluation of isoxazole derivatives as potent anti-inflammatory agents. Heliyon 2024; 10:e40300. [PMID: 39641075 PMCID: PMC11617876 DOI: 10.1016/j.heliyon.2024.e40300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background The present study is aimed to investigate the anti-inflammatory activities of thirteen substituted-isoxazole derivatives (5a-5m). Isoxazole is a key pharmacophore in medicinal chemistry, known for its broad range of pharmacological activities.This study explores the synthesis and anti-inflammatory potential of thirteen substituted-isoxazole derivatives (5a-5m), with 5c, 5d, 5e, and 5g being novel compounds. Objectives The primary objectives were to synthesize some novel substituted isoxazole derivatives, evaluate their interaction with cyclooxygenase (COX-1/2) enzymes through computational methods, and assess their anti-inflammatory effectiveness in laboratory animals. Methods Substituted chalcones (0.01 mol) (2a-2m), sodium ethoxide (0.01 mol), and hydroxylamine hydrochloride (0.01 mol) were dissolved in absolute ethanol (15 ml), and then the mixture was refluxed for 6 h in an oil bath and monitored by TLC (ethyl acetate:hexane 7:3 v/v as eluent; a UV lamp was used to visualize the plates). After the completion of the reaction, as per TLC, the contents of the reaction mixture were poured into ice-cold water (50 ml). The obtained precipitates were filtered, washed two times, dried for 2 h at room temperature, and then recrystallized with ethenol. The structures of these compounds were confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR) spectroscopy, carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy, and mass spectrometry. Anti-inflammatory activity was evaluated using the carrageenan-induced rat paw edema method. Results The results indicated that three compounds (5b, 5c, and 5d) demonstrated significant in vivo anti-inflammatory potential (% edema inhibition 75.68, 74.48, & 71.86 in 2 h and 76.71, 75.56, & 72.32 in 3 h) with modest effectiveness (0.83, 0.81 & 0.71), low toxicity, and minimal adverse effects. The molecular docking analyses further elucidated the interaction with the active site COX-2 enzyme (PDB ID: 4COX) using Autodock Vina. The compounds 5b, 5c, and 5d -8.7, -8.5, and -8.4 indicate good binding affinity (kcal/mol) and H-bond interaction with residues such as Cys41, Ala151, and Arg120 for COX-2, which also carried out RMSD values of 2.174, 41.13, and 22.25, which are decisive for the reported anti-inflammatory activity of diverse compounds. Conclusions The findings indicate that isoxazole derivatives have modest antiinflammatory potential, with compounds (5b, 5c, and 5d) acting as lead molecules to be studied further for pain relief with fewer adverse effects.
Collapse
Affiliation(s)
- Sonu
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, 244102, Moradabad, India
- Department of Pharmaceutical Chemistry, Shri Ram College of Pharmacy, Muzaffarnagar, 251001, India
| | - Kamal YT
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 611441, Saudi Arabia
| | - Girendra Kumar Gautam
- Department of Pharmaceutical Chemistry, Shri Ram College of Pharmacy, Muzaffarnagar, 251001, India
| | - Arun Kumar Mishra
- Drug Design Laboratory, SOS School of Pharmacy, IFTM University, 244102, Moradabad, India
| | - Baby Rabiya Parveen
- Drug Design Laboratory, SOS School of Pharmacy, IFTM University, 244102, Moradabad, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, 244102, Moradabad, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, 244102, Moradabad, Uttar Pradesh, India
| | - Harpreet Singh
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, 244102, Moradabad, India
| |
Collapse
|
7
|
Umar AK, Roy D, Abdalla M, Modafer Y, Al-Hoshani N, Yu H, Zothantluanga JH. In-silico screening of Acacia pennata and Bridelia retusa reveals pinocembrin-7-O-β-D-glucopyranoside as a promising β-lactamase inhibitor to combat antibiotic resistance. J Biomol Struct Dyn 2024; 42:8800-8812. [PMID: 37587843 DOI: 10.1080/07391102.2023.2248272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The β-lactamase of Pseudomonas aeruginosa is known to degrade β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems. With the discovery of an extended-spectrum β-lactamase in a clinical isolate of P. aeruginosa, the bacterium has become multi-drug resistant. In this study, we aim to identify new β-lactamase inhibitors by virtually screening a total of 43 phytocompounds from two Indian medicinal plants. In the molecular docking studies, pinocembrin-7-O-β-D-glucopyranoside (P7G) (-9.6 kcal/mol) from Acacia pennata and ellagic acid (EA) (-9.2 kcal/mol) from Bridelia retusa had lower binding energy than moxalactam (-8.4 kcal/mol). P7G and EA formed 5 (Ser62, Asn125, Asn163, Thr209, and Ser230) and 4 (Lys65, Ser123, Asn125, and Glu159) conventional hydrogens bonds with the active site residues. 100 ns MD simulations revealed that moxalactam and P7G (but not EA) were able to form a stable complex. The binding free energy calculations further revealed that P7G (-59.6526 kcal/mol) formed the most stable complex with β-lactamase when compared to moxalactam (-46.5669 kcal/mol) and EA (-28.4505 kcal/mol). The HOMO-LUMO and other DFT parameters support the stability and chemical reactivity of P7G at the active site of β-lactamase. P7G passed all the toxicity tests and bioavailability tests indicating that it possesses drug-likeness. Among the studied compounds, we identified P7G of A. pennata as the most promising phytocompound to combat antibiotic resistance by potentially inhibiting the β-lactamase of P. aeruginosa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dhritiman Roy
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yosra Modafer
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Han Yu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
8
|
Mohamed RS, Fouda K, Maghraby AS, Assem FM, Menshawy MM, Zaghloul AH, Abdel-Salam AM. Hepato-renal protective impact of nanocapsulated Petroselinum crispum and Anethum graveolens essential oils added in fermented milk against some food additives via antioxidant and anti-inflammatory effects: In silico and in vivo studies. Heliyon 2024; 10:e36866. [PMID: 39286161 PMCID: PMC11403541 DOI: 10.1016/j.heliyon.2024.e36866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The study assessed the efficacy of parsley and dill essential oils (EOs) nanocapsules incorporated into fermented milk in hepato-renal protection against specific food additives. A molecular docking assay was conducted between parsley and dill EOs bioactive molecules and inflammatory cytokines. Freeze-dried parsley and dill EOs nanocapsules were developed, characterized for their morphological structure, particle size, zeta potential, polydispersity index and encapsulation efficiency and assessed in fast green dye and sodium benzoate (SB) combination-treated rats. The docking results revealed that the primary constituents of parsley and dill EOs (apiol, myristicin, α-pinene, (-)-carvone, and d-limonene) interacted with the active sites of TNF-α, IL-1β and TGF-1β cytokines with hydrophobic and hydrogen bond interactions. D-limonene had the highest binding affinity (6.4 kcal/mol) for the TNF-α. Apiol and myristicin had the highest binding affinity (5.1, 5.0, 5.0 and 5.0 kcal/mol, respectively) for the IL-1β and TGF-β1 receptors. Biochemically and histopathologically, the excessive co-administration of fast green and SB revealed adverse effects on the liver and the kidney. Whereas the treatment with parsley and dill EOs nanocapsules afford hepato-renal protective effects as manifested by suppression the elevated liver and kidney functions. Parsley and dill EOs nanocapsules showed a significant reduction of the liver (64.08 and 80.5 pg/g, respectively) and kidney (59.3 and 83.6 pg/g, respectively) ROS. Moreover, parsley and dill EOs nanocapsules down-regulated the liver and the kidney inflammatory cytokines (IL-6, TNF-α, IL-1β and TGF-1β) and lipid peroxidation and up-regulated the antioxidant enzymes. In conclusion, the data suggest a potential hepato-renal protective effects of parsley and dill EOs nanocapsules.
Collapse
Affiliation(s)
- Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amany S Maghraby
- Department of Therapeutic Chemistry, research group immune-and bio-markers for infection, the Center of Excellent for Advanced Science (CEAS), National Research Centre, Dokki, Cairo, Egypt
| | - Fayza M Assem
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Medhat M Menshawy
- College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed H Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
9
|
Rudrala LC, Challa RR, Subramanyam S, Ayyappa Gouru S, Singh G, Sirisha Mulukuri NVL, Pasala PK, Dintakurthi PSNBK, Gajula S, Rudrapal M. Cerebroprotective Potential of Andrographolide Nanoparticles: In silico and In vivo Investigations. Drug Res (Stuttg) 2024; 74:335-346. [PMID: 38991529 DOI: 10.1055/a-2345-5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain oxidative stress and inflammation. Docking studies revealed a binding energy of - 6.1 kcal/mol for AG, while the co-crystallized ligand (CCl) exhibited a binding energy of - 7.3 kcal/mol with NOS. AG demonstrated favourable hydrogen bond interactions with amino acids ASN A:354 and ARG A:388 and hydrophobic interactions with GLU A:377. Molecular dynamics simulations throughout 100 ns indicated a binding affinity of - 27.65±2.88 kcal/mol for AG, compared to - 18.01±4.02 kcal/mol for CCl. These findings suggest that AG possesses a superior binding affinity for NOS compared to CCl, thus complementing the stability of NOS at the docked site.AG has limited applications owing to its low bioavailability, poor water solubility, and high chemical and metabolic instability.The fabrication method was employed in the preparation of AGNP, SEM analysis confirmed spherical shape with size in 19.4±5 nm and investigated the neuroprotective effect in cerebral stroke rats induced by 30 min of carotid artery occlusion followed by 4 hr reperfusion, evaluated by infarction size, ROS/RNS via GSH, MPO, NO estimationand AchE activity, and monitoring EEG function. Cortex and hippocampal histology were compared between groups. AGNP treatment significantly decreased Infarction size and increased GSH levels (p<0.01**), decreased MPO (p<0.01**), NO (p<0.01**), AchE (p<0.01**), restored to normal EEG amplitude, minimizing unsynchronized polyspikes and histological data revealed that increased pyramidal cell layer thickness and decreased apoptotic neurons in hippocampus, cortex appeared normal neurons with central large vesicular nuclei, containing one or more nucleoli in compared to AG treatment. Based on brain biochemical, histopathology reports AGNP exhibited significant cerebroprotective activity compared to AG on ischemic rats.
