1
|
Rezaeianzadeh O, Asghari S, Tajbakhsh M, Khalilpour A, Shityakov S. Synthesis and application of diazenyl sulfonamide-based schiff bases as potential BRCA2 active inhibitors against MCF-7 breast cancer cell line. Sci Rep 2025; 15:6661. [PMID: 39994448 PMCID: PMC11850876 DOI: 10.1038/s41598-025-91113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, a library of novel sulfonamide-based Schiff bases 3a-j was synthesized in high yield (75 to 89%). The FTIR, 1H NMR, and 13C NMR spectroscopic techniques and mass analysis were used to characterize the synthesized compounds. Their anticancer activity was assessed in vitro on the breast cancer (MCF-7) and healthy human breast epithelial (MCF-10 A) cell lines over 48 and 72 h using the MTT assay. Most of the synthesized compounds demonstrated promising activity, with compound 3i showing particularly high efficacy at 48 and 72 h (IC50 = 4.85 ± 0.006 and 4.25 ± 0.009 µM) against the MCF-7 breast cancer cell line. Furthermore, molecular docking studies were performed for compounds 3a-j with the PDB: (3UV7) protein of the breast cancer susceptibility gene 2 (BRCA2). The obtained results revealed that compound 3i has the strongest binding affinity energy (-7.99 kcal/mol), consistent with the obtained experimental data. Additionally, molecular dynamics (MD) simulation assays confirm the formation of a stable 3i-BRCA2 complex with strong binding affinity through the formation of hydrogen bonds. Antioxidant activities were determined by in vitro assay DPPH cation radical activity method. Interestingly, the compound 3j (IC50 = 12.36 ± 0.55 µM) had comparable activity with ascorbic acid (IC50 = 13.58 ± 0.38 µM) in the antioxidant assay. The results of this research could potentially contribute to the development of new therapeutic agents useful in fighting caused by breast cancer.
Collapse
Affiliation(s)
- Olia Rezaeianzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416- 95447, Iran
| | - Asieh Khalilpour
- Department of Environmental Health Engineering, Babol University of Medicinal Sciences, Babol, Iran
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosova str. 9, 191002, Saint Petersburg, Russia
| |
Collapse
|
2
|
Soliman MM, Elwahy AHM, Sayed AM, Ibrahim M, Dawoud MA, Ali SHM, Nady MTS, Hassan NA, Saad W, Abdelhamid IA. Synthesis and antimicrobial evaluation of a new hybrid bis-cyanoacrylamide-based-piperazine containing sulphamethoxazole moiety against rheumatoid arthritis-associated pathogens. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03780-7. [PMID: 39831977 DOI: 10.1007/s00210-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, 13C-NMR, and FTIR spectroscopy. Piperazine-based compounds were screened for in silico studies to understand the antimicrobial activity against infections that may contribute to rheumatoid arthritis symptoms. The tested piperazine compound was also evaluated for its antimicrobial activity against Aspergillus niger, Candida albicans, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeuroginosa ATCC 27853, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 700603. S. aureus showed the highest inhibition, with a zone diameter of 16.0 ± 1.0 mm at a concentration of 0.8 mg/ml. The minimal inhibitory concentration (MIC) for all bacterial species ranged from 5 to 40 mg/ml. In contrast, fungal species were the most resistant to the tested compound. Molecular docking studies were conducted to elucidate the interaction mechanisms, binding energies, and hydrogen bonding interactions within protein-ligand complexes. Molecular docking studies were performed against five bacterial proteins and two fungal proteins, including DNA gyrase subunit B (UniProt ID: Q839Z1), protein RecA of (UniProt ID: P0A7G6), cyclic AMP-AMP-AMP synthase (UniProt ID: P0DTF7), UDP-N-acetylglucosamine 1-carboxyvinyl transferase (UniProt ID: A0A1S5RKE3), and clumping factor A (UniProt ID: Q53653). The tested compound achieved the highest binding score of ∆G = - 10.9 kcal/mol at the cyclic AMP synthase active site (UniProt ID: P0DTF7), forming 26 interactions. The results demonstrated that the synthesized piperazine compound exhibits promising antibacterial and antifungal activities, highlighting its potential as a candidate for antimicrobial development.
