1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
AbouElleef EM, Saad RA, Diab MA, El-Zahed MM, El-Sonbati AZ, Morgan SM. Synthesis, characterization, biological evaluation and molecular docking of a Schiff base ligand and its metal complexes. Biometals 2025; 38:935-963. [PMID: 40366547 DOI: 10.1007/s10534-025-00688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Condensation of 2,3-diaminopyridine with 2,4-dihyrodybenzaldehyde yielded a 4,4'-[(1E,1 ~ E)-(pyridine-2,3-diyl)bis(azanylylidene)]bis(methanylylidene)bis(benzene-1,3-diol) monobasic tridentate Schiff base ligand (HL) with an ONN donor sequence. Elemental analyses, conductivity tests, magnetic susceptibility data, FT-IR, UV-vis spectra, x-ray diffraction, and mass spectrum data of the ligand and its complexes were used for the characterization of the structures. Computational HF/3-21G calculations were performed to optimize their geometrical structures and assess their HOMO-LUMO energy gaps. The low molar conductance of the complexes indicates that they are not electrolytic. From the spectrophotometric and gravimetric analyses, the complexes (2-4) are in the ratio of 1:2, while complexes (1 & 5) (1:1) metal to ligand. 2,3-Diaminopyridine, 2,4-dihydroxybenzaldehyde, ligand (HL) and its complexes were screened for antibacterial and antifungal activities against some bacterial (Enterococcus faecalis, Salmonella typhi, and Staphylococcus epidermidis) and fungal isolates (Aspergillus flavus, Alternaria solani, and Candida albicans). The result reveals that 2,4-dihyrodybenzaldehyde has the strongest antibacterial activity among the other compounds followed by Mn(II) complex. The antimicrobial activity increases by increasing the compound concentration. To assess the inhibitory impact of ligand and its complexes on binding sites of B. cereus (PDB ID: 1FEZ), S. epidermidis (PDB ID: 3KP7), E. faecalis (PDB ID: 5V5U) and S. typhi (PDB ID: 5V2W) proteins, molecular modeling has been implemented offer a fresh concept for medication design. Molecular docking studies confirmed strong binding interactions between the metal complexes and bacterial proteins, validating their biological potential. These findings demonstrate the promising antimicrobial properties of Schiff base metal complexes, making them potential candidates for pharmaceutical and medicinal applications.
Collapse
Affiliation(s)
- Elsayed M AbouElleef
- Basic Sciences Department, Delta Higher Institute for Engineering and Technology, Mansoura, 35681, Dakhlia, Egypt.
| | - Rania A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - M A Diab
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - M M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - A Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Sh M Morgan
- Environmental Monitoring Laboratory, Ministry of Health, Port Said, Egypt
- Health Technical Institute, Ministry of Health, Port Said, Egypt
| |
Collapse
|
3
|
Vadivel T, Kulathooran S, Chandrasekaran S, Ilayaraja S, Benjamin R. Electrochemical studies of Ruthenium (III) complexes derived from chitosan Schiff base ligands. Carbohydr Res 2025; 554:109557. [PMID: 40449418 DOI: 10.1016/j.carres.2025.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
The biocompatible nature of the chitosan biopolymer enables it to facilitate a wide range of organic transformations including chemical modification with some carbonyl compounds. Transition metal complexes namely [Ru(CS)4hy3mbd)(H2O)2].Cl2, [Ru(CS)2hybd)(H2O)2].Cl2, and [Ru(CS)2hy3mbd)(H2O)2].Cl2 were synthesized by a complexation of bidentate Schiff base ligands which contains nitrogen and oxygen donor atoms. The nitrogen atom of azomethine linkage and the oxygen atom of aromatic aldehydes are the active sites for complexation reactions to form stable coordination complexes with ruthenium metal ions. The electronic transitions of ruthenium (III) complexes were studied by UV-Vis spectroscopy. The functional groups analysis were performed with FT-IR spectrum. The electronic structure and hyperfine splitting pattern of the metal complexes were discussed with ESR spectral data. The proton environment of the complex molecules were studied by 1H NMR spectroscopy. The stable complexes have shown a good crystalline nature which are characterized by powder XRD. Thermal stability of complexes was studied by Thermo-gravimetry analysis. The electrochemical property of ruthenium metal complexes were discussed with cyclic voltammogram and this study helps to distinguish reversible, quasi reversible redox properties of the metal complexes derived from biopolymer based Schiff base ligands.