Collapse
Affiliation(s)
- Lakshmi Charitha Rudrala
- Department of Pharmacology, SKU College of Pharmaceutical Sciences, S. K. University, Anantapur, India
| | | | - Sibbala Subramanyam
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | | | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | | | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapur, India
| | | | - Somasekhar Gajula
- Department of Pharmacology, SKU College of Pharmaceutical Sciences, S. K. University, Anantapur, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| |
Collapse
|
10
|
Hatanaka R, Taguchi A, Nagao Y, Yorimoto K, Takesato A, Masuda K, Ono T, Samukawa Y, Tanizawa Y, Ohta Y. The flavonoid Sudachitin regulates glucose metabolism via PDE inhibition. Heliyon 2024; 10:e35978. [PMID: 39224336 PMCID: PMC11367099 DOI: 10.1016/j.heliyon.2024.e35978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Sudachitin, a member of the flavonoid family, reportedly improves glucose metabolism after long-term administration, but details of the underlying mechanisms are unknown. We found that Sudachitin approximately doubles insulin secretion under high glucose concentrations in mouse pancreatic islets and MIN6 cells. When Sudachitin was orally administered to mice, early-phase insulin secretion was increased and a 30 % reduction in blood glucose levels was demonstrated 30 min after glucose loading. Insulin tolerance tests also showed Sudachitin to increase systemic insulin sensitivity. Additionally, we observed that Sudachitin raised intracellular cAMP levels in pancreatic islets. Phosphodiesterase (PDE) activity assays revealed Sudachitin to inhibit PDE activity and computer simulations predicted a high binding affinity between PDEs and Sudachitin. These findings suggest that Sudachitin enhances both insulin secretion and insulin sensitivity via an increase in intracellular cAMP resulting from PDE inhibition. These insights may facilitate understanding the mechanisms underlying the regulation of glucose metabolism by Sudachitin and other isoflavones.
Collapse
Affiliation(s)
- Ryoko Hatanaka
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yuko Nagao
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kaito Yorimoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akari Takesato
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Konosuke Masuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Takao Ono
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yoshishige Samukawa
- Quality Assurance Headquarters, Taisho Pharmaceutical Co., Ltd., 3-24-1, Takada, Toshima-ku, Tokyo, 170-8633, Japan
| | - Yukio Tanizawa
- Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8511, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
11
|
Gebrehiwot H, Ensermu U, Dekebo A, Endale M, Nefo Duke T. In Vitro Antibacterial and Antioxidant Activities, Pharmacokinetics, and In Silico Molecular Docking Study of Phytochemicals from the Roots of Ziziphus spina-christi. Biochem Res Int 2024; 2024:7551813. [PMID: 39263680 PMCID: PMC11390196 DOI: 10.1155/2024/7551813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024] Open
Abstract
Ziziphus spina-christi (Rhamnaceae family) is a medicinal plant traditionally used to treat dandruff, wounds, hair loss, diarrhea, mastitis, abdominal pain, and gastrointestinal complications. To support this, the present work aims to study the in vitro antibacterial and antioxidant activities of compound isolates from the roots of Ziziphus spina-christi along with their in silico computational analyses. Compounds were isolated on silica gel column chromatography and an agar disc diffusion and DPPH radical scavenging assays were employed to study the antibacterial and antioxidant activities, respectively. The ADME and toxicity properties of the compounds were evaluated using SwissADME and ProTox-II online Web tools, respectively. Conversely, the in silico molecular docking studies were attained via a Biovia Discovery Studio Visualizer 2021 in combination with the AutoDock Vina software. The silica gel chromatographic separation of the combined CH2Cl2 : CH3OH (1 : 1) and CH3OH root extracts afforded trimethyl trilinolein (1), stearic acid (2), 13-hydroxyoctadeca-9, 11-dienoic acid (3), β-sitosteryl-3β-glucopyranoside-6'-O-palmitate (4), and stigmasterol (5). Notably, the in vitro antibacterial study revealed the extract and β-sitosteryl-3β-glucopyranoside-6'-O-palmitate (4) with the highest inhibitory activities (15.25 ± 0.35 and 14.25 ± 0.35 mm, respectively) against E. coli compared to ciprofloxacin (21.00 ± 0.35 mm) at 2 mg/mL. The CH2Cl2 : CH3OH (1 : 1) extract (IC50 : 1.51 µg/mL) and β-sitosteryl-3β-glucopyranoside-6'-O-palmitate (4) (IC50 : 5.41 µg/mL) also exhibited auspicious DPPH scavenging activities, followed by stigmasterol (5) (IC50 : 6.88 µg/mL) compared to the ascorbic acid standard (IC50 : 0.46 µg/mL). The molecular docking analyses unveiled the highest binding affinity by β-sitosteryl-3β-glucopyranoside-6'-O-palmitate (4) (-8.0 kcal/mol) against P. aeruginosa PqsA relative to the ciprofloxacin standard (-8.2 kcal/mol). Furthermore, the organ toxicity predictions showed that all the compounds exhibit no hepatotoxicity and cytotoxicity effects and stigmasterol (5) affords drug-likeness protocols. Overall, the combined experimental and computational investigations of this study support the traditional uses of Ziziphus spina-christi for antibacterial and natural antioxidant applications.
Collapse
Affiliation(s)
- Hadush Gebrehiwot
- Department of Applied Chemistry Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Urgessa Ensermu
- Department of Applied Biology Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Aman Dekebo
- Department of Applied Chemistry Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Institute of Pharmaceutical Sciences Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Milkyas Endale
- Traditional and Modern Medicine Research and Development Directorate Armauer Hansen Research Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Tariku Nefo Duke
- Department of Materials Science and Engineering National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Taipei 10607, Taiwan
| |
Collapse
|
12
|
Rudrapal M, Kirboga KK, Abdalla M, Maji S. Explainable artificial intelligence-assisted virtual screening and bioinformatics approaches for effective bioactivity prediction of phenolic cyclooxygenase-2 (COX-2) inhibitors using PubChem molecular fingerprints. Mol Divers 2024; 28:2099-2118. [PMID: 38200203 DOI: 10.1007/s11030-023-10782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) inhibitors are nonsteroidal anti-inflammatory drugs that treat inflammation, pain and fever. This study determined the interaction mechanisms of COX-2 inhibitors and the molecular properties needed to design new drug candidates. Using machine learning and explainable AI methods, the inhibition activity of 1488 molecules was modelled, and essential properties were identified. These properties included aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. They affected the water solubility, hydrophobicity and binding affinity of COX-2 inhibitors. The binding mode, stability and ADME properties of 16 ligands bound to the Cyclooxygenase active site of COX-2 were investigated by molecular docking, molecular dynamics simulation and MM-GBSA analysis. The results showed that ligand 339,222 was the most stable and effective COX-2 inhibitor. It inhibited prostaglandin synthesis by disrupting the protein conformation of COX-2. It had good ADME properties and high clinical potential. This study demonstrated the potential of machine learning and bioinformatics methods in discovering COX-2 inhibitors.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to Be University), Guntur, 522213, India.
| | - Kevser Kübra Kirboga
- Informatics Institute, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
- Bioengineering Department, BilecikSeyhEdebali University, 11230, Bilecik, Turkey.
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, People's Republic of China
| | - Siddhartha Maji
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Alhagri IA, Alsowayan R, Ghannay S, Al-Hazmy SM, Ahmad I, Patel H, Kadri A, Aouadi K. Synthesis, optical properties, DNA, β-cyclodextrin interactions, and antioxidant evaluation of novel isoxazolidine derivative (ISoXD2): A multispectral and computational analysis. Heliyon 2024; 10:e34561. [PMID: 39113987 PMCID: PMC11305329 DOI: 10.1016/j.heliyon.2024.e34561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ISoXD2 are well explored among versatile and outstanding class of pharmacophores for the preparation and discovery of drugs. Herein, the electronic absorption and emission spectra of ISoXD2 were investigated in three different solvents. The observed transition was attributed to π-π* with charge transfer character. Changes in the excited state and shift of the absorption and emission peaks to longer wavelengths are observed as a result of increasing solvent polarity, due to the interactions between the ISoXD2 molecule and the solvent molecules surrounding it. Changing the solvent confirms its solvatochromic effect. UV-vis and fluorescence analysis revealed that ISoXD2 binds to deoxyribonucleic acid (DNA) by intercalation mode, with a stoichiometric ratio of 1:1.5. Moreover, the fluorescence intensity of DNA bound to ethidium bromide (EB) in the presence of ISoXD2 was investigated. From this analysis, the Stern-Volmer quenching constant (Ksv), quenching rate constant (kq), binding constant (Kb) and binding sites number (n) were found to be 5.654 × 103 M-1, 2.827 × 1011 M-1 s-1, 3.81 × 104 M-1 and 1.225, respectively. The interaction between ISoXD2 and β-CD was investigated through absorption spectra analysis. Kb for this interaction was determined to be 4.9 × 104 M-1. The free radical-scavenging ability of the prepared ISoXD2, examined by DPPH and ABTS assays have shown a good antioxidant activity. Furthermore, modeling study was conducted to explore their plausible binding mechanism with ISoXD2 and to support the experimental results.