Collapse
Affiliation(s)
- Mona M Soliman
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Ahmed M Sayed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Dawoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Menna Tallah S Nady
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nada A Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wessam Saad
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Bishoyi AK, Mandhata CP, Sahoo CR, Samal P, Dubey D, Jali BR, Alamri AM, Khan MS, Padhy RN. Biogenic Synthesis and Characterization of Silver Nanoparticles With Cyanobacterium Oscillatoria salina Using Against MDR Pathogenic Bacteria and Their Antiproliferative and Toxicity Study. Cell Biochem Funct 2025; 43:e70043. [PMID: 39853775 DOI: 10.1002/cbf.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs). The Os-AgNPs were characterized by a UV-vis spectral absorption peak at 447 nm, and their functional groups were identified through X-ray diffraction analysis, revealing a crystal structure with a 2θ value of 38°. Transmission electron microscopy (TEM) analysis showed an average nanoparticle size of 9.81 nm. The Os-AgNPs demonstrated remarkable antioxidant, antibacterial, and antifungal properties. Their antibacterial activity was tested against multidrug-resistant (MDR) Gram-positive bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Enterococcus faecalis, as well as Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, all isolated from clinical samples. The inhibition zones for bacterial strains ranged from 15 to 20 mm, as measured by the agar-well diffusion method. Similarly, the Os-AgNPs exhibited antifungal activity, with 20-30 mm inhibition zones against pathogenic fungi Trichophyton rubrum and Candida tropicalis. Additionally, the antiproliferative effects of the Os-AgNPs were evaluated on human cancer cell lines, including HeLa (cervical adenocarcinoma) and MD-AMB-231 (breast adenocarcinoma). In vivo toxicity studies were conducted using Swiss mouse models to assess the cytotoxic effects. Overall, the results suggest that Os-AgNPs, biosynthesized using O. salina, hold promise as potential antimicrobial and anticancer agents for pharmaceutical applications.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Priyanka Samal
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha 'O' Anusandhan University Bhubaneswar, Bhubaneswar, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | | | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| |
Collapse
|
4
|
Noreen M, Bilal M, Usman Qamar M, Rasool N, Mahmood A, Umar Din S, Ali Shah T, Bin Jardan YA, Bourhia M, Ouahmane L. Facile Synthesis of 5-Bromo- N-Alkylthiophene-2-Sulfonamides and Its Activities Against Clinically Isolated New Delhi Metallo- β-Lactamase Producing Klebsiella pneumoniae ST147. Infect Drug Resist 2024; 17:2943-2955. [PMID: 39011342 PMCID: PMC11249070 DOI: 10.2147/idr.s455979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction New Delhi Metallo-β-lactamase producing Klebsiella pneumoniae (NDM-1-KP) sequence type (ST) 147 poses a significant threat in clinical settings due to its evolution into two distinct directions: hypervirulence and carbapenem resistance. Hypervirulence results from a range of virulence factors, while carbapenem resistance stems from complex biological mechanisms. The NDM-1-KP ST147 clone has emerged as a recent addition to the family of successful clones within the species. Methods In this study, we successfully synthesized 5-bromo-N-alkylthiophene-2-sulfonamides (3a-c) by reacting 5-bromothiophene-2-sulfonamide (1) with various alkyl bromides (2) using LiH. We also synthesized a series of compounds (4a-g) from compound (3b) using the Suzuki-Miyaura cross-coupling reaction with fair to good yields (56-72%). Further, we screened the synthesized molecules against clinically isolated New Delhi Metallo-β-lactamase producing Klebsiella pneumoniae ST147. Subsequently, we conducted in-silico tests on compound 3b against a protein extracted from NDM-KP ST147 with PDB ID: 5N5I. Results The compound (3b) with favourable drug candidate status, MIC of 0.39 μg/mL, and MBC of 0.78 μg/mL. This low molecular weight compound exhibited the highest potency against the resistant bacterial strains. The in-silico tests revealed that the compound 3b against a protein extracted from NDM-KP ST147 with PDB ID: 5N5I demonstrated H-bond and hydrophobic interactions. Conclusion The 5-bromo-N-alkylthiophene-2-sulfonamides displayed antibacterial efficacy against New Delhi Metallo-β-lactamase producing Klebsiella pneumoniae ST147. After the in-vivo trial, this substance might offer an alternative therapeutic option.
