1
|
Tabbiche A, Bouchama A, Fadli K, Ahmad B, Kumar N, Chiter C, Yahiaoui M, Zaidi F, Boudjemaa K, Dege N, Djedouani A, Chafai N. Development of new benzil-hydrazone derivatives as anticholinesterase inhibitors: synthesis, X-ray analysis, DFT study and in vitro/ in silico evaluation. J Biomol Struct Dyn 2025; 43:2518-2533. [PMID: 38193889 DOI: 10.1080/07391102.2023.2301683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/18/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder affecting the central nervous system. Current drugs for AD have limited effectiveness and often come with side effects. Consequently, there is a pressing need to develop new, safe, and more effective treatments for Alzheimer's disease. In this work, two novel benzil-hydrazone compounds, abbreviated 2-ClMHB and 2-ClBHB, were synthesized for the first time by refluxing the benzil with 2-Chloro phenyl hydrazine and they have been tested for their in vitro anti-cholinesterase activities and in silico acetyl and butyryl enzymes inhibition. The resulting products were characterized using UV-Vis and IR spectroscopy, while the single-crystal X-ray diffraction investigation was successful in establishing the structures of these compounds. DFT calculations have been successfully made to correlate the experimental data. According to biological studies, the synthesized hydrazones significantly inhibited both butyrylcholinesterase (2-ClMHB: 20.95 ± 1.29 µM and 2-ClBHB: 31.21 ± 1.50 µM) and acetylcholinesterase (2-ClMHB: 21.80 ± 1.10 µM and 2-ClBHB: 10.38 ± 1.27 µM). Moreover, molecular docking was also employed to locate the molecule with the optimum interaction and stability as well as to explain the experimental findings. The compound's dynamic nature, binding interaction, and protein-ligand stability were investigated using molecular dynamics (MD) simulations. Analyzing parameters such as RMSD and RMSF indicated that the compound remained stable throughout the 100 ns MD simulation. Finally, the drugs displayed high oral bioavailability, as per projected ADME and pharmacokinetic parameters.
Collapse
Affiliation(s)
- Abdelkader Tabbiche
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas, Sétif, Algeria
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
- Biotechnology Research Center, Ali Mendjli Nouvelle Ville UV03, Constantine, Algérie
| | - Abdelaziz Bouchama
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas, Sétif, Algeria
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
| | - Khadidja Fadli
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas, Sétif, Algeria
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
| | | | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, B.N. College of Pharmacy, Udaipur, India
| | - Chaabane Chiter
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
| | - Messaoud Yahiaoui
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
| | - Farouk Zaidi
- Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures, Université Ferhat Abbas, Sétif, Algeria
- Département de Chimie, Faculté des Sciences, Université Ferhat Abbas, Sétif, Algérie
| | | | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Amel Djedouani
- Ecole Normale Supérieure de Constantine, Constantine, Algeria
- Laboratory of Analytical Physicochemistry and Crystallochemistry of Organometallic and Biomolecular Materials, UFMC1, Constantine, Algeria
| | - Nadjib Chafai
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC), Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS, Sétif, Algeria
| |
Collapse
|
2
|
Sharma A, Dubey R, Bhupal R, Patel P, Verma SK, Kaya S, Asati V. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers 2024; 28:3605-3634. [PMID: 37733243 DOI: 10.1007/s11030-023-10728-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Ritu Bhupal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Savas Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
3
|
Kostova I. Special Issue: "Rational Design and Synthesis of Bioactive Molecules". Int J Mol Sci 2024; 25:9927. [PMID: 39337415 PMCID: PMC11432531 DOI: 10.3390/ijms25189927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The rational design of novel bioactive molecules is a critical but challenging task in drug discovery [...].
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 2 Dunav St., 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Arshad U, Shafiq N, Parveen S, Rashid M. Discovery of novel dihydro-pyrimidine hybrids: insight into the design, synthesis, biological evaluation and absorption, distribution, metabolism and excretion studies. Future Med Chem 2024; 16:1949-1969. [PMID: 39263831 PMCID: PMC11485738 DOI: 10.1080/17568919.2024.2389767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: By keeping in aspects, the pharmacological potential of heterocyclic compounds, pyrimidine-based compounds were designed, synthesized and evaluated for α-amylase inhibitory potential.Materials & methods: Five new series 1a-l, 2a-d, 3a-d, 4a-d and 5a-d of 1,2,3,4-tetrahydroprimidine-5-carboxylate derivatives were designed by de novo method by taking Alogliptin as reference compound. Here in we describe synthesis and characterization of compounds as potential α-amylase inhibitor.Results: Structure activity relationship (SAR), in vitro analysis and molecular modelling approaches generate compounds 1 h, 1i, 1k and 4c as potential lead with good α-amylase inhibitory selection. However, compound 1k failed the criteria of optimization as drug lead by ADME studies while all other compounds showed optimum range for all in silico ADME parameters.Conclusion: Therefore, these compounds can serve as potential lead candidate in developing anti-diabetic therapy.