Collapse
Affiliation(s)
- Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Raghad Alsowayan
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, College of Science, Sana'a University, Sana'a, P.O. Box 1247, Yemen
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box (1988), Al-Baha, 65527, Saudi Arabia
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
14
|
Singh D, Mittal N, Mittal P, Tiwari N, Khan SUD, Ali MAM, Chaudhary AA, Siddiqui MH. In silico molecular screening of bioactive natural compounds of rosemary essential oil and extracts for pharmacological potentials against rhinoviruses. Sci Rep 2024; 14:17426. [PMID: 39075176 PMCID: PMC11286848 DOI: 10.1038/s41598-024-68450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
Rhinoviruses (RVs) cause upper respiratory tract infections and pneumonia in children and adults. These non-enveloped viruses contain viral coats of four capsid proteins: VP1, VP2, VP3, and VP4. The canyon on VP1 used cell surface receptor ICAM-1 as the site of attachment and for the internalization of viruses. To date, there has been no drug or vaccine available against RVs. In this study, bioactive natural compounds of rosemary (Salvia rosmarinus L.), which are known for their pharmacological potential, were considered to target the VP1 protein. A total of 30 bioactive natural compounds of rosemary were taken as ligands to target viral proteins. The PkCSM tool was used to detect their adherence to Lipinski's rule of five and the ADMET properties of the selected ligands. Further, the CB-Dock tool was used for molecular docking studies between the VP1 protein and ligands. Based on the molecular docking and ADMET profiling results, phenethyl amine (4 methoxy benzyl) was selected as the lead compound. A comparative study was performed between the lead compound and two antiviral drugs, Placonaril and Nitazoxanide, to investigate the higher potential of natural compounds over synthetic drugs. Placonaril also targets VP1 but failed in clinical trials while Nitazoxanide was examined in clinical trials against rhinoviruses. It was discovered from this study that the (4 methoxy benzyl) phenethyl amine exhibited less toxicity in comparison to other tested drugs against RVs. More research is needed to determine its potential and make it a good medication against RVs.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Neeraj Tiwari
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, India
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| | | |
Collapse
|
15
|
Rehman Khan RA, Afzal S, Aati HY, Aati S, Rao H, Ahmad S, Hussain M, Khan KUR. Phytochemical characterization of Thevetia peruviana (lucky nut) bark extracts by GC-MS analysis, along with evaluation of its biological activities, and molecular docking study. Heliyon 2024; 10:e33151. [PMID: 39027575 PMCID: PMC11255453 DOI: 10.1016/j.heliyon.2024.e33151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Thevetia peruviana (T. peruviana; Family: Apocynaceae), commonly known as Lucky Nut, is a traditionally and medicinally important plant, and the barks of the plant are traditionally used as anti-inflammatory, anti-diabetic, and antibacterial remedies. Thus, this study aimed to evaluate bioactive phytochemicals and in-vitro biological activities from the bark of T. peruviana using methanolic (TPM) and dichloromethane (TPD) extracts. The GC-MS analysis showed the presence of 54 and 39 bioactive compounds in TPM and TPD, respectively. The TPM extract has a higher level of total polyphenolic contents (TPC: 70.89 ± 1.08 and 51.07 ± 0.78 mg GAE/g extracts, while TFC: 56.89 ± 1.16 and 44.12 ± 1.76 Qu.E/g extracts for TPM and TPD, respectively). Herein, the results of antioxidant activities were also found in correlation with the total polyphenolic contents i.e., depicting the higher antioxidant potential of TPM compared to TPD. The significant inhibitory activities of extracts were observed against tyrosinase (TPM; 59.43 ± 2.87 %, TPD; 53.43 ± 2.65 %), lipoxygenase (TPM; 77.1 ± 1.2 %, TPD; 59.3 ± 0.1 %), and α-glucosidase (TPM; 71.32 ± 2.44 %, TPD; 67.86 ± 3.011 %). Furthermore, in comparison to co-amoxiclave, the antibacterial property against five bacterial strains was significant assayed. The compounds obtained through GC-MS analysis were subjected to in-silico molecular docking studies, and the phyto-constituents with maximum binding scores were then subjected to ADME analysis. The results of in-silico studies revealed that the binding affinity of several phyto-constituents was even greater than that of the standard inhibitory ligands. ADME analysis showed bioavailability radars of phyto-constituents having maximum docking scores in molecular docking. The results of this study indicated that T. peruviana has bioactive phytochemicals and therapeutic potential and may provide a basis for treating metabolic disorders (inflammatory diseases like rheumatism and diabetes), bacterial infections, and skin-related problems.
Collapse
Affiliation(s)
- Rao Anum Rehman Khan
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Kashif ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
16
|
Revanasiddappa PD, Gowtham HG, G. S. C, Gangadhar S, A. S, Murali M, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP, Amruthesh KN. Exploration of Type III effector Xanthomonas outer protein Q (XopQ) inhibitor from Picrasma quassioides as an antibacterial agent using chemoinformatics analysis. PLoS One 2024; 19:e0302105. [PMID: 38889115 PMCID: PMC11185476 DOI: 10.1371/journal.pone.0302105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin). The molecular dynamics (MD) simulations performed at 300 ns validated the stability of top lead ligands (Kumudine B, Picrasamide A, and Quassidine I)-bound XopQ protein complex with slightly lower fluctuation than Streptomycin. The MM-PBSA calculation confirmed the strong interactions of top lead ligands (Kumudine B and QuassidineI) with XopQ protein, as they offered the least binding energy. The results of absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed that Quassidine I, Kumudine B and Picrasamide A were found to qualify most of the drug-likeness rules with excellent bioavailability scores compared to Streptomycin. Results of the computational studies suggested that Kumudine B, Picrasamide A, and Quassidine I could be considered potential compounds to design novel antibacterial drugs against X. oryzae infection. Further in vitro and in vivo antibacterial activities of Kumudine B, Picrasamide A, and Quassidine I are required to confirm their therapeutic potentiality in controlling the X. oryzae infection.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, India
| | - Chikkanna G. S.
- Department of Home Science, ICAR Krishi Vigyan Kendra, Kolar, India
| | - Suchithra Gangadhar
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Satish A.
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | | |
Collapse
|
17
|
Çapan İ, Hawash M, Qaoud MT, Gülüm L, Tunoglu ENY, Çifci KU, Çevrimli BS, Sert Y, Servi S, Koca İ, Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024; 18:102. [PMID: 38773663 PMCID: PMC11110238 DOI: 10.1186/s13065-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
- Sente Kimya Research and Development Inc., 06200, Ankara, Türkiye.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258, Nicosia, Türkiye
| | - Levent Gülüm
- Department of Plant and Animal Production, Mudurnu Süreyya Astarcı Vocational College, Bolu Abant İzzet Baysal University, Bolu, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Demiroğlu Bilim University, Istanbul, Türkiye
| | - Kezban Uçar Çifci
- Department of Molecular Medicine, Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Türkiye
| | - Bekir Sıtkı Çevrimli
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Yusuf Sert
- Sorgun Vocational College, Yozgat Bozok University, Yozgat, Türkiye
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Tutar
- Medical School, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Türkiye
- Faculty of Pharmacy, Division of Biochemistry, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
18
|
Du W, Zhao L, Wu R, Huang B, Liu S, Liu Y, Huang H, Shi G. Predicting drug-Protein interaction with deep learning framework for molecular graphs and sequences: Potential candidates against SAR-CoV-2. PLoS One 2024; 19:e0299696. [PMID: 38728335 PMCID: PMC11086825 DOI: 10.1371/journal.pone.0299696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 05/12/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 disease, which represents a new life-threatening disaster. Regarding viral infection, many therapeutics have been investigated to alleviate the epidemiology such as vaccines and receptor decoys. However, the continuous mutating coronavirus, especially the variants of Delta and Omicron, are tended to invalidate the therapeutic biological product. Thus, it is necessary to develop molecular entities as broad-spectrum antiviral drugs. Coronavirus replication is controlled by the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme, which is required for the virus's life cycle. In the cases of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), 3CLpro has been shown to be a promising therapeutic development target. Here we proposed an attention-based deep learning framework for molecular graphs and sequences, training from the BindingDB 3CLpro dataset (114,555 compounds). After construction of such model, we conducted large-scale screening the in vivo/vitro dataset (276,003 compounds) from Zinc Database and visualize the candidate compounds with attention score. geometric-based affinity prediction was employed for validation. Finally, we established a 3CLpro-specific deep learning framework, namely GraphDPI-3CL (AUROC: 0.958) achieved superior performance beyond the existing state of the art model and discovered 10 molecules with a high binding affinity of 3CLpro and superior binding mode.