Collapse
Affiliation(s)
- Mnaza Noreen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College, University Faisalabad, Faisalabad, 38000, Pakistan
- Division of Infectious Disease and Department of Medicine, University of Geneva, Geneva, Switzerland
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abid Mahmood
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sobia Umar Din
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 25500, People’s Republic of China
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (Biomage), Labeled Research Unit-CNRSTN°4, Cadi Ayyad University, Marrakesh, 40000, Morocco
| |
Collapse
|
5
|
Bishoyi AK, Sahoo CR, Samal P, Mishra NP, Jali BR, Khan MS, Padhy RN. Unveiling the antibacterial and antifungal potential of biosynthesized silver nanoparticles from Chromolaena odorata leaves. Sci Rep 2024; 14:7513. [PMID: 38553574 PMCID: PMC10980689 DOI: 10.1038/s41598-024-57972-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
This research investigates the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Chromolaena odorata (Asteraceae) and their potential as antibacterial and antifungal agents. Characterization techniques like ultraviolet-visible, Fourier transform infrared (FTIR), Dynamic light scattering and zeta potential (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy (FESEM-EDX) confirmed the formation of spherical (AgNPs). UV-vis spectroscopy reaffirms AgNP formation with a peak at 429 nm. DLS and zeta potential measurements revealed an average size of 30.77 nm and a negative surface charge (- 0.532 mV). Further, XRD analysis established the crystalline structure of the AgNPs. Moreover, the TEM descriptions indicate that the AgNPs are spherical shapes, and their sizes ranged from 9 to 22 nm with an average length of 15.27 nm. The X-ray photoelectron spectroscopy (XPS) analysis validated the formation of metallic silver and elucidated the surface state composition of AgNPs. Biologically, CO-AgNPs showed moderate antibacterial activity but excellent antifungal activity against Candida tropicalis (MCC 1559) and Trichophyton rubrum (MCC 1598). Low MIC values (0.195 and 0.390 mg/mL) respectively, suggest their potential as effective antifungal agents. This suggests potential applications in controlling fungal infections, which are often more challenging to treat than bacterial infections. Molecular docking results validated that bioactive compounds in C. odorata contribute to antifungal activity by interacting with its specific domain. Further research could pave the way for the development of novel and safe antifungal therapies based on biogenic nanoparticles.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Priyanka Samal
- Department of Clinical Hematology, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | | | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
6
|
Sahoo CR, Paidesetty SK, Dehury B, Padhy RN. Computational study on Schiff base derived salicylaldehyde and furfuraldehyde derivatives as potent anti-tubercular agents: prospect to dihydropteroate synthase inhibitors. J Biomol Struct Dyn 2024; 42:2539-2549. [PMID: 37254312 DOI: 10.1080/07391102.2023.2217918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023]
Abstract
Nowadays, bacterial multidrug resistance has become a commonplace problem in clinics due to several intrinsic factors mediated through resistance to antibacterials obtained via bacterial consortia and extrinsic factors, such as non-uniform antibacterial policy and migration of resistant bacteria through human and other routes. The development of newer, effective anti-mycobacterial candidate(s) is coveted by clinics. Hybrid molecules would be comparatively more emulating against invasive bacterial strains; nevertheless, newer antibiotics are continually added. Herein, designing and developments of two series of Schiff-based salicylaldehyde S1-S7 and furfuraldehyde F1-F7 molecules individually bearing sulfonamide group are described; and those were synthesized and their structures by spectral characterization were confirmed. Concomitantly, molecule dynamic simulations of all atoms had been performed to fathom the mechanism of the action with these leading complexes. These data imply that the synthesized Schiff-based salicylaldehyde hybrids would be promising anti-tubercular compounds, which further need potent pharmacological evaluations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Krátký M. Novel sulfonamide derivatives as a tool to combat methicillin-resistant Staphylococcus aureus. Future Med Chem 2024; 16:545-562. [PMID: 38348480 DOI: 10.4155/fmc-2023-0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Increasing resistance in Staphylococcus aureus has created a critical need for new drugs, especially those effective against methicillin-resistant