1
|
Sunday UE, Stephanie MI, Otuonye F, Oluwadamilola D, Lazarus AA. Computational investigation of stigmasterol as a potential therapeutic agent for cervical cancer: insights from density functional theory (DFT) and molecular docking studies. In Silico Pharmacol 2025; 13:77. [PMID: 40421096 PMCID: PMC12103424 DOI: 10.1007/s40203-025-00361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Cervical cancer an appalling disease common amongst women worldwide, caused by human papillomavirus (HPV) with 80% increasing cases in developing countries, is reported to be persistent despite the various treatment measures. Hence, this research explores the properties of stigmasterol (SML), a biological active compound derived from Costus afer plant, as a drug agent for treatment of cervical cancer via density functional theory (DFT) studies and molecular docking investigation. Here, five key proteins were selected (for 4LEO, 7X8O, 5N2F, 4P7U and 2N5R) for in silico molecular docking study with SML. The DFT at ωB97XD/6-311++G (2d, 2p) level of theory was utilized and optimization of the compound was carried out in four different solvent phases, viz; acetone, ethanol, water, and gas to ascertain the level of reactivity and stability of the compound. The HOMO-LUMO energy gaps exhibited by acetone, ethanol, gas, and water were: 9.4128 eV, 9.4134 eV, 9.3140 eV, and 9.4164 eV, respectively. Interestingly, the resulting binding affinities for SML-protein interaction for 4LEO, 7X8O, 5N2F, 4P7U and 2N5R showed notable binding affinities of - 7.6 kcal/mol, - 5.2 kcal/mol, - 6.1 kcal/mol, - 5.2 kcal/mol and - 5.0 kcal/mol, respectively, as compared to the binding affinities (- 5.2 to - 7.6 kcal/mol) recorded for proteins-standard drugs interaction. The Non-covalent interactions (NCI) analysis showed predominately, van der Waals interactions in all the phases. This investigation suggest that SML can be used in the treatment and management of cervical cancer and requires further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00361-1.
Collapse
Affiliation(s)
| | | | - Favour Otuonye
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | | | - Augusta A. Lazarus
- Department of Chemistry, Rivers State University, Port Harcourt, Nigeria
| |
Collapse
|
2
|
Awere CO, Sneha A, Rakkammal K, Muthui MM, Kumari R A, Govindan S, Batur Çolak A, Bayrak M, Muthuramalingam P, Anadebe VC, Archana P, Sekar C, Ramesh M. Carbon dot unravels accumulation of triterpenoid in Evolvulus alsinoides hairy roots culture by stimulating growth, redox reactions and ANN machine learning model prediction of metabolic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109142. [PMID: 39357200 DOI: 10.1016/j.plaphy.2024.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Evolvulus alsinoides, a therapeutically valuable shrub can provide consistent supply of secondary metabolites (SM) with pharmaceutical significance. Nonetheless, because of its short life cycle, fresh plant material for research and medicinal diagnostics is severely scarce throughout the year. The effects of exogenous carbon quantum dot (CD) application on metabolic profiles, machine learning (ML) prediction of metabolic stress response, and SM yields in hairy root cultures of E. alsinoides were investigated and quantified. The range of the particle size distribution of the CDs was between 3 and 7 nm. The CDs EPR signal and spin trapping experiments demonstrated the formation of O2-•spin-adducts at (g = 2.0023). Carbon dot treatment increased the levels of hydrogen peroxide and malondialdehyde concentrations as well as increased antioxidant enzyme activity. CD treatments (6 μg mL-1) significantly enhanced the accumulation of squalene and stigmasterol (7 and 5-fold respectively). The multilayer perceptron (MLP) algorithm demonstrated remarkable prediction accuracy (MSE value = 1.99E-03 and R2 = 0.99939) in both the training and testing sets for modelling. Based on the prediction, the maximum oxidative stress index and enzymatic activities were highest in the medium supplemented with 10 μg mL-1 CDs. The outcome of this study indicated that, for the first time, using CD could serve as a novel elicitor for the production of valuable SM. MLP may also be used as a forward-thinking tool to optimize and predict SM with high pharmaceutical significance. This study would be a touchstone for understanding the use of ML and luminescent nanomaterials in the production and commercialization of important SM.