Collapse
Affiliation(s)
- Weian Du
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhao
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Rong Wu
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Boning Huang
- School of Finance, Shanghai University of Finance and Economics, Shanghai, China
| | - Si Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiqiu Huang
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Shen C, Chen Q, Chen S, Lin Y. Mechanism of Danggui Buxue decoction in the treatment of myocardial infarction based on network pharmacology and experimental identification. Heliyon 2024; 10:e29360. [PMID: 38665560 PMCID: PMC11043959 DOI: 10.1016/j.heliyon.2024.e29360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Background Myocardial infarction (MI) remains one of the major causes of high morbidity and mortality worldwide. Danggui Buxue Decoction (DBD)-an ancient Chinese herbal decoction-has been used to prevent coronary heart disease, which was called "chest palsy" in ancient clinics. However, the mechanism of DBD in the treatment of MI remains unclear. The aim of this study was to explore the effect and mechanism of DBD on MI by combining network pharmacology with in vivo experiments. Materials and methods First, public databases were used to identify the key active chemicals and possible targets of DBD. The MI targets were obtained from the Therapeutic Target Database, and the function of the target genes in relation to linked pathways was investigated. Subsequently, Cytoscape software was used to build a target-signaling pathway network. Finally, the efficacy of DBD therapy on MI was validated using in vivo investigations combined with molecular docking. Results In traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), 27 bioactive compounds were screened from DBD. A total of 213 common targets were obtained, including 507 DBD targets and 2566 MI targets. Enrichment analysis suggests that PI3K/AKT is a potential signaling pathway for DBD-based protection. Immunofluorescence and protein blotting confirmed PI3K/AKT1, ERK2, and CASPASE-9 as the target proteins. Molecular docking analysis showed that quercetin, kaempferol, isoflavanones, isorhamnetin, hederagenin, and formononetin had high binding affinity to AKT1, ERK2, and CASPASE-9. Conclusions This study demonstrated that the therapeutic benefit of DBD on MI may be mediated via target proteins in the PI3K/AKT pathway, such as AKT1, ERK2, and CASPASE-9. Our study data can help to provide ideas and identify new treatment targets for MI.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| | - Qian Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China
| |
Collapse
|
20
|
Majrashi TA, El Hassab MA, Mahmoud SH, Mostafa A, Wahsh EA, Elkaeed EB, Hassan FE, Eldehna WM, Abdelgawad SM. In vitro biological evaluation and in silico insights into the antiviral activity of standardized olive leaves extract against SARS-CoV-2. PLoS One 2024; 19:e0301086. [PMID: 38662719 PMCID: PMC11045091 DOI: 10.1371/journal.pone.0301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 μg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Engy A. Wahsh
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
21
|
Fouda K, Mohamed RS. Molecular docking and in vivo protective effects of okra ( Abelmoschus esculentus) against metabolic dysfunction in high-fat, high-sodium diet-fed rats. Food Funct 2024; 15:3566-3582. [PMID: 38466075 DOI: 10.1039/d3fo04407f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Okra pods (Abelmoschus esculentus L. Moench) have been used as a functional vegetable as they contain polysaccharides, flavonoids, and other bioactive molecules that protect the body from several chronic diseases. The purpose of this study was to look at the involvement of okra constituents (mucilage and flesh) in the prevention of metabolic dysfunctions induced in a rat model by a high-fat, high-salt (HF/NaCl) diet. Okra mucilage was extracted using an ultrasonic method, freeze-dried, characterized using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), and tested for swelling ratio and radical scavenging activity. Okra flesh (skin and seeds) was separated from pods; characterized using SEM; and tested for dietary fiber content, phenolic profile, and radical scavenging activity. The significance of okra bioactive compounds in inhibiting human salivary amylase, glutamine : fructose-6-phosphate amidotransferase (GFAT), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) was investigated using molecular docking. Rats were fed an HF/NaCl diet and orally treated daily with freeze-dried okra mucilage or flesh (100 mg per kg body weight) for 8 weeks. Glucose, insulin, inflammatory indicators (CRP, TNF-α, and interleukin 6), oxidative markers (red blood cell lipid peroxidation, glutathione peroxidase, nitric oxide, and superoxide dismutase), lipid profile, estradiol, feces lipids as well as femur and urine calcium were measured. The molecular docking findings showed the interaction of quercetin and chlorogenic acid, which are the most abundant phenolic compounds in okra pods, with the studied proteins, which gives an indication of the mechanism of okra's anti-diabetic, anti-oxidant, and anti-inflammatory effects. Okra mucilage and flesh significantly reduced glucose, insulin, cholesterol, lipid peroxidation, CRP, TNF-α, IL-6, and urine calcium levels while significantly increasing feces lipid and femur calcium levels. The findings suggested that okra mucilage and flesh seem to be promising candidates for protection against metabolic dysfunction.
Collapse
Affiliation(s)
- Karem Fouda
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo, Egypt.
| | - Rasha S Mohamed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
22
|
Abdel-Sattar E, Kutkat O, El-Shiekh RA, El-Ashrey MK, El Kerdawy AM. In Silico and In Vitro Screening of Some Pregnane Glycosides Isolated from Certain Caralluma Species as SARS-COV-2 Main Protease Inhibitors. Chem Biodivers 2024; 21:e202301786. [PMID: 38466126 DOI: 10.1002/cbdv.202301786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 μg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 μg/ml), and Arabincoside B (IC50=53.31 μg/ml).
Collapse
Affiliation(s)
- Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Giza, Egypt
- Department of microbiology, Faculty of pharmacy, Ahram Canadian University, 6 th of October, Giza, 12566, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Mohamed K El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), 46612, South Sinai, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, Lincolnshire, United Kingdom
| |
Collapse
|
23
|
Schmedtje JF, Ciske F, Muzzarelli KM, Assar Z. Novel nitric oxide donors are coronary vasodilators that also bind to the papain-like protease of SARS-CoV-2. Biomed Pharmacother 2024; 173:116378. [PMID: 38492437 DOI: 10.1016/j.biopha.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Several investigational nitric oxide donors were originally created to correct vascular endothelial dysfunction in cardiovascular diseases. These 48 compounds contain an urea-like moiety attached to the well-known NO donors isosorbide 2- and 5-mononitrate. CR-0305 and CR-0202 were synthesized and found to be nontoxic in the cell lines HMEC-1, A549/hACE2 and VeroE6. CR-0305 induced vasodilation in human coronary arteries ex vivo. Since NO can also have antiviral properties, a study of drug-protein interactions with SARS-CoV-2 was undertaken using in silico modeling. CR-0305 experimentally outperformed the other compounds, including CR-0202, in binding the catalytic site of SARS-CoV-2 papain-like protease (PLpro). PLpro is a primary target for therapeutic inhibition of SARS-CoV-2 as it mediates viral replication and modulates host innate immune responses. CR-0305 is predicted to sit firmly in the PLpro catalytic pocket as confirmed by molecular dynamics simulations, wherein stability of binding to the catalytic site of PLpro induces a conformational change in the BL2 loop to a more closed conformation as observed previously with GRL0617. Surface plasmon resonance was performed with CR-0305 and CR-0202 to characterize binding affinity to purified SARS-CoV-2 PLpro protein. CR-0305 and CR-0202 also inhibited SARS-CoV-2 infection compared to vehicle as measured by virus N protein staining with a specific antibody in A549-ACE2 and VeroE6 cells at 20 µM. CR-0305 is a coronary vasodilator that appears to bind to the catalytic site of the PLpro of SARS-CoV-2 while targeting delivery of antiviral NO to cells infected by SARS-CoV-2, suggesting multiple indications for future development.
Collapse
Affiliation(s)
- John F Schmedtje
- Coeurative, Inc., 201 McClanahan St. SW, Roanoke, VA 24014, USA.
| | - Fred Ciske
- Cayman Chemical Co., 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | | | - Zahra Assar
- Cayman Chemical Co., 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| |
Collapse
|
24
|
Pirzada AS, Khan H, Alam W, Darwish HW, Elhenawy AA, Kuznetsov A, Daglia M. Physicochemical properties, pharmacokinetic studies, DFT approach, and antioxidant activity of nitro and chloro indolinone derivatives. Front Chem 2024; 12:1360719. [PMID: 38562526 PMCID: PMC10982469 DOI: 10.3389/fchem.2024.1360719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
The process of developing of new drugs is greatly hampered by their inadequate physicochemical, pharmacokinetic, and intrinsic characteristics. In this regard, the selected chloro indolinone, (Z)-6-chloro-3-(2-chlorobenzylidene)indolin-2-one (C1), and nitro indolinone, (Z)-6-chloro-3-(2-nitrobenzylidene)indolin-2-one (C2), were subjected to SwissADME and density function theory (DFT) analysis. For compounds C1 and C2, the BOILED-Egg pharmacokinetic model predicted intestinal absorption, blood-brain barrier (BBB) penetration, and p-glycoprotein interaction. According to the physicochemical analysis, C1 has exceptional drug-like characteristics suitable for oral absorption. Despite only being substrates for some of the major CYP 450 isoforms, compounds C1 and C2 were anticipated to have strong plasma protein binding and efficient distribution and block these isoforms. The DFT study using the B3LYP/6-311G(d,p) approach with implicit water effects was performed to assess the structural features, electronic properties, and global reactivity parameters (GRP) of C1 and C2. The DFT results provided further support for other studies, implying that C2 is more water-soluble than C1 and that both compounds can form hydrogen bonds and (weak) dispersion interactions with other molecules, such as solvents and biomolecules. Furthermore, the GRP study suggested that C1 should be more stable and less reactive than C2. A concentration-dependent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was shown by both C1 and C2. In brief, this finding has provided a strong foundation to explore further the therapeutic potential of these molecules against a variety of human disorders.