strains (methicillin-resistant Staphylococcus aureus [MRSA]). Sulfonamides are a privileged scaffold for the development of novel antistaphylococcal agents. This review covers recent advances in sulfonamides active against MRSA. Based on the substitution patterns of sulfonamide moieties, its derivatives can be tuned for desired properties and biological activity. Contrary to the traditional view, not only N-monosubstituted 4-aminobenzenesulfonamides are effective. Novel sulfonamides have various mechanisms of action, not only 'classical' inhibition of the folate biosynthetic pathway. Some of them can overcome resistance to classical sulfa drugs and cotrimoxazole, are bactericidal and active in vivo. Hybrid compounds with distinct bioactive scaffolds are particularly advantageous.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Behera S, Dash PP, Bishoyi AK, Dash K, Mohanty P, Sahoo CR, Padhy RN, Mishra M, Ghosh BN, Sahoo H, Jali BR. Protein interactions, molecular docking, antimicrobial and antifungal studies of terpyridine ligands. J Biomol Struct Dyn 2023; 41:11274-11285. [PMID: 36562209 DOI: 10.1080/07391102.2022.2161012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antibiotics/antibacterials/antifungals in pathogenic microbes has been developing over the past few decades and has recently become a commonplace public-health peril. Thus, alternative nontoxic potent antibiotic agents are covertly needed to control antibiotic-resistant outbreaks. In an effort to combat the challenges posed by the co-occurrence of multidrug resistance, two terpyridine ligands 4'-(4-N,N'-dimethylaminophenyl)-2,2':6',2″-terpyridine (L1) and 4'-(4-tolyl)-2,2':6',2″-terpyridine (L2) have been designed, prepared and confirmed their structure by spectral studies. Thereafter, antimicrobial assay was performed against gram positive and negative bacterial strains along with fungal strains. Both compounds L1 and L2 exhibited remarkable inhibitory activities against bacteria, Escherichia coli and Staphylococcus aureus at MIC values 6.25 and 3.125 µg/ml, respectively. In addition, in silico molecular docking studies were ascertained with bacterial DNA gyrase and fungal demethylase. Furthermore, both L1 and L2 could bind Bovine Serum Albumin (BSA) protein and binding interaction has been studied with the help of UV-Visible and fluorescence spectroscopy. While fluorescence of BSA unperturbed in the presence of L2, an addition of L1 to the solution of BSA resulted significant quenching. The binding constant calculations at different temperature confirmed that the fluorescence quenching between BSA and L1 is predominantly static in nature. The toxicity of L1 and L2 was checked using Drosophila melanogaster. The toxicity analysis suggest both the dyes are non-cytotoxic in nature.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - K Dash
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - M Mishra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - B N Ghosh
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - H Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, India
| | - B R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| |
Collapse
|
9
|
Alblewi FF, Alsehli MH, Hritani ZM, Eskandrani A, Alsaedi WH, Alawad MO, Elhenawy AA, Ahmed HY, El-Gaby MSA, Afifi TH, Okasha RM. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. Int J Mol Sci 2023; 24:16716. [PMID: 38069037 PMCID: PMC10706804 DOI: 10.3390/ijms242316716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, novel selective antitumor compounds were synthesized based on their fundamental pharmacophoric prerequisites associated with EGFR inhibitors. A molecular hybridization approach was employed to design and prepare a range of 4H-chromene-3-carboxylates 7a-g, 8, and 11a-e derivatives, each incorporating a sulfonamide moiety. The structures of these hybrid molecules were verified using comprehensive analytical and spectroscopic techniques. During the assessment of the newly synthesized compounds for their anticancer properties against three tumor cell lines (HepG-2, MCF-7, and HCT-116), compounds 7f and 7g displayed remarkable antitumor activity against all tested cell lines, outperforming the reference drug Cisplatin in terms of efficacy. Consequently, these promising candidates were selected for further investigation of their anti-EGFR, hCAII, and MMP-2 potential, which exhibited remarkable effectiveness against EGFR and MMP2 when compared to Sorafenib. Additionally, docking investigations regarding the EGFR binding site were implemented for the targeted derivatives in order to attain better comprehension with respect to the pattern in which binding mechanics occur between the investigated molecules and the active site, which illustrated a higher binding efficacy in comparison with Sorafenib.
