1
|
Wu Y, Du E, Wang X, Ma R, Cai X, Cai R, Zheng L, Peng M. Investigating the molecular interactions of two long-chain PFASs with human serum albumin: Insights from multispectral analysis and computational methods. Biochem Biophys Res Commun 2025; 751:151356. [PMID: 39923463 DOI: 10.1016/j.bbrc.2025.151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Long-chain perfluoroalkyl substances (FPAS) are commonly detected in environmental and biological contexts. This study investigated the interactions of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) with human serum albumin (HSA). Fluorescence quenching experiments demonstrated static quenching of HSA's intrinsic fluorescence by both PFUnDA and PFTrDA, resulting in the formation of stable HSA-PFAS complexes. At 298 K, PFUnDA exhibited a higher binding constant (5.50 × 107 L/mol) than PFTrDA (1.01 × 105 L/mol), indicating stronger binding affinity. Thermodynamic analysis indicated that hydrogen bonds and van der Waals forces were the predominant interactions in the binding processes. Molecular docking confirmed that both PFASs bind to the IIA subdomain of HSA, with PFUnDA exhibiting lower binding energy (-8.690 kcal/mol) than PFTrDA. Molecular dynamics simulations further supported these findings, with PFUnDA showing stronger binding energy (-13.894 kcal/mol) driven primarily by van der Waals forces and electrostatic interactions. Quantum chemical analysis reveals that the carbonyl groups in PFUnDA and PFTrDA exhibit significant molecular reactivity, indicating a propensity for more vigorous chemical interactions. This study not only reveals the potential biological activity of PFUnDA and PFTrDA, but also provides scientific basis for evaluating their biosafety and risks.
Collapse
Affiliation(s)
- Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; College of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Xichen Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Rui Ma
- College of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Rutao Cai
- College of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; College of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Mingguo Peng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Tabassum S, Thangaiyan P, Govindaraju S, Daniel NK, Thomas R. Pyrazole Derivative Containing Naphthalene Moiety: Cytotoxocity (Breast and Cervical Cancer), Antibacterial and Antifungal Studies Using Experimental and Theoretical Tools. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
| | - Pooventhiran Thangaiyan
- Department of Chemistry, St Berchmans College, Changanaserry, India
- Department of Mechanical Engineering, University Centre for Research & Development Chandigarh University, Mohali, India
| | - Santhosh Govindaraju
- Department of Sciences and Humanities, School of Engineering and Technology, CHRIST (Deemed to Be University), Bengaluru, India
| | - Nobi K. Daniel
- Department of Sciences and Humanities, School of Engineering and Technology, CHRIST (Deemed to Be University), Bengaluru, India
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College, Changanaserry, India
| |
Collapse
|
3
|
Ahsan MJ, Choudhary K, Ali A, Ali A, Azam F, Almalki AH, Santali EY, Bakht MA, Tahir A, Salahuddin. Synthesis, DFT Analyses, Antiproliferative Activity, and Molecular Docking Studies of Curcumin Analogues. PLANTS (BASEL, SWITZERLAND) 2022; 11:2835. [PMID: 36365289 PMCID: PMC9655326 DOI: 10.3390/plants11212835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023]
Abstract
With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin’s promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Kavita Choudhary
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Y. Santali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Abu Tahir
- Department of Pharmacology, Hakikullah Choudhary College of Pharmacy, Ghari Ghat 271 312, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, Uttar Pradesh, India
| |
Collapse
|
4
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
5
|
Ali A, Ali A, Warsi MH, Rahman MA, Ahsan MJ, Azam F. Green Synthesis of Oxoquinoline-1(2H)-Carboxamide as Antiproliferative and Antioxidant Agents: An Experimental and In-Silico Approach to High Altitude Related Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010309. [PMID: 35011539 PMCID: PMC8746819 DOI: 10.3390/molecules27010309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
At high altitudes, drops in oxygen concentration result in the creation of reactive oxygen and nitrogen species (RONS), which cause a variety of health concerns. We addressed these health concerns and reported the synthesis, characterization, and biological activities of a series of 10 oxoquinolines. N-Aryl-7-hydroxy-4-methyl-2-oxoquinoline-1(2H)carboxamides (5a–j) were accessed in two steps under ultrasonicated irradiation, as per the reported method. The anticancer activity was tested at 10 µM against a total of 5 dozen cancer cell lines obtained from nine distinct panels, as per the National Cancer Institute (NCI US) protocol. The compounds 5a (TK-10 (renal cancer); %GI = 82.90) and 5j (CCRF-CEM (Leukemia); %GI = 58.61) showed the most promising anticancer activity. Compound 5a also demonstrated promising DPPH free radical scavenging activity with an IC50 value of 14.16 ± 0.42 µM. The epidermal growth factor receptor (EGFR) and carbonic anhydrase (CA), two prospective cancer inhibitor targets, were used in the molecular docking studies. Molecular docking studies of ligand 5a (docking score = −8.839) against the active site of EGFR revealed two H-bond interactions with the residues Asp855 and Thr854, whereas ligand 5a (docking = −5.337) interacted with three H-bond with the residues Gln92, Gln67, and Thr200 against the active site CA. The reported compounds exhibited significant anticancer and antioxidant activities, as well as displayed significant inhibition against cancer targets, EGFR and CA, in the molecular docking studies. The current discovery may aid in the development of novel compounds for the treatment of cancer and oxidative stress, and other high altitude-related disorders.
Collapse
Affiliation(s)
- Amena Ali
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.H.W.); (M.A.R.)
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.H.W.); (M.A.R.)
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, Rajasthan, India;
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah 51911, Saudi Arabia;
| |
Collapse
|