Collapse
Affiliation(s)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Aleksey Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Santiago, Chile
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Kadi M, Berraouaan A, Driouech M, Ziyyat A, Mekhfi H, Bnouham M, Legssyer A. Computational Evaluation of Bioactive Compounds from Dysphania ambrosioides Leaves. Chem Biodivers 2024; 21:e202301527. [PMID: 38253787 DOI: 10.1002/cbdv.202301527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Dysphania ambrosioides has been reported to have many medicinal properties, due to its possession of a multitude of biologically active molecules contained in its leaves. However, very few studies have been reported to evaluate their pharmacological properties. Consequently, in the present study, many computational tools have been performed to predict drug similarity and ADMET properties. Besides, the inhibitory potential of D.ambrosioides major compounds against Bacterial, Fungal and cardiovascular main receptor targets has been investigated. This study suggests that Carvone oxide, 5-Isopropenyl-2-Methylenecyclohexanol, and Caryophyllene oxide were the most active molecules belonging to D. ambrosioides Leaves, possessing drug-likeness with satisfactory bioactivity scores, having good pharmacokinetic values. Metabolism and toxicities were further studied using FAME3, GLORY, and pred-hERG. Slight cardiotoxicity and cytotoxicity were predicted, respectively, for Caryophyllene oxide and Carvone oxide, 5-Isopropenyl-2-Methylenecyclohexanol. Good inhibitory activities of the three compounds against Bacterial, Fungal, and Cardiovascular receptor targets. Hence, this is a comprehensive in silico approach to evaluate D.ambrosioides Leaves main phytocompounds in the background of its potential in future drug development.
Collapse
Affiliation(s)
- Mounime Kadi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Ali Berraouaan
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Mounia Driouech
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Hassan Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Biology Department, Faculty of Sciences, Mohammed First University, 60000, Oujda, MOROCCO
| |
Collapse
|
26
|
Ghannay S, Aldhafeeri BS, Ahmad I, E.A.E. Albadri A, Patel H, Kadri A, Aouadi K. Identification of dual-target isoxazolidine-isatin hybrids with antidiabetic potential: Design, synthesis, in vitro and multiscale molecular modeling approaches. Heliyon 2024; 10:e25911. [PMID: 38380049 PMCID: PMC10877290 DOI: 10.1016/j.heliyon.2024.e25911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
In the development of novel antidiabetic agents, a novel series of isoxazolidine-isatin hybrids were designed, synthesized, and evaluated as dual α-amylase and α-glucosidase inhibitors. The precise structures of the synthesized scaffolds were characterized using different spectroscopic techniques and elemental analysis. The obtained results were compared to those of the reference drug, acarbose (IC50 = 296.6 ± 0.825 μM for α-amylase & IC50 = 780.4 ± 0.346 μM for α-glucosidase). Among the title compounds, 5d exhibited impressive α-amylase and α-glucosidase inhibitory activity with IC50 values of 30.39 ± 1.52 μM and 65.1 ± 3.11 μM, respectively, followed by 5h (IC50 = 46.65 ± 2.3 μM; IC50 = 85.16 ± 4.25 μM) and 5f (IC50 = 55.71 ± 2.78 μM; IC50 = 106.77 ± 5.31 μM). Mechanistic studies revealed that the most potent derivative 5d bearing the chloro substituent attached to the oxoindolin-3-ylidene core, and acarbose, are a competitive inhibitors of α-amylase and α-glucosidase, respectively. Structure activity relationship (SAR) was examined to guide further structural optimization of the most appropriate substituent(s). Moreover, drug-likeness qualities and ADMET prediction of the most active analogue, 5d was also performed. Subsequently, 5d was subjected to molecular docking and dynamic simulation during the progression of 120 ns analysis to check the essential ligand-receptor patterns, and to estimate its stability. In silico studies were found in good agreement with the in vitro enzymatic inhibitions results. In conclusion, we demonstrated that most potent compound 5d could be exploited as dual potential inhibitor of α-amylase and α-glucosidase for possible management of diabetes.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Budur Saleh Aldhafeeri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Abuzar E.A.E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box (1988), Al-Baha, 65527, Saudi Arabia
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
27
|
Alotayeq A, Ghannay S, Alhagri IA, Ahmed I, Hammami B, E. A. E. Albadri A, Patel H, Messaoudi S, Kadri A, M. Al-Hazmy S, Aouadi K. Synthesis, optical properties, DNA, β-cyclodextrin interaction, hydrogen isotope sensor and computational study of new enantiopure isoxazolidine derivative (ISoXD). Heliyon 2024; 10:e26341. [PMID: 38404822 PMCID: PMC10884473 DOI: 10.1016/j.heliyon.2024.e26341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and β-cyclodextrin (β-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD. Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and β-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and β-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (-6.511) and MM-GBSA binding free energies (-66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development.
Collapse
Affiliation(s)
- Afnan Alotayeq
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al- Baha University, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
28
|
Abdel-Mohsen HT, Ibrahim MA, Nageeb AM, El Kerdawy AM. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors. BMC Chem 2024; 18:42. [PMID: 38395926 PMCID: PMC10893631 DOI: 10.1186/s13065-024-01135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A receptor-based pharmacophore model describing the binding features required for the multi-kinase inhibition of the target kinases (VEGFR-2, FGFR-1, and BRAF) were constructed and validated. It showed a good overall quality in discriminating between the active and the inactive in a compiled test set compounds with F1 score of 0.502 and Mathew's correlation coefficient of 0.513. It described the ligand binding to the hinge region Cys or Ala, the glutamate residue of the Glu-Lys αC helix conserved pair, the DFG motif Asp at the activation loop, and the allosteric back pocket next to the ATP binding site. Moreover, excluded volumes were used to define the steric extent of the binding sites. The application of the developed pharmacophore model in virtual screening of an in-house scaffold dataset resulted in the identification of a benzimidazole-based scaffold as a promising hit within the dataset. Compounds 8a-u were designed through structural optimization of the hit benzimidazole-based scaffold through (un)substituted aryl substitution on 2 and 5 positions of the benzimidazole ring. Molecular docking simulations and ADME properties predictions confirmed the promising characteristics of the designed compounds in terms of binding affinity and pharmacokinetic properties, respectively. The designed compounds 8a-u were synthesized, and they demonstrated moderate to potent VEGFR-2 inhibitory activity at 10 µM. Compound 8u exhibited a potent inhibitory activity against the target kinases (VEGFR-2, FGFR-1, and BRAF) with IC50 values of 0.93, 3.74, 0.25 µM, respectively. The benzimidazole derivatives 8a-u were all selected by the NCI (USA) to conduct their anti-proliferation screening. Compounds 8a and 8d resulted in a potent mean growth inhibition % (GI%) of 97.73% and 92.51%, respectively. Whereas compounds 8h, 8j, 8k, 8o, 8q, 8r, and 8u showed a mean GI% > 100% (lethal effect). The most potent compounds on the NCI panel of 60 different cancer cell lines were progressed further to NCI five-dose testing. The benzimidazole derivatives 8a, 8d, 8h, 8j, 8k, 8o, 8q, 8r and 8u exhibited potent anticancer activity on the tested cell lines reaching sub-micromolar range. Moreover, 8u was found to induce cell cycle arrest of MCF-7 cell line at the G2/M phase and accumulating cells at the sub-G1 phase as a result of cell apoptosis.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt.
| | - Marwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
| | - Amira M Nageeb
- High Throughput Molecular and Genetic Technology Lab, Center of Excellence for Advanced Sciences, Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
29
|
Bozari S. In vitro Genotoxicity and In silico Docking Analyses of the Essential Oils of Thuja orientalis. Chem Biodivers 2024; 21:e202301643. [PMID: 38072835 DOI: 10.1002/cbdv.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two main objectives were pursued to assess the reliability of Thuja orientalis essential oils (TOEO). The first objective was to extract TOEO, analyze them by GC-MS, and determine their in vitro genotoxicity against selected plants using the RAPD-PCR method. The second objective was to evaluate the in-silico toxicity of TOEO. The binding sites and energies of each content was calculated against B-DNA. In-silico analyses were performed using a simulation program, AutoDock Vina, and Toxicity Estimation Software Tools. 3-carene, cedrol, and 2-pinene were identified as the predominant components. In vitro studies showed that the TOEO had a more significant impact on reducing genomic stability in wheat compared to the amaranth. The lowest stability was determined as 39.78 % in wheat and 53.58 % in amaranth. Cedrol (-5,7 kcal/mol) and selinene (-5,6 kcal/mol) exhibited the highest binding affinity. The toxicity test indicated that components other than cyclohexene may have toxic effects, none of them were predicted to be mutagenic, and LD50 (mol/kg) values could vary between 1.33 and 1.55.