Collapse
Affiliation(s)
- T Vadivel
- Department of Chemistry, Dr.Kalaignar M.Karunanidhi Government Institute for Post Graduate Studies and Research, Union Territory of Puducherry, Karaikal, 609605, India.
| | - S Kulathooran
- Research and Development Centre, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| | - S Chandrasekaran
- Department of Chemistry, Arasu Engineering College, Kumbakonam, 612501, Tamilnadu, India.
| | - S Ilayaraja
- Department of Chemistry, Government Arts College (Autonomous), Kumbakonam, 612002, Tamilnadu, India.
| | - R Benjamin
- Department of Chemistry, Bharathiyar College of Engineering and Technology, Union Territory of Puducherry, Karaikal, 609609, India.
| |
Collapse
|
4
|
Michael S, Jeyaraman P, Jancy JV, Muniyandi V, Raman N. Exploring the enzyme inhibitor potential and therapeutic applications of transition metal complexes of Methoxy-Schiff Base via triangular investigation. Int J Biol Macromol 2025; 306:141760. [PMID: 40054814 DOI: 10.1016/j.ijbiomac.2025.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Transition metal(II) complexes of (E)-7-methoxy-N-(4-methoxybenzylidene)benzo[d]- thiazole-2-amine Schiff base ligand have been created using benzothiazole derivative. These compounds were characterized by means of conventional spectroscopic and analytical techniques. Furthermore, computational investigations with SWISS ADMET, Density Functional Theory, and molecular docking, authorized the biological efficacy of the complexes. The 3v03 bovine serum albumin protein was also subjected to a molecular docking study. The docking scores and interacting amino acids have been analyzed which reveal that the synthesized compounds interact potently with the protein enzyme. All the metal complexes have a great propensity to attach to Calf Thymus Deoxyribo Nucleic Acid via the intercalation process. The anticancer activity of the synthesized compounds, assessed in vitro using four human cancer cell lines, reveals that Cu(II) complex exhibits the highest activity (lowest IC50 values) against HeLa and MCF-7 cancer cell lines. Compared to the reference cisplatin, all of the complexes exhibit higher IC50 values. Screening assays both in vitro and in vivo corroborate that the complexes exhibit greater activity than the free Schiff base.
Collapse
Affiliation(s)
- Samuel Michael
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Porkodi Jeyaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | - Jacqulin Veda Jancy
- Department of Computer and Communication Engineering(Autonomous), Sri Sai Ram Institute of Technology, Chennai 600044, India
| | - Vellaichamy Muniyandi
- Department of Chemistry, Sethu Institute of Technology (Autonomous), Pulloor, Kariapatti 626115, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College (Autonomous), Virudhunagar 626001, India.