Collapse
Affiliation(s)
- Uzma Arshad
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Chahal S, Rani P, Shweta, Goel KK, Joshi G, Singh R, Kumar P, Singh D, Sindhu J. Pyrano[2,3-c]pyrazole fused spirooxindole-linked 1,2,3-triazoles as antioxidant agents: Exploring their utility in the development of antidiabetic drugs via inhibition of α-amylase and DPP4 activity. Bioorg Chem 2024; 147:107363. [PMID: 38657527 DOI: 10.1016/j.bioorg.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Shweta
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar 249404, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, Uttarakhand, India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
6
|
Şahin İ, Çeşme M, Güngör Ö, Özgeriş FB, Köse M, Tümer F. New sulfonamide derivatives based on 1,2,3-triazoles: synthesis, in vitro biological activities and in silico studies. J Biomol Struct Dyn 2024; 42:4782-4799. [PMID: 37317998 DOI: 10.1080/07391102.2023.2222833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Eight new hybrid constructs containing a series of sulfonamide and 1,2,3-triazole units were designed and synthesized. Anticancer, antioxidant and cholinesterase activities of these hybrid structures were investigated. In our design, the Cu(I)-catalyzed click reaction between N,4-dimethyl-N-(prop-2-yn-1-yl)benzenesulfonamide (6) and aryl azides 8a-h was used. Antioxidant activity values of 9f (IC50: 229.46 ± 0.001 μg/mL) and 9h (IC50: 254.32 ± 0.002 μg/mL) hybrid structures were higher than BHT (IC50: 286.04 ± 0.003 μg/mL) and lower than Ascorbic acid (IC50: 63.53 ± 0.001 μg/mL) and α-Tocopherol (IC50: 203.21 ± 0.002 μg/mL). We determined that the cytotoxic effects of hybrid constructs 9d (IC50: 3.81 ± 0.1084 µM) and 9g (IC50: 4.317 ± 0.0367 µM) against A549 and healthy cell line (HDF) are much better than standard cisplatin (IC50: 6.202 ± 0.0705 µM). It was determined that the AChE inhibitory activities of all synthesized compounds were much better than Galantamine used as a standard. In particular, 9c (IC50: 13.81 ± 0.0026 mM) had ten times better activity than the standard Galantamine (IC50: 136 ± 0.008 mM). The ADMET properties of the molecules have been thoroughly examined and met the criteria for drug-like substances. They also have a high oral absorption rate, as they can effectively cross the blood-brain barrier and are easily absorbed in the gastrointestinal tract. In vitro experiments were confirmed by in silico molecular docking studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
7
|
Design, synthesis, spectroscopic characterization, single crystal X-ray analysis, in vitro α-amylase inhibition assay, DPPH free radical evaluation and computational studies of naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles. Eur J Med Chem 2023; 250:115230. [PMID: 36863227 DOI: 10.1016/j.ejmech.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our quest to design and develop N/O-containing inhibitors of α-amylase, we have tried to synergize the inhibitory action of 1,4-naphthoquinone, imidazole and 1,2,3-triazole motifs by incorporating these structures into a single matrix. For this, a series of novel naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles is synthesized by a sequential approach involving [3 + 2] cycloaddition of 2-aryl-1-(prop-2-yn-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-diones with substituted azides. The chemical structures of all the compounds are established with the help of 1D-NMR, 2D-NMR, IR, mass and X-ray studies. The developed molecular hybrids are screened for their inhibitory action on the α-amylase enzyme using the reference drug, acarbose. Different substituents present on the attached aryl part of the target compounds show amazing variations in inhibitory action against the α-amylase enzyme. Based on the type of substituents and their respective positions, it is observed that compounds containing -OCH3 and -NO2 groups show more inhibition potential than others. All the tested derivatives display α-amylase inhibitory activity with IC50 values in the range of 17.83 ± 0.14 to 26.00 ± 0.17 μg/mL. Compound 2-(2,3,4-trimethoxyphenyl)-1-{[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl]methyl}-1H-naphtho[2,3-d]imidazole-4,9-dione (10y) show maximum inhibition of amylase activity with IC50 value 17.83 ± 0.14 μg/mL as compared to reference drug acarbose (18.81 ± 0.05 μg/mL). A molecular docking study of the most active derivative (10y) is performed with A. oryzae α-amylase (PDB ID: 7TAA) and it unveils favourable binding interactions within the active site of the receptor molecule. The dynamic studies reveal that the receptor-ligand complex is stable as the RMSD of less than 2 is observed in 100 ns molecular dynamic simulation. Also, the designed derivatives are assayed for their DPPH free radical scavenging ability and all of them exhibit comparable radical scavenging activity with the standard, BHT. Further, to assess their drug-likeness properties, ADME properties are also evaluated and all of them demonstrate worthy in silico ADME results.