Collapse
Affiliation(s)
- Sedat Bozari
- Muş Alparslan University, Faculty of Science, Department of Molecular Biology and Genetics, 49250, Mus, Türkiye
| |
Collapse
|
30
|
Fouda K, Mabrouk AM, Abdelgayed SS, Mohamed RS. Protective effect of tomato pomace extract encapsulated in combination with probiotics against indomethacin induced enterocolitis. Sci Rep 2024; 14:2275. [PMID: 38280919 PMCID: PMC10821949 DOI: 10.1038/s41598-024-52642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tomato pomace (TP), an antioxidant-rich byproduct, may be suitable for noble applications. The regulation of ROS generation and the anti-inflammatory response can help to prevent ulceration. The purpose of this study was to examine TP for antioxidants, in silico anti-inflammatory properties, and its potential to protect against ulceration and erosion triggered by indomethacin. Tomato pomace extract (TPE) was encapsulated either alone or with probiotics to maximize its potential effect. These microcapsules were investigated in indomethacin-treated rats. TPE demonstrated antioxidant activity as well as high levels of carotenoids (15 mg/g extract) and polyphenols. Because of their binding affinity as well as hydrophobic and hydrogen bond interactions with the active sites of TNF-α and IL-1β inflammatory cytokines, ellagic acid and rutin may be implicated in the anti-inflammatory effect of TPE, according to the docking study. TPE microcapsules, either alone or in combination with probiotics, demonstrated a protective effect against enterocolitis by reducing oxidative stress and inflammation, as evidenced by the decrease in stomach and intestinal MDA, NO, IL-1β, IL-6, and TNF-α levels and the increase in CAT, SOD, and GSH activities. The produced microcapsules are suggested to be promising candidates for protection against gastric ulcers and erosion.
Collapse
Affiliation(s)
- Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M Mabrouk
- Dairy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
31
|
Alhawday F, Alminderej F, Ghannay S, Hammami B, Albadri AEAE, Kadri A, Aouadi K. In Silico Design, Synthesis, and Evaluation of Novel Enantiopure Isoxazolidines as Promising Dual Inhibitors of α-Amylase and α-Glucosidase. Molecules 2024; 29:305. [PMID: 38257218 PMCID: PMC10818600 DOI: 10.3390/molecules29020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Isoxazolidine derivatives were designed, synthesized, and characterized using different spectroscopic techniques and elemental analysis and then evaluated for their ability to inhibit both α-amylase and α-glucosidase enzymes to treat diabetes. All synthesized derivatives demonstrated a varying range of activity, with IC50 values ranging from 53.03 ± 0.106 to 232.8 ± 0.517 μM (α-amylase) and from 94.33 ± 0.282 to 258.7 ± 0.521 μM (α-glucosidase), revealing their high potency compared to the reference drug, acarbose (IC50 = 296.6 ± 0.825 µM and 780.4 ± 0.346 µM), respectively. Specifically, in vitro results revealed that compound 5d achieved the most inhibitory activity with IC50 values of 5.59-fold and 8.27-fold, respectively, toward both enzymes, followed by 5b. Kinetic studies revealed that compound 5d inhibits both enzymes in a competitive mode. Based on the structure-activity relationship (SAR) study, it was concluded that various substitution patterns of the substituent(s) influenced the inhibitory activities of both enzymes. The server pkCSM was used to predict the pharmacokinetics and drug-likeness properties for 5d, which afforded good oral bioavailability. Additionally, compound 5d was subjected to molecular docking to gain insights into its binding mode interactions with the target enzymes. Moreover, via molecular dynamics (MD) simulation analysis, it maintained stability throughout 100 ns. This suggests that 5d possesses the potential to simultaneously target both enzymes effectively, making it advantageous for the development of antidiabetic medications.
Collapse
Affiliation(s)
- Fahad Alhawday
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Fahad Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
- Faculty of Sciences of Bizerte FSB, University of Carthage, Jarzouna 7021, Tunisia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al-Baha 65527, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
- Laboratory of Heterocyclic Chemistry, LR11ES39, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| |
Collapse
|
32
|
dos Santos Nascimento IJ, Santana Gomes JN, de Oliveira Viana J, de Medeiros e Silva YMS, Barbosa EG, de Moura RO. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors. Mini Rev Med Chem 2024; 24:1125-1146. [PMID: 37680157 PMCID: PMC11337241 DOI: 10.2174/1389557523666230901152257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papainlike endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue present in the active site. These mechanisms are often studied through computational methods that provide new information about the catalytic mechanism and identify inhibitors. The role of computational methods during drug design and development stages is increasing. Methods in Computer-Aided Drug Design (CADD) accelerate the discovery process, increase the chances of selecting more promising molecules for experimental studies, and can identify critical mechanisms involved in the pathophysiology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any drug discovery program due to their high capacity for simulating a physiological environment capable of unveiling significant inhibition mechanisms of new compounds against target proteins, especially CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to identify inhibitors or critical information against cysteine protease from several microorganisms, such as Trypanosoma cruzi (cruzain), Trypanosoma brucei (rhodesain), Plasmodium spp. (falcipain), and SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for potential compound identifications using MD simulations.
Collapse
Affiliation(s)
- Igor José dos Santos Nascimento
- Department of Pharmacy, Cesmac University Center, Maceió, 57051-160, Brazil
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Joilly Nilce Santana Gomes
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Jéssika de Oliveira Viana
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Yvnni Maria Sales de Medeiros e Silva
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Euzébio Guimarães Barbosa
- Post-graduate Program in Bioinformatics, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Post-graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Post-graduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
33
|
Duke SO, Pan Z, Bajsa-Hirschel J, Tamang P, Hammerschmidt R, Lorsbach BA, Sparks TC. Molecular Targets of Herbicides and Fungicides─Are There Useful Overlaps for Fungicide Discovery? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20532-20548. [PMID: 38100716 PMCID: PMC10755756 DOI: 10.1021/acs.jafc.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.
Collapse
Affiliation(s)
- Stephen O. Duke
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University 38667, United States
| | - Zhiqiang Pan
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Joanna Bajsa-Hirschel
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Prabin Tamang
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Raymond Hammerschmidt
- Department
of Plant, Soil and Microbial Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Beth A. Lorsbach
- Nufarm, 4020 Aerial Center Parkway, Morrisville, North Carolina 27560, United States
| | | |
Collapse
|
34
|
Zejli H, Fitat A, Lefrioui Y, Siddique F, Bourhia M, Bousseraf FZ, Salamatullah AM, Nafidi HA, Mekonnen AB, Gourch A, Taleb M, Abdellaoui A. Phytochemical analysis and biological activities of essential oils extracted from Origanum grossii and Thymus pallidus: in vitro and in silico analysis. Sci Rep 2023; 13:20021. [PMID: 37973884 PMCID: PMC10654524 DOI: 10.1038/s41598-023-47215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
The study aimed at investigating the phytochemical composition, antioxidant and antibacterial activities of essential oils (EOs) of Origanum grossii and Thymus pallidus. The selection of these plants for the study was driven by a comprehensive survey conducted in the Ribat Elkheir region of Morocco, where these plants are widely utilized. The results reflect the valorization of these plants based on the findings of the regional survey. The GC-MS phytochemical analysis revealed that the main constituents of the essential oil were carvacrol and thymol for O. grossii and T. pallidus respectively. Quantitative assays demonstrated that O. grossii exhibited higher levels of polyphenols (0.136 mg AGE/mg EO) and flavonoids (0.207 mg QE/mg EO) compared to T. pallidus. The DPPH assay indicated that O. grossii EOs possessed approximately twice the antiradical activity of T. pallidus, with IC50 values of approximately 0.073 mg/mL and 0.131 mg/mL, respectively. The antibacterial activity tests showed that both essential oils exhibited significant inhibition zones ranging from 26 to 42 mm against all tested bacterial strains. The MIC values varied among the bacteria, generally falling within the range of 0.31 to 2.44 µg/mL, demonstrating the potency of the EOs to serve as antibacterial. Molecular docking revealed that O. grossii and T. pallidus essential oils interact with antibacterial and antioxidant proteins (1AJ6 and 6QME). Key compounds in O. grossii include p-cymene, eucalyptol, and carvacrol, while T. pallidus contains potent chemicals like p-cymene, ɤ-maaliene, valencene, α-terpinene, caryophyllene, himachalene, and thymol. Notably, the most potent chemicals in Origanum grossii are p-cymene, eucalyptol, and carvacrol, while the most potent chemicals in Thymus pallidus are p-cymene, α-terpinene, and thymol. These findings suggest that these plant EOs could be used to develop new natural products with antibacterial and antioxidant activity.