| |
Collapse
|
5
|
Mohsin N, Khalid S, Rasool N, Aman L, Kanwal A, Imran M. Metallo-Organic Complexes Containing Transition Metals; Synthetic Approaches and Pharmaceutical Aspects. Chempluschem 2025; 90:e202400748. [PMID: 39988561 DOI: 10.1002/cplu.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Coordination compounds offer a flexible framework for the thoughtful design of novel therapeutic-metallodrugs because of the unique properties of metal ions, such as their ability to coordinate with a wide range of organic ligands, variable oxidation states, a wide range of geometries, and coordination numbers. The pharmaceutical potential of a metal ion and associated substances is validated by the prevalence of various disease states linked to a metal ion's excess or deficiency within the biological system. Researchers have sought more selective, efficacious metallodrugs that cause fewer adverse effects. Attempts have resulted in considering a large range of organic ligands, preferably polydentate ligands with demonstrated biological activity, and a large range of metals from the periodic table, primarily from the d-block. In this review, we have outlined the key coordination complexes comprising N-, O-, and S-donor ligands reported in the last six years to demonstrate the potential applications of these metallo-organic complexes. The synthetic pathways of ligands, their complexes, and their potential for therapeutic applications are highlighted.
Collapse
Affiliation(s)
- Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Labiqa Aman
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
6
|
Sindhu I, Singh A. Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Biometals 2025; 38:297-320. [PMID: 39714739 DOI: 10.1007/s10534-024-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations. The crystalline size of ligand was 36.67 nm and for the metal complexes it varies from 22.43 to 49.21 nm. To assess the biological effectiveness of these compounds, molecular docking studies were emanated. The docking binding studies were established through the interaction of metal complexes with human cancer protein, such as 3W2S (ovarian cancer) and 4ZVM (breast cancer). The results exemplified that the complexes are more efficient towards ovarian cancer (3W2S) in contrast to breast cancer (4ZVM) while among complexes, the nickel acetate (- 7.0 kcal/mol) and copper acetate (- 7.9 kcal/mol) complex were more efficient towards 4ZVM and 3W2S receptors respectively. Additionally, DNA binding studies against 1BNA receptor protein was examined from docking evaluations and the finding concludes the highest efficiency of nickel (- 8.1 kcal/mol) complexes. Further, a number of bacterial and fungal strains have been implemented in antimicrobial examinations to assess the compounds effectualness. The results untangled the extreme potential of copper nitrate (0.0051-0.0102 µmol/mL) and copper acetate (0.0051-0.0103 µmol/mL) complexes against all bacterial and fungal strains except for S. aureus in which nickel acetate proved out to be highly competent.
Collapse
Affiliation(s)
- Indu Sindhu
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India.
| |
Collapse
|
7
|
Zahirović A, Fetahović S, Feizi-Dehnayebi M, Višnjevac A, Bešta-Gajević R, Kozarić A, Martić L, Topčagić A, Roca S. Dual Antimicrobial-Anticancer Potential, Hydrolysis, and DNA/BSA Binding Affinity of a Novel Water-Soluble Ruthenium-Arene Ethylenediamine Schiff base (RAES) Organometallic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124528. [PMID: 38801789 DOI: 10.1016/j.saa.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Renata Bešta-Gajević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amina Kozarić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lora Martić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
8
|
Mohamed Nasar N, Samuel M, Jayaraman P, Selvaraj FSS, Raman N. Theoretical and experimental investigation of mixed-ligand metal(II) Schiff base complexes using maleic acid as the auxiliary ligand. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 39365845 DOI: 10.1080/15257770.2024.2410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
This work is focused on the synthesis of several transition metal complexes [ML(MA)], where M = Copper (II), Zinc (II), Cobalt (II) and Nickel (II), MA = maleic acid and L = Schiff base generated from benzene-1,2-diamine [o-phenylenediamine] and 4-chlorobenzaldehyde. The characterization using Fourier-Transform Infrared, Nuclear Magnetic Resonance spectroscopy, Ultraviolet-Visible spectra, Mass, Electro Paramagnetic Resonance and elemental analysis confirm the square planar geometry of the complexes. The in vitro antimicrobial potential of the complexes has been tested by the broth dilution method and the antioxidant method has been done by free radical scavenging analysis. The in vitro methods reveal the outstanding biological characteristics of the copper complexes. The molecular structure of the ligand and its metal (II) complexes has been optimized using Density Functional Theory studies performed by the Gaussian-09 software and their parameters have been discussed. Natural Bond Orbital and Frontier Molecular Orbital analyses have assessed the presence of a metal-ligand bond in complexes. In addition, molecular docking studies have also been performed on antiviral activity of all the complexes using a viral protein and their interacting amino acids.