Collapse
Affiliation(s)
- Fawzia F. Alblewi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Mosa H. Alsehli
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Zainab M. Hritani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Wael H. Alsaedi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Majed O. Alawad
- Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia;
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
- Chemistry Department, Faculty of Science and Art, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City 11884, Egypt;
| | - Mohamed S. A. El-Gaby
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
| | - Tarek H. Afifi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Rawda M. Okasha
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| |
Collapse
|
10
|
Omer AM, Eltaweil AS, El-Fakharany EM, Abd El-Monaem EM, Ismail MMF, Mohy-Eldin MS, Ayoup MS. Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:7587-7601. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted againstEscherichia coli(E coli) andStaphylococcus aureus(S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth ofS. aureusup to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
11
|
Harras MF, Sabour R, Farghaly TA, Ibrahim MH. Drug Repurposing Approach in Developing New Furosemide Analogs as Antimicrobial Candidates and Anti-PBP: Design, Synthesis, and Molecular Docking. Bioorg Chem 2023; 137:106585. [PMID: 37163813 DOI: 10.1016/j.bioorg.2023.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Multidrug-resistant microorganisms have become a global health problem, prompting research into new antimicrobials. Drug repurposing is a new technique in drug discovery used to improve drug development success. As a well-studied medication with a sulfonamide moiety, furosemide was chosen to study its antimicrobial effect on different microbial strains. In addition, a new family of furosemide analogs was investigated for their antimicrobial efficacy. According to the obtained results, the majority of the examined molecules exhibited potential antimicrobial activity. Compounds 3b and 4a had the best anti-MRSA results, with an MIC = 7.81 µg/mL. They also demonstrated potent anti-gram-negative activity against E. coli (MIC = 1.95 µg/mL and 3.91 µg/mL, respectively). A time-killing kinetics study against E. coli and MRSA showed bactericidal actions of 3b and 4a within 120-150 min. Moreover, an anti-PBP activity and an in vitro cytotoxicity evaluation were performed. Furosemide decreased the PBP2a levels in MRSA by 21.5% compared to the control. However, the furosemide analogs 3b and 4a demonstrated superior anti-PBP activity (55.9 and 57.1 % reduction in the expression of PBP2a, respectively). In addition, compound 4a was nearly nontoxic to normal WI-38 cells (IC50 = 248.60 μg /mL) indicating its high safety profile. Finally, the ability of furosemide and compounds 3b and 4a to bind to the target PBP2a enzyme has also been supported by molecular docking research.
Collapse
Affiliation(s)
- Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
12
|
Mahapatra M, Mekap SK, Mal S, Sahoo J, Sahoo SK, Paidesetty SK. Coumaryl-sulfonamide moiety: Unraveling their synthetic strategy and specificity toward hCA IX/XII, facilitating anticancer drug development. Arch Pharm (Weinheim) 2023; 356:e2200508. [PMID: 36587981 DOI: 10.1002/ardp.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII. Along with coumarin, the age-old known antibacterial drug sulfonamide, when conjugated at positions 3, 7, and 8 of coumarin either with a linker group or as a single entity, has been reported to enhance the affinity of coumarin toward the overexpressed enzymes in tumor cell lines. The sulfonamides have been listed as obsolete drugs due to the severe side effects caused by them; however, their affinity toward the hCA-zinc-binding core has attracted the attention of researchers. Hence, in the process of drug development, coumarin and sulfonamides have remained the choice of last resort. To unveil the synthetic strategy of coumarin-sulfonamide conjugation, their rationale for inhibiting cancer cells/enzymes, and their affinity toward various types of carcinoma have been the sole goal of the researchers. This review specifically focuses on the mechanism of action and the structure-activity relationship through synthetic strategies and the binding affinity of coumaryl-sulfonamide conjugates with the anticancer targets possessing the highest enzyme affinity, since 2008.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Suman K Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, R. Sitapur, Odisha, India
| | - Suvadeep Mal
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand, India
| | | | - Sudhir K Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|