Collapse
Affiliation(s)
- Hind Zejli
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco.
| | - Aziza Fitat
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| | - Youssra Lefrioui
- Laboratory of Biotechnology, Health, Agrofood and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Fatima Zahra Bousseraf
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC, G1V 0A6, Canada
| | | | - Abdelkader Gourch
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| | - Abdelfattah Abdellaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, B. P. 1796, Fes-Atlas, Morocco
| |
Collapse
|
35
|
Archana VP, Armaković SJ, Armaković S, Celik I, Bhagyasree J, Dinesh Babu K, Rudrapal M, Divya IS, Pillai RR. Exploring the structural, photophysical and optoelectronic properties of a diaryl heptanoid curcumin derivative and identification as a SARS-CoV-2 inhibitor. J Mol Struct 2023; 1281:135110. [PMID: 36785704 PMCID: PMC9910092 DOI: 10.1016/j.molstruc.2023.135110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Developing modifiable natural products those having antiviral activities against SARS-CoV-2 is a key research area which is popular in current scenario of COVID pandemic. A diaryl heptanoid curcumin and its derivatives are already presenting promising candidates for anti-viral drug development. We have synthesized single crystals of a dimethylamino derivative of natural curcumin and structural characterization was done by single crystal XRD analysis. Using steady-state absorption and emission spectra and guided by complimentary ab initio calculations, we unraveled the solvent effects on the photophysical properties of the dimethyl amino curcumin derivative. Chemical reactivity of the compound has investigated using frontier molecular orbitals and molecular electrostatic potential surface. High stability of the curcumin derivative in water environment has evaluated by Radial Distributions Functions (RDF) calculated via Molecular Dynamics (MD) simulations. The inhibitory activity of the title compound was evaluated by in silico methods and the stability of the protein-ligand complexes were studied using Molecular Dynamics simulations and MM-PBSA analysis. With this detailed study, we hope to motivate scientific community to develop new curcumin derivatives against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Vikaraman P. Archana
- Department of Polymer Chemistry, Government College, Attingal, University of Kerala, Thiruvananthapuram, Kerala, India,Department of Chemistry, Government College for Women, University of Kerala, Vazhuthacaud, Thiruvananthapuram, Kerala, India
| | - Sanja J. Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovića 3, 21000 Novi Sad, Serbia,Association for the International Development of Academic and Scientific Collaboration (AIDASCO), Novi Sad, Serbia
| | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg D. Obradovića 4, 21000 Novi Sad, Serbia,Association for the International Development of Academic and Scientific Collaboration (AIDASCO), Novi Sad, Serbia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - J.B. Bhagyasree
- Department of Polymer Chemistry, Government College, Attingal, University of Kerala, Thiruvananthapuram, Kerala, India
| | - K.V. Dinesh Babu
- Department of Chemistry, Government College for Women, University of Kerala, Vazhuthacaud, Thiruvananthapuram, Kerala, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology & Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur-522213, India
| | - Indira S. Divya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Renjith Raveendran Pillai
- Department of Physics, University College, University of Kerala, Thiruvananthapuram, Kerala, India,Association for the International Development of Academic and Scientific Collaboration (AIDASCO), Novi Sad, Serbia,Corresponding author
| |
Collapse
|
36
|
Baru Venkata R, Prasanth DSNBK, Pasala PK, Panda SP, Tatipamula VB, Mulukuri S, Kota RK, Rudrapal M, Khan J, Aldosari S, Alshehri B, Banawas S, Challa MC, Kammili JK. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr 2023; 10:1185236. [PMID: 37324729 PMCID: PMC10266967 DOI: 10.3389/fnut.2023.1185236] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
To valorise the bioactive constituents abundant in leaves and other parts of medicinal plants with the objective to minimize the plant-based wastes, this study was undertaken. The main bioactive constituent of Andrographis paniculata, an Asian medicinal plant, is andrographolide (AG, a diterpenoid), which has shown promising results in the treatment of neurodegenerative illnesses. Continuous electrical activity in the brain is a hallmark of the abnormal neurological conditions such as epilepsy (EY). This can lead to neurological sequelae. In this study, we used GSE28674 as a microarray expression profiling dataset to identify DEGs associated with andrographolide and those with fold changes >1 and p-value <0.05 GEO2R. We obtained eight DEG datasets (two up and six down). There was marked enrichment under various Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms for these DEGs (DUSP10, FN1, AR, PRKCE, CA12, RBP4, GABRG2, and GABRA2). Synaptic vesicles and plasma membranes were the predominant sites of DEG expression. AG acts as an antiepileptic agent by upregulating GABA levels. The low bioavailability of AG is a significant limitation of its application. To control these limitations, andrographolide nanoparticles (AGNPs) were prepared and their neuroprotective effect against pentylenetetrazol (PTZ)-induced kindling epilepsy was investigated using network pharmacology (NP) and docking studies to evaluate the antiepileptic multi-target mechanisms of AG. Andrographolide is associated with eight targets in the treatment of epilepsy. Nicotine addiction, GABAergic synapse, and morphine addiction were mainly related to epilepsy, according to KEGG pathway enrichment analysis (p < 0.05). A docking study showed that andrographolide interacted with the key targets. AG regulates epilepsy and exerts its therapeutic effects by stimulating GABA production. Rats received 80 mg/kg body weight of AG and AGNP, phenytoin and PTZ (30 mg/kg i.p. injection on alternate days), brain MDA, SOD, GSH, GABAand histological changes of hippocampus and cortex were observed. PTZ injected rats showed significantly (***p < 0.001) increased kindling behavior, increased MDA, decreased GSH, SOD, GABA activities, compared with normal rats, while treatment AGNPs significantly reduced kindling score and reversed oxidative damage. Finally, we conclude that the leaves and roots of A. Paniculata can be effectively utilized for its major bioactive constituent, andrographolide as a potent anti-epileptic agent. Furthermore, the findings of novel nanotherapeutic approach claim that nano-andrographolide can be successfully in the management of kindling seizures and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sirisha Mulukuri
- Department of Natural Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Bengaluru, India
| | - Ravi Kumar Kota
- Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
37
|
Warude BJ, Wagh SN, Chatpalliwar VA, Yildirim M, Celik I, Rudrapal M, Khan J, Chinnam S, Garud AA, Neharkar VS. Design, docking, MD simulation and in-silco ADMET prediction studies of novel indole-based benzamides targeting estrogen receptor alfa positive for effective breast cancer therapy. PHARMACIA 2023; 70:307-316. [DOI: 10.3897/pharmacia.70.e100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025] Open
Abstract
Breast cancer is one of the most common malignancies in women, afflicting millions of lives each year. Our current study suggests that the development of the most promising 7-substituted -1-(4-(piperidine-1-yl methoxy)benzyl)-1H-indole-3-carboxamide derivatives results in potent anticancer agents through in-silico investigations. The molecular docking was performed against estrogen receptor alpha (ER-α) positive (PDB ID: 3UUD) of breast cancer cells to anticipate the binding modes of the designed compounds and the likely mode of action. The interactions between the ligands and amino acid residues were thoroughly elucidated. The stability of the docked protein-ligand complexes was further confirmed by 100 ns molecular simulations methods. From in-silico studies, indole-based benzamides exhibited satisfactory physicochemical, drug-likeness and toxicity properties. To conclude, the most promising substituted benzamide analogs on the indole ring could serve as a possible modulator against ER-α positive breast cancer.
Collapse
|
38
|
Harras MF, Sabour R, Farghaly TA, Ibrahim MH. Drug Repurposing Approach in Developing New Furosemide Analogs as Antimicrobial Candidates and Anti-PBP: Design, Synthesis, and Molecular Docking. Bioorg Chem 2023; 137:106585. [PMID: 37163813 DOI: 10.1016/j.bioorg.2023.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Multidrug-resistant microorganisms have become a global health problem, prompting research into new antimicrobials. Drug repurposing is a new technique in drug discovery used to improve drug development success. As a well-studied medication with a sulfonamide moiety, furosemide was chosen to study its antimicrobial effect on different microbial strains. In addition, a new family of furosemide analogs was investigated for their antimicrobial efficacy. According to the obtained results, the majority of the examined molecules exhibited potential antimicrobial activity. Compounds 3b and 4a had the best anti-MRSA results, with an MIC = 7.81 µg/mL. They also demonstrated potent anti-gram-negative activity against E. coli (MIC = 1.95 µg/mL and 3.91 µg/mL, respectively). A time-killing kinetics study against E. coli and MRSA showed bactericidal actions of 3b and 4a within 120-150 min. Moreover, an anti-PBP activity and an in vitro cytotoxicity evaluation were performed. Furosemide decreased the PBP2a levels in MRSA by 21.5% compared to the control. However, the furosemide analogs 3b and 4a demonstrated superior anti-PBP activity (55.9 and 57.1 % reduction in the expression of PBP2a, respectively). In addition, compound 4a was nearly nontoxic to normal WI-38 cells (IC50 = 248.60 μg /mL) indicating its high safety profile. Finally, the ability of furosemide and compounds 3b and 4a to bind to the target PBP2a enzyme has also been supported by molecular docking research.