Collapse
|
8
|
Şahin İ, Çeşme M, Yüce N, Tümer F. Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies. J Biomol Struct Dyn 2023; 41:1988-2001. [PMID: 35057704 DOI: 10.1080/07391102.2022.2025905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, eight new 1,2,3-triazoles (6a-h) were synthesized from acetylenes' "click" reaction with p-substituted azide derivatives. The structures of the compounds were characterized using standard analytical and spectroscopic methods (elemental analysis, FT-IR, 1H(13C)NMR). The anticancer, antioxidant, α-amylase, ADME, molecular docking studies of synthesized triazoles were investigated. According to α -amylase enzyme inhibition results, all compounds except 6c (IC50: 2299 μg/mL) were found to have a higher IC50 value than the standard drug acarbose (IC50: 891 μg/mL). Compound 6g (IC50: 68 μg/mL) exhibited 13 times higher activity than standard acarbose. All compounds, except 6e, have been shown to have greater DPPH radical scavenging capabilities than BHT and β-carotene standards. According to ABTS radical scavenging studies, all compounds showed higher scavenging activity than ascorbic acid and Trolox. To determine the anticancer activity of the synthesized compounds, they were screened against the Hela cell line, and the results were compared with standard cisplatin (IC50: 16.30 μg/mL). Compound 6a (IC50: 49.03 μg/mL) was determined to have moderate activity relative to cisplatin. The compounds were examined comprehensively for ADME characteristics and did not violate any drug-likeness rule. ADME data showed that all physicochemical and pharmacological parameters of the compounds remained within defined limits as specified in Lipinski's rules (RO5) and put forth a high bioavailability profile. The molecular docking findings show that all molecules have a high affinity by exhibiting polar and apolar contact with essential residues in the binding pocket of α-amylase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
9
|
Novel thiourea derivative compounds: thermal behavior, biological evaluation, Hirshfeld surfaces and frontier orbitals analyses, in silico ADMET profiling and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Şahin İ, Çeşme M, Özgeriş FB, Tümer F. Triazole based novel molecules as potential therapeutic agents: Synthesis, characterization, biological evaluation, in-silico ADME profiling and molecular docking studies. Chem Biol Interact 2023; 370:110312. [PMID: 36535312 DOI: 10.1016/j.cbi.2022.110312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, eight new compounds (7a-h) based on triazole compounds containing ester groups were synthesized with high yields. The structures of the synthesized compounds (7a-h) were elucidated by various spectroscopic methods (element analysis, FT-IR, 1H-(13C) NMR). Antioxidant, anticancer, and α-amylase enzyme inhibition activities of synthesized new triazole derivatives were carried out, and the effects of different groups on the activity were investigated. When the determined antioxidant properties of the compounds were examined, all synthesized compounds showed a moderate radical scavenging effect against radicals depending on the concentration (6.25-200 g/mL). All compounds except the three derivatives were found to have higher IC50 values than the standard drug acarbose (IC50: 891 μg/mL) according to the α-amylase enzyme inhibition results. Compound 7g (IC50: 50 g/mL) was discovered to have nearly eighteen (18) times the activity of the conventional medication acarbose (IC50: 891 μg/mL). Compounds synthesized for anticancer activity studies were screened against the Hela cell line, and the results were compared with standard cis-platinum (IC50: 16.30 μg/mL). Compound 7g (IC50: 19.78 μg/mL) was found to have almost the same activity as cis-platinum. Using Qikprop, the compounds were thoroughly tested for ADME qualities, and none violated any drug similarity standards. According to ADME data, whole physicochemical drug-likeness parameters of molecules remained within defined ranges as stipulated in the Lipinski rules (RO5) and revealed a high bioavailability profile. The molecular docking results with 2QV4 and 4GQR alpha-amylase enzymes demonstrated that all molecules have a high affinity, indicating polar and apolar interaction with critical amino acids in the α-amylase binding pocket.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| | - Fatma Betül Özgeriş