Collapse
Affiliation(s)
| | - Michael Samuel
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Porkodi Jayaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | | | - Natarajan Raman
- Research Department of Chemistry, VHNSN College (Autonomous), Madurai Kamaraj University, Madurai, India
| |
Collapse
|
9
|
Bhardwaj A, Dubey A, Tufail A, Tufail N, Kumar M, Garg S. Organotellurium (IV) complexes as anti-malarial agents: synthesis, characterization and computational insights. Future Med Chem 2024; 16:2263-2283. [PMID: 39311080 PMCID: PMC11622762 DOI: 10.1080/17568919.2024.2401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 12/08/2024] Open
Abstract
Aim: To synthesize and evaluate the antimalarial and antioxidant activities of novel organotellurium (IV) thiophene-based complexes.Materials & methods: Synthesized complexes were characterized using NMR, IR and mass spectrometry. Their biological activities were assessed using in vitro assays and molecular docking studies.Results: The complexes exhibited significant antimalarial activity against Plasmodium falciparum, with the highest activity observed for complexes 5b and 5e. ADMET properties confirmed their potential as therapeutic agents.
Collapse
Affiliation(s)
- Anisha Bhardwaj
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, 201310, Uttar Pradesh, India
| | - Aisha Tufail
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, 201310, Uttar Pradesh, India
| | - Nasir Tufail
- Department of Zoology, Allahabad State University, Prayagraj, 211002, Uttar Pradesh, India
| | - Manish Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sapana Garg
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
10
|
Dekir A, Berredjem M, Benzaid C, Djouad SE, Iqbal N, Laichi Y, Bachari K, Bhat AR, Bouzina A, Aissaoui M, Bouchareb F. Novel N-acylsulfonamides: Synthesis, in silico prediction, molecular docking dynamic simulation, antimicrobial and anti-inflammatory activities. J Biomol Struct Dyn 2023; 41:9232-9244. [PMID: 37897194 DOI: 10.1080/07391102.2022.2148751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
Microbial resistance to drugs currently traded in the market is a serious problem in modern medicine. In this field of research, we synthesized a novel N-acylsulfonamides (NAS) derivatives starting from commercially available compounds; morpholine, isocyanate of chlorosulfonyl and alcohols. The in vitro antimicrobial potential of synthesized compounds was screened against 04 Gram-negative bacteria; Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, 02 Gram-positive bacteria: Streptococcus sp, Staphylococcus aureus and 07 yeasts and fungi: Candida albicans, Candida spp, Penicillum spp, Aspegillus sp, Aspergillus flavus, Fusarium sp, and Cladosporium spp. The results of inhibition growth were compared with standard antimicrobial drugs with the goal of exploring their potential antimicrobial activity. In addition, the anti-inflammatory activity of the synthesized compounds was determined in-vitro by protein denaturation method. The obtained bioactivity results were further validated by in silico DFT (Density Functional Theory), ADME (Absorption-Distribution-Métabolisation-Excrétion), molecular docking studies and molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Dekir
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Chahrazed Benzaid
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Seif-Eddine Djouad
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
- Laboratory of Therapeutic Chemistry of Hospitalo-University Center Benflis Touhami Batna, Batna, Algeria
| | - Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yacine Laichi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Algeria
| | | | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Mohamed Aissaoui
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Fouzia Bouchareb
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| |
Collapse
|
11
|
Devi P, Singh K, Kumar B, Kumari Singh J. Synthesis, spectroscopic, antimicrobial and in vitro anticancer activity of Co+2, Ni+2, Cu+2 and Zn+2 metal complexes with novel Schiff base. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Gayathri P, Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Synthesis of ESIPT fluorophores with two intramolecular H-bonding functionalities: Reversible mechanofluorochromism and conformation controlled solid state fluorescence efficiency. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. Detailed investigations of rare earth (Yb, Er and Pr) based inorganic metal-ion complexes for antibacterial and anticancer applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Alhazmi F, Morad M, Abou-Melha K, El-Metwaly NM. Synthesis and Characterization of New Mixed-Ligand Complexes; Density Functional Theory, Hirshfeld, and In Silico Assays Strengthen the Bioactivity Performed In Vitro. ACS OMEGA 2023; 8:4220-4233. [PMID: 36743043 PMCID: PMC9893480 DOI: 10.1021/acsomega.2c07407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