Collapse
Affiliation(s)
- Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
39
|
Rudrapal M, Vallinayagam S, Aldosari S, Khan J, Albadrani H, Al-Shareeda A, Kamal M. Valorization of Adhatoda vasica leaves: Extraction, in vitro analyses and in silico approaches. Front Nutr 2023; 10:1161471. [PMID: 37063312 PMCID: PMC10099809 DOI: 10.3389/fnut.2023.1161471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Adhatoda vasica (also called Vasaka) is a traditional medicinal herb used traditionally for the relief of cough, asthma, nasal congestion, bronchial inflammation, upper respiratory infections, bleeding disorders, skin diseases, leprosy, tuberculosis, diabetes, allergic conditions, rheumatism, tumor, and many more diseases. The present study aims to investigate the biological activities of vasicine, a potent alkaloid from A. vasica with different biological/ pharmacological assays and in silico techniques. Vasicine showed antimicrobial activity as evidenced fromthe colony-forming unit assay. It showed antioxidant activity in ABTS scavenging assay (IC50 = 11.5 μg/ml), ferric reducing power assay (IC50 = 15 μg/ml), DPPH radical scavenging assay (IC50 = 18.2 μg/ml), hydroxyl radical scavenging assay (IC50 = 22 μg/ml), and hydrogen peroxide assay (IC50 = 27.8 μg/ml). It also showed anti-inflammatory activity in proteinase inhibitory assay (IC50 = 76 μg/ml), BSA method (IC50 = 51.7 μg/ml), egg albumin method (IC50 = 53.2 μg/ml), and lipooxygenase inhibition assay (IC50 = 76 μg/ml). Vasicine showed antidiabetic activity in α-amylase inhibition assay (IC50 = 47.6 μg/ml), α-glucosidase inhibition assay (IC50 = 49.68 μg/ml), and non-enzymatic glycosylation of hemoglobin assay. It showed antiviral activity against HIV-protease (IC50 = 38.5 μg/ml). Vasicine also showed anticancer activity against lung cancer cells (IC50 = 46.5 μg/ml) and human fibroblast cells (IC50 = 82.5 μg/ml). In silico studies revealed that similar to the native ligands, vasicine also showed a low binding energy, i.e., good binding affinity for the active binding sites and interacted with α-amylase (-6.7 kcal/mol), α-glucosidase (-7.6 kcal/mol), cyclooxygenase (-7.4 kcal/mol), epidermal growth factor receptor (-6.4 kcal/mol), lipooxygenase (-6.9 kcal/mol), and HIV-protease (-6.4 kcal/mol). The present study ascertains the potential of vasicine as a bioactive compound isolated from A. vasica having therapeutic usefulness in many human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: Mithun Rudrapal
| | - Sugumari Vallinayagam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
- Sahar Aldosari s.aldosarimu.edu.sa
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Hind Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Alaa Al-Shareeda
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of the Saudi Biobank, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
40
|
Ahmad I, Khan H, Serdaroğlu G. Physicochemical Properties, Drug Likeness, ADMET, DFT Studies and in vitro antioxidant activity of Oxindole Derivatives. Comput Biol Chem 2023; 104:107861. [PMID: 37060784 DOI: 10.1016/j.compbiolchem.2023.107861] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Poor pharmacokinetic and safety profiles create significant hurdles in the drug development process. This work focuses on a detailed understanding of drug discovery interplay among physicochemical, pharmacokinetic, toxicity endpoints, and antioxidant properties of oxindole derivatives. DFT compıutations were also performed at B3LYP/6-311G** level to evaluate the physicochemical properties, global reactivity features, and intramolecular interactions. The BOILED-Egg pharmacokinetic model envisaged gastrointestinal absorption, blood-brain barrier penetration, and no interaction with p-glycoprotein for compounds C1 and C2. The physicochemical evaluation revealed that C1 possesses superior drug-like properties fit for oral absorption. Both derivatives were predicted to have high plasma protein binding, efficient distribution, and inhibiting CYP 450 major isoforms but serve as substrates only for a few of them. Both molecules have mild to moderate clearance rates. Out of ten toxicity parameters, only hepatotoxicity was predicted. DFT results implied that the meta position of the -OH group made the possibility of charge transfer greater than -para positioned -OH, due to the ΔNmax (eV) values of molecules C1 and C2 being calculated at 2.596 and 2.477, respectively. Both C1 and C2 exhibited a concentration dependant DPPH and ABTS radical scavenging activity. The chemical structure-physicochemical-pharmacokinetic relationship identified the meta position as the favorite for the electron-withdrawing hydroxyl group. This provides useful insight to medicinal chemists to design 6-chlorooxindole derivatives with an acceptable drug-like and pharmacokinetic property.
Collapse
|
41
|
Rudrapal M, Celik I, Chinnam S, Çevik UA, Tallei TE, Nizam A, Joy F, Abdellattif MH, Walode SG. Analgesic and Anti-Inflammatory Potential of Indole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayaseri, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Visvesvaraya Technological University, Bengaluru, India
| | - Ulviye Acar Çevik
- Department of Pharaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Trina Ekawati Tallei
- Deparment of Biology, Faculty of Matematic and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
42
|
Yildirim M, Celik I. Virtual Screening, Molecular Docking, Molecular Dynamics and ADMET Studies on the OTU Protease of Crimean‐Congo Hemorrhagic Fever Virus. ChemistrySelect 2022. [DOI: 10.1002/slct.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Merve Yildirim
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Chemistry 38039 Kayseri Turkey
| | - Ismail Celik
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Chemistry 38039 Kayseri Turkey
| |
Collapse
|
43
|
da Costa APL, Silva JRA, de Molfetta FA. Computational discovery of sulfonamide derivatives as potential inhibitors of the cruzain enzyme from T. cruzi by molecular docking, molecular dynamics and MM/GBSA approaches. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ana Paula Lima da Costa
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
44
|
El-Qaliei MI, Mousa SA, Mahross M, Hassane A, Gad-Elkareem MA, Anouar EH, Snoussi M, Aouadi K, Kadri A. Novel (2-Oxoindolin-3-ylidene)methyl)-1H-pyrazole and their fused derivatives: Design, synthesis, antimicrobial evaluation, DFT, chemical approach, in silico ADME and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Elkanzi NA, Ali AM, Albqmi M, Abdou A. New 2‐Methyl‐benzimidazole‐based complexes of Fe (III) and Cr (III) ions: Characterization, bioactivity screening and theoretical implementations via DFT and molecular docking analysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadia A. Elkanzi
- Chemistry Department College of Science, Jouf University Sakaka
- Chemistry Department, Faculty of Science Aswan University Aswan Egypt
| | - Ali M. Ali
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| | - Mha Albqmi
- Chemistry Department College of Science and Arts, Jouf University Alqurayyat Saudi Arabia
| | - Aly Abdou
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
46
|
Abdou A. Synthesis, Structural, Molecular Docking, DFT, Vibrational Spectroscopy, HOMO-LUMO, MEP Exploration, antibacterial and antifungal activity of new Fe(III), Co(II) and Ni(II) hetero-ligand complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Celik I, Rudrapal M, Yadalam PK, Chinnam S, Balaji TM, Varadarajan S, Khan J, Patil S, Walode SG, Panke DV. Resveratrol and Its Natural Analogues Inhibit RNA Dependant RNA Polymerase (RdRp) of Rhizopus oryzae in Mucormycosis through Computational Investigations. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2091618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Adhiparasakthi Dental College & Hospital, Melmaruvathur, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College & Hospital, Chennai, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Dhiraj V. Panke
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
48
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
49
|
Pasala PK, Uppara RK, Rudrapal M, Zothantluanga JH, Umar AK. Silybin phytosome attenuates cerebral ischemia-reperfusion injury in rats by suppressing oxidative stress and reducing inflammatory response: In vivo and in silico approaches. J Biochem Mol Toxicol 2022; 36:e23073. [PMID: 35437840 DOI: 10.1002/jbt.23073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
The present study was aimed to develop silybin phytosome (SIBP) and evaluate its effectiveness against cerebral ischemia-reperfusion (CIR) injury in rats. Initially, SIBP was prepared and characterized with Fourier transform-infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Drug loading and entrapment efficiency of SIBP were also calculated. High-performance liquid chromatography was used to carry out bioavailability studies of SIBP. Adult Wistar rats were divided randomly into five groups. The CIR injury was induced after 14 days of pretreatment by occlusion of bilateral common carotid arteries for 30 min followed by 4 h of reperfusion. Biochemical estimation, histopathological studies, and in silico studies were carried out. Bioavailability studies revealed that SIB concentration was increased to twofolds in SIBP-treated rats. SIBP treatment significantly increases superoxide dismutase and glutathione levels while it decreases monoaldehyde, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) levels in both the hippocampus and cortex of the SIBP-treated CIR-injured rats. Histopathological studies reveal SIBP treatment alleviates cortex cell death and arrangement of CA1 neurons in CIR-injured rats. In silico studies against proteins (TNF-α and IL-6) involved in cerebral ischemia revealed that silybin (SIB) exhibits strong binding interaction with the target proteins when compared to thalidomide which was used as the positive control. Phytosome increase SIB bioavailability and SIBP treatment showed promising results when compared to treatment with SIB only. Based on our study, we conclude that phytosome is a suitable drug delivery agent to the brain for SIB as SIBP treatment was able to provide neuroprotective action against CIR injury.
Collapse
Affiliation(s)
- Praveen K Pasala
- Department of Pharmacology, Santhiram College of Pharmacy, Nandyal, Andhra Pradesh, India
| | - Ramya K Uppara
- Department of Pharmacology, Creative Educational Society's College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, Maharashtra, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Abd Kakhar Umar
- Department of Pharmacy, Faculty of Math and Natural Science, Universitas Tadulako, Palu City, Indonesia
| |
Collapse
|
50
|
Zothantluanga JH, Abdalla M, Rudrapal M, Tian Q, Chetia D, Li J. Computational Investigations for Identification of Bioactive Molecules from Baccaurea ramiflora and Bergenia ciliata as Inhibitors of SARS-CoV-2 M pro. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2046613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, PR China
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education Research, Pune, Maharashtra, India
| | - Qiang Tian
- Department of Senile Neurology, The Central Hospital of Taian, Taian, Shandong, PR China
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Jin Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, PR China
| |
Collapse
|