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| |
Collapse
|
11
|
Kılıçaslan D, Kurt AH, Köse M, Çeşme M, Güngör Ö, Oztabag CK, Doganer A. A Novel Donepezil–Caffeic Acid Hybrid: Synthesis, Biological Evaluation, and Molecular Docking Studies. BIOCHEMISTRY (MOSCOW) 2023; 88:50-63. [PMID: 37068881 DOI: 10.1134/s0006297923010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Derya Kılıçaslan
- Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| | - Akif Hakan Kurt
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammet Köse
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Cansu Kara Oztabag
- Department of Interdisciplinary Neuroscience, Bolu Abant Izzet Baysal University, Institute of Health Sciences, Bolu, Turkey
| | - Adem Doganer
- Department Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
12
|
New aromatic hydrazones: Synthesis, structural analysis, DFT study, biological activity, ADME-T properties and in silico evaluation of their inhibition of SAS-CoV-2 main protease. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Synthesis, characterization, antioxidant and anticancer activity of new hybrid structures based on diarylmethanol and 1,2,3-triazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Yeşilkaynak T, Özkömeç FN, Çeşme M, Demirdöğen RE, Kutlu E, Kutlu HM, Emen FM. Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Yadav A, Kaushik CP. Synthesis and antibacterial evaluation of sulfonamide bridged disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2141126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Archna Yadav
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
16
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Chemical Composition, Antibacterial, Antifungal and Antidiabetic Activities of Ethanolic Extracts of Opuntia dillenii Fruits Collected from Morocco. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Opuntia dillenii (Ker Gawl.) Haw. belongs to the Cactaceae family and is native to the arid and semi-arid regions of Mexico and the southern United States. O. dillenii are now used as medicinal plants in various countries. In this study, we investigated the chemical composition of ethanolic extracts obtained from seeds, juice, and peel of O. dillenii fruits collected from Morocco, and we evaluated their antibacterial, antifungal, and antidiabetic activities. Phytochemical screening revealed high quantities of polyphenols (193.73 ± 81.44 to 341.12 ± 78.90 gallic acid eq [g/100 g dry weight]) in the extracts. The major phenolic compounds determined by HPLC were gallic acid, vanillic acid, and syringic acid. Regarding flavonoids, quercetin 3-O-β-D-glucoside and kaempferol were the predominant molecules. Juice extracts showed weak to moderate antibacterial activity against the bacteria species Listeria monocytogenes, Escherichia coli, and Salmonella braenderup. All tested extracts displayed a significant inhibitory effect on α-glucosidase and α-amylase activities in vitro, with the peel extracts showing the greatest inhibitory effects. Together, these findings suggest that O. dillenii fruits are a promising source for the isolation of novel compounds with antibacterial or antidiabetic activities. For the most abundant phytochemicals identified in O. dillenii peel ethanolic extract, molecular docking simulations against human pancreatic α-amylase enzyme were performed. These indicated the presence of bioactive compounds in the extract with a better potential to decrease the enzyme activity than the commercial drug acarbose.