N'-Acetyl-2-cyanoacetohydrazide (H2L1) and 2-cyano-N-(6-ethoxybenzo thiazol-2-yl) acetamide (HL2) ligands were used to synthesize [Cr(OAc)(H2L1)(HL2)]·2(OAc) and [Mn(H2L1)(HL2)]·Cl2·2H2O as mixed ligand complexes. All new compounds were analyzed by analytical, spectral, and computational techniques to elucidate their chemical formulae. The bidentate nature was suggested for each coordinating ligand via ON donors. The electronic transitions recorded are attributing to 4A2g(F) → 4T2g(F)(υ2) and 4A2g(F) → 4T1g(F)(υ3) types in the octahedral Cr(III) complex, while 6A1 → 4T2(G) and 6A1 → 4T1(G) transitions are attributing to the tetrahedral Mn(II) complex. These complexes were optimized by the density functional theory method to verify the bonding mode which was suggested via N(3), O(8), N(9), and N(10) donors from the mixed-ligands. Hirshfeld crystal models were demonstrated for the two ligands to indicate the distance between the functional groups within the two ligands and supporting the exclusion of self-interaction in between. Finally, the biological activity of the two mixed ligand complexes was tested by in silico ways as well as in vitro ways for confirmation. Three advanced programs were applied to measure the magnitude of biological efficiency of the two complexes toward kinase enzyme (3nzs) and breast cancer proliferation (3hy3). All in silico data suggest the superiority of the Mn(II) complex. Moreover, the in vitro assays for the two complexes that measure their antioxidant and cytotoxic activity support the distinguished activity of the Mn(II) complex.
Collapse
Affiliation(s)
- Farhi
S. Alhazmi
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| | - Moataz Morad
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| | - Khlood Abou-Melha
- Department
of Chemistry, Faculty of Science, King Khalid
University, Abha 61421, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|
15
|
Molecular docking, Synthesis and Antimicrobial Evaluation of Metal Complexes with Schiff Base. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Kalaiarasi G, Senthilrajkapoor P, Indumathy R. Various coordination behavior of coumarin appended Schiff bases towards Ruthenium(II) ion: Synthesis, spectral characterization and biological evaluation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Choudhary VK, Mandhan K, Dash D, Bhardwaj S, Kumari M, Sharma N. Density functional theory studies on molecular geometry, spectroscopy, HOMO-LUMO and reactivity descriptors of titanium(IV) and oxidozirconium(IV) complexes of phenylacetohydroxamic acid. J Comput Chem 2022; 43:2060-2071. [PMID: 36165982 DOI: 10.1002/jcc.27004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
The molecular geometry of new titanium(IV) and oxidozirconium(IV) phenylacetohydroxamate complexes [TiCl2 (L1)2 ] (I) and [ZrO(L1)2 ] (II) (where L1 = Potassium phenylacetohydroxamate = C6 H5 CH2 CONHOK) computed by B3LYP/6-311++G(d,p) method has shown these to be distorted octahedral and square pyramidal, respectively. A comparison of computed characteristic bond lengths (CO, CN, and NO) of complexes with that of free ligand has shown chelation through carbonyl and hydroxamic oxygen atoms (O, O coordination). The TiO/ZrO bond lengths in complexes are suggestive of weak coordination through (carbonyl CO) and strong covalent (hydroxamic NO) bonding of the ligand. The magnitude of ClTiCl bond angle involving two chloride atoms is suggestive of cis-conformation at titanium metal in (I). The thermodynamic parameters Gibbs free energy, enthalpy, entropy, nuclear internal energy, constant volume heat capacity, and internal energy of ligand and complexes have been computed. From the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the global reactivity descriptors such as ionization potential (IP), electron affinity (EA), chemical potential (μ), hardness (η), softness (S), electronegativity (χ), electrophilicity index (ω), and dipole moment have been calculated. The computed vibrational frequencies, 1 H and 13 C NMR spectra have substantiated the molecular structure of complexes. The thermal behavior of complexes has been studied by thermogravimetric techniques (TGA, DTG, and DTA) in N2 atmosphere has shown complexes are thermally stable.
