1
|
Nesaragi AR, Kamat V, Chapi S, Guddappa H, T M S, Chandu A, Al-Zaqri N, Palem RR, Murugesan S, Kumbar VM. WELPSA: A Green Catalyst Mediated Microwave Assisted Efficient Synthesis of Novel 5-Aminopyrazole-4-Carbonitrile Derivatives as Anticancer Agents (MCF-7, A-549) and In Silico Studies. Arch Pharm (Weinheim) 2025; 358:e202500055. [PMID: 40200570 DOI: 10.1002/ardp.202500055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Malononitrile, modified hydrazine, and quinoline aldehyde were combined in a one-pot reaction under microwave irradiation to create the medicinally significant family of heterocyclic scaffolds, quinoline, coumarin, thiazole, and pyrazole 4-carbonitrile derivatives with the help of green solvent as water. WELPSA (water extract of lemon peel-soaked ash) is used to speed up the reaction in a solvent-free environment, according to more environmentally friendly reaction protocols. This methodology offers several advantages like short reaction duration, green solvent synthesis, high yield, no need for chromatographic techniques, catalyst recyclability of up to five cycles, and so on. Synthesized derivatives were evaluated for anticancer potential against lung (A549) and breast cancer cell lines. Among the tested compounds, 4i and 4j exhibited remarkable anticancer activities. Further investigations using Annexin V staining and flow cytometry revealed that both compounds effectively induced apoptosis in A549 cancer cells. Compound 4i was subjected to molecular docking and dynamic studies to understand the molecular basis of their activity, which demonstrated a strong interaction with the target protein 1m17, providing insights into its mechanism of action. These findings highlight the potential of compounds 4i and 4j as promising candidates for anticancer drug development.
Collapse
Affiliation(s)
- Aravind R Nesaragi
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Vinuta Kamat
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| | - Halligudra Guddappa
- Department of Chemistry, ATME College of Engineering, Mysuru, Karnataka, India
| | - Sharanakumar T M
- Department of Chemistry, Ballari Institute of Technology and Management, Ballari, Karnataka, India
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education, Nehru Nagar, Belagavi, India
| |
Collapse
|
2
|
He B, Ding L, Tan HZ, Liu CB, He LQ. Synthesis and antitumor activity evaluation of coumarin Mannich base derivatives. Chem Biol Drug Des 2024; 103:e14389. [PMID: 37955286 DOI: 10.1111/cbdd.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Twenty-one new coumarin Mannich base derivatives (11a-u) were synthesized, which exhibited antiproliferation activities in HepG2 (liver cancer), A549 (lung cancer), MCF-7 (breast cancer), and HT-29 (colon cancer). Most of the target compounds showed the most potent activity against HepG2 cells compared with other cancer cells, compound 11g showed the strongest antiproliferative activity (2.10 μM) against HepG2, even superior to the positive control drug 5-FU(5.49 μM). The nitric oxide (NO) release of all compounds in HepG2 cells was determined, of which compound 11g showed high levels of NO release (10.8 μM). Notably, the solubility of compound 11g increased 13-fold compared with the lead 8. The preliminary cytotoxicity studies suggest that 11g had little effect on LO2 cells(normal liver cells, >50 μM). The effect of compound 11g on the apoptosis of HepG2 cells was also studied, and the results showed that the induction effect of compound 11g on apoptosis is a concentration-dependent manner. Our results indicate that compound 11g might be a promising lead for further studies.
Collapse
Affiliation(s)
- Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Le Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Zhou Tan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cheng-Bo Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li-Qin He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Zhao YQ, Li X, Guo HY, Shen QK, Quan ZS, Luan T. Application of Quinoline Ring in Structural Modification of Natural Products. Molecules 2023; 28:6478. [PMID: 37764254 PMCID: PMC10534720 DOI: 10.3390/molecules28186478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds are rich in pharmacological properties that are a hot topic in pharmaceutical research. The quinoline ring plays important roles in many biological processes in heterocycles. Many pharmacological compounds, including saquinavir and chloroquine, have been marketed as quinoline molecules with good anti-viral and anti-parasitic properties. Therefore, in this review, we summarize the medicinal chemistry of quinoline-modified natural product quinoline derivatives that were developed by several research teams in the past 10 years and find that these compounds have inhibitory effects on bacteria, viruses, parasites, inflammation, cancer, Alzheimer's disease, and others.
Collapse
Affiliation(s)
- Yu-Qing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (Y.-Q.Z.); (X.L.); (H.-Y.G.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|