Collapse
Affiliation(s)
- Collince Omondi Awere
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Anbalagan Sneha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Martin Mwaura Muthui
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Anitha Kumari R
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Suresh Govindan
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Andaç Batur Çolak
- Information Technologies Application and Research Center, Istanbul Ticaret University, İstanbul 34445, Turkiye
| | - Mustafa Bayrak
- Mechanical Engineering Department, Niğde Ömer Halisdemir University, Niğde 51240, Turkiye
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Valentine Chikaodili Anadebe
- Department of Chemical Engineering, Alex Ekwueme Federal University Ndufu Alike PMB 1010 Abakailiki, Ebonyi State, Nigeria
| | - Pandi Archana
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India.
| |
Collapse
|
3
|
Sianipar NF, Hadisaputri YE, Assidqi K, Salam S, Yusuf M, Destiarani W, Purnamaningsih R, So IG, Takara K, Asikin Y. In silico and in vitro Characterizations of Rodent Tuber (Typhonium flagelliforme) Mutant Plant Isolates against FXR Receptor on MCF-7 Cells. J Oleo Sci 2024; 73:1349-1360. [PMID: 39358218 DOI: 10.5650/jos.ess24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Typhonium flagelliforme (T. flagelliforme) is an Indonesian rodent tuber plant traditionally used to treat cancer diseases. Although gamma-ray irradiation has been used to increase the content in the chemical compounds of the T. flagelliforme plants with anticancer activity ten times effective, the specific effect of the isolated compounds from the mutant plants has never been reported yet. The potential cytotoxic agents were characterized via nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry as stigmasterol and 7α-hydroxyl stigmasterol; and their anticancer activity was investigated. The in silico biochemical profile of the two compounds were analyzed by molecular docking and molecular dynamics simulation to confirm its interaction with the agonist binding site of Farsenoid X receptor (FXR). Stigmasterol and 7α-hydroxyl stigmasterol can act as a competitive regulator with a high-affinity for the FXR. The results also showed that stigmasterol and 7α-hydroxyl stigmasterol were the most potential and active fraction of the T. flagelliforme mutant plant against the MCF-7 human breast cancer cell line, with IC 50 value 9.13 µM and 12.97 µM, compared with cisplastin as a control about 13.20 µM. These results demonstrate the potential of stigmasterol and 7α-hydroxyl stigmasterol in T. flagelliforme mutant plants to act towards cancer diseases.
Collapse
Affiliation(s)
- Nesti Fronika Sianipar
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran
| | - Khoirunnisa Assidqi
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | | | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | - Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | | | - Idris Gautama So
- Management Department, Binus Business School, Undergraduate Program, Bina Nusantara University
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
4
|
Visagamani AM, Shanthi D, Muthukrishnaraj A, Venkatadri B, Ahamed JI, Kaviyarasu K. Innovative Preparation of Cellulose-Mediated Silver Nanoparticles for Multipurpose Applications: Experiment and Molecular Docking Studies. ACS OMEGA 2023; 8:38860-38870. [PMID: 37901521 PMCID: PMC10601087 DOI: 10.1021/acsomega.3c02432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 10/31/2023]
Abstract
In recent years, inorganic metal nanoparticle fabrication by extraction of a different part of the plant has been gaining more importance. In this research, cellulose-mediated Ag nanoparticles (cellulose/Ag NPs) with excellent antibacterial and antioxidant properties and photocatalytic activity have been synthesized by the microwave-assisted hydrothermal method. This method is a green, simple, and low-cost method that does not use any other capping or reducing agents. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and UV-visible spectroscopic techniques were used to investigate the structure, morphology, as well as components of the generated cellulose/Ag NPs. In fact, XRD results confirm the formation of the face-centered cubic phase of Ag nanoparticles, while the FTIR spectra showed that the synergy of carbohydrates and proteins is responsible for the formation of cellulose/Ag NPs by the green method. It was found that the green-synthesized silver nanoparticles showed good crystallinity and a size range of about 20-30 nm. The morphology results showed that cellulose has a cavity-like structure and the green-synthesized Ag NPs were dispersed throughout the cellulose polymer matrix. In comparison to cellulose/Ag NPs and Ag nanoparticles, cellulose/Ag NPs demonstrated excellent antibacterial activity, Proteus mirabilis (MTCC 1771) possessed a maximum inhibition zone of 18.81.5 mm at 2.5 g/mL, and Staphylococcus aureus (MTTC 3615) had a minimum inhibition zone of 11.30.5 mm at 0.5 g/mL. Furthermore, cellulose/Ag NPs also exhibited a significant radical scavenging property against the DDPH free radical, and there was a higher degradation efficiency compared to pure Ag NPs against Rhodamine B as 97.38% removal was achieved. Notably, cellulose/Ag NPs remarkably promoted the transfer and separation of photogenerated electron-hole (e-/h+) pairs, thereby offering prospective application of the photodegradation efficiency for Rhodamine B (RhB) as well as antibacterial applications. With the findings from this study, we could develop efficient and environmentally friendly cellulose/Ag nanoparticles using low-cost, environmentally friendly materials, making them suitable for industrial and technological applications.
Collapse
Affiliation(s)
| | - Durairaj Shanthi
- Department
of Chemistry, VelTech MultiTech Dr. Rangarajan
Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Appusamy Muthukrishnaraj
- Department
of Chemistry, Faculty of Engineering, Karpagam
Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Babu Venkatadri
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
| | - J. Irshad Ahamed
- Department
of Chemistry, Kandaswami Naidu College for
Men, Anna Nagar East, Chennai 600102, India
| | - Kasinathan Kaviyarasu
- UNESCO-UNISA
Africa Chair in Nanosciences/Nanotechnology Laboratories, College
of Graduate Studies, University of South
Africa (UNISA), Muckleneuk Ridge, Pretoria 0002, South Africa
- Nanosciences
African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS−National Research Foundation (NRF), 1 Old Faure Road, Somerset West 7129, Western Cape, South Africa
| |
Collapse
|
5
|
Goswami M, Jaswal S, Gupta GD, Kumar Verma S. A Comprehensive Update on Phytochemistry, Analytical Aspects, Medicinal Attributes, Specifications and Stability of Stigmasterol. Steroids 2023; 196:109244. [PMID: 37137454 DOI: 10.1016/j.steroids.2023.109244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Phytosterols are bioactive substances naturally found in plant cell membranes, and their chemical structure is comparable to cholesterol found in mammalian cells. They are widely distributed in plant foods like olive oil, nuts, seeds, and legumes. Amongst the variety of phytosterols, stigmasterol is the vital compound found abundantly in plants. Numerous hormones, including estrogen, progesterone, corticoids and androgen, are synthesized by stigmasterol. Multiple in-vitro and in-vivo investigations have shown that stigmasterol has various biological effects, including antioxidant, anticancer, antidiabetic, respiratory diseases, and lipid-lowering effects. Experimental research on stigmasterol provides indisputable proof that this phytosterol has the potential to be employed in supplements used to treat the illnesses mentioned above. This substance has a high potential, making it a noteworthy medication in the future. Although several researchers have investigated this phytosterol to assess its prospective qualities, it has not yet attained therapeutic levels, necessitating additional clinical studies. This review offers a comprehensive update on stigmasterol, including chemical framework, biosynthesis, synthetic derivatives, extraction and isolation, analytical aspects, pharmacological profile, patent status, clinical trials, stability and specifications as per regulatory bodies.
Collapse
Affiliation(s)
- Megha Goswami
- Department of Pharmacognosy, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142 001 (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142 001 (Punjab), India.
| |
Collapse
|
6
|
Spectroscopic, computational DFT, in vitro, and molecular docking investigations of newly isolated 2, 3, 9, and 10-tetrahydroacridin-3-one from the methanolic extract of nilavembu kudineer chooranam. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|