Collapse
Affiliation(s)
| | - Kanika Mandhan
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Dibyajit Dash
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur, Punjab, India
| | - Sachin Bhardwaj
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Neeraj Sharma
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, India
| |
Collapse
|
18
|
Hamza I, Mahmmoud W, Al-Hamdani A, Ahmed S, Allaf A, Al Zoubi W. Synthesis, characterization, and bioactivity of several metal complexes of (4-Amino-N-(5-methyl-isaxazol-3-yl)-benzenesulfonamide). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Kaya Y, Erçağ A, Kaya S, Katin KP, Atilla D. New mixed‐ligand iron(III) complexes containing thiocarbohydrazones: Preparation, characterization, and chemical reactivity analysis through theoretical calculations. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yeliz Kaya
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Ayşe Erçağ
- Inorganic Chemistry Division, Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy Sivas Cumhuriyet University Sivas Turkey
| | | | - Devrim Atilla
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| |
Collapse
|
20
|
Liu L, Lu Y, Liao L, Xiao X, Nie C. Theoretical Unravelling the Complexation and Separation of Uranyl‐ligand Complexes towards Chiral R/S‐Profenofos. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linfeng Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Yao Lu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| |
Collapse
|
21
|
Synthesis, theoretical study, molecular docking and biological activity of nano tridentate (E)-2-((3-hydoxyphenyl)methyl)phenol metal complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
El‐Sonbati AZ, Diab MA, El‐Sayed AK, Abou‐Dobara MI, Gafer AAF. Synthesis, characterization, molecular docking, DNA cleavage properties and antimicrobial activity studies of mixed ligand complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A. Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - M. A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - A. K. El‐Sayed
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - M. I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - A. A. F. Gafer
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| |
Collapse
|
23
|
El‐Sonbati AZ, Diab MA, El‐Sayed AK, Abou‐Dobara MI, El‐Sayad SA. Synthesis, characterization, molecular docking, biological activity and DNA cleavage studies of Cu (II), Co (II), Ni (II), Mn (II) and Cd (II) Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. Z. El‐Sonbati
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - M. A. Diab
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| | - A. K. El‐Sayed
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - M. I. Abou‐Dobara
- Botany and Microbiology Department, Faculty of Science Damietta University Damietta Egypt
| | - S. A. El‐Sayad
- Chemistry Department, Faculty of Science Damietta University Damietta Egypt
| |
Collapse
|
24
|
Parvarinezhad S, Salehi M, Eshaghi Malekshah R, Kubicki M, Khaleghian A. Synthesis, characterization, spectral studies two new transition metal complexes derived from pyrazolone by theoretical studies, and investigate anti‐proliferative activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Faculty of Science Semnan University Semnan Iran
| | | | - Maciej Kubicki
- Department of Chemistry Adam Mickiewicz University Poznan Poland
| | - Ali Khaleghian
- Faculty of Medicine, Biochemistry Department Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|