Collapse
|
18
|
Çeşme M, Özaltay A. DNA‐Binding Studies of Ofloxacin Using a Series of Spectroscopic, Electrochemical Techniques and in Silico Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| | - Ayşe Özaltay
- Department of Chemistry Faculty of Sciences Kahramanmaras Sütçü İmam University 46040 Kahramanmaras TURKEY
| |
Collapse
|
19
|
Çeşme M. 2-Aminophenol-based ligands and Cu(II) complexes: synthesis, characterization, X-ray structure, thermal and electrochemical properties, and in vitro biological evaluation, ADMET study and molecular docking simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Çot A, Çeşme M, Onur S, Aksakal E, Şahin İ, Tümer F. Rational design of 1,2,3-triazole hybrid structures as novel anticancer agents: synthesis, biological evaluation and molecular docking studies. J Biomol Struct Dyn 2022:1-9. [PMID: 35983627 DOI: 10.1080/07391102.2022.2112620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
New hybrid compounds belonging to the class of 1,4-disubstituted 1,2,3-triazoles were synthesized. The structural characterization of the synthesized compounds was performed using IR, 1H-NMR, 13C NMR and elemental analysis techniques. Diarylketones 1a and 1b were used as starting compounds for the synthesis of triazoles. The corresponding diarylmethanol derivatives (2a,b) were obtained from reduction of ketone units with NaBH4. Oxyalkynes (3a,b) were obtained by treating the hydroxyl group with NaH in anhydrous THF and then with propargylbromide. The target hybrid structures 6a-n were obtained from the metal-catalyzed "click reaction" of the arylazide and alkyne units. The newly synthesized compounds were structurally analysed using 1H-NMR, 13C-NMR, elemental analysis, LC-MS and FT-IR. The antioxidant and anticancer activities of all compounds were investigated. It has been determined that the new hybrid structures have very good antioxidant and anticancer activities according to the standards. In particular, compounds 6b, 6h, 6i and 6j (IC50: 1.87, 12.5, 7.22, 8.04 µM) showed excellent activity compared to standard 5-Fu (IC50: 40.89 µM). According to the results of molecular docking of compounds 6b and 6i with the highest cancer activity, MetAP-2 was found to have a high affinity through exposed polar and apolar contacts with fundemental residues in the binding pocket.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aynur Çot
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Sultan Onur
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Elif Aksakal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - İrfan Şahin
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
21
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
22
|
Dey S, Kumar BK, Johri S, Faheem, Murugesan S. Design and study of novel chromone and thiochromone derivatives as PfLDH inhibitors — computational approach. Struct Chem 2022. [DOI: 10.1007/s11224-022-01974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Isika DK, Özkömeç FN, Çeşme M, Sadik OA. Synthesis, biological and computational studies of flavonoid acetamide derivatives. RSC Adv 2022; 12:10037-10050. [PMID: 35424949 PMCID: PMC8966662 DOI: 10.1039/d2ra01375d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
This study reports the synthesis and characterization of a novel class of flavonoid acetamide derivatives (FA) of quercetin, apigenin, fisetin, kaempferol, and luteolin. Flavonoids display numerous biological properties but are limited by aqueous insolubility, enzymatic degradation, instability, and low bioavailability. FAs were synthesized, with 80-82% yields, through the sequential modification of the flavonoid hydroxyl groups into the acetamide moieties. Bioavailability, antioxidant, and ADMET are structure-activity-dependent properties that vary across different classes of flavonoids and dictate the prevalent biological applications of the flavonoids. Thus, the FAs were evaluated for their bioavailability, antioxidant, and ADMET toxicity properties versus the unmodified flavonoids (UFs). In vitro bioavailability analysis shows that the UFs have bio-availabilities in the range of 10.78-19.29% against that of the FAs in the range of 20.70-34.87%. The antioxidant capacity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH·) assay with recorded IC50 values of 2.19-13.03 μM for the UFs. Conversely, the FAs had high DPPH IC50 values ranging from 33.83 to 67.10 μM and corresponding to lower antioxidant activity. The FAs showed favorable ADMET properties. The modification of flavonoids into FAs significantly improves the bioavailability and the ADMET toxicity properties, albeit with decreased antioxidant activity. This work highlights the effect of the global modification of the flavonoids with the acetamide groups on the bioavailability, antioxidant, and ADMET toxicity properties which are critical determinants in the biological applications of the flavonoids.
Collapse
Affiliation(s)
- Daniel K Isika
- Department of Chemistry and Environmental Science, BioSensor Materials for Advanced Research & Technology (BioSMART Center), New Jersey Institute of Technology, University Heights 161 Warren Street Newark NJ 07102 USA
| | - Fatma Nur Özkömeç
- Department of Biology, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University 46040 Kahramanmaras Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University 46040 Kahramanmaras Turkey
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, BioSensor Materials for Advanced Research & Technology (BioSMART Center), New Jersey Institute of Technology, University Heights 161 Warren Street Newark NJ 07102 USA
| |
Collapse
|