1
|
Suresh Babu N, Anbu Chudar Azhagan S, Loganathan B, Sughanya V, Ayyappan J. 2,2'-[(4-But-oxy-phen-yl)methyl-ene]bis-(3-hy-droxy-5,5-di-methyl-cyclo-hex-2-en-1-one). IUCRDATA 2025; 10:x250180. [PMID: 40092357 PMCID: PMC11904627 DOI: 10.1107/s2414314625001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
In the title compound, C27H36O5, the dihedral angles between the planes of the benzene ring and the cyclo-hexenone rings are 60.87 (10) and 65.04 (10)°, while the dihedral angle between the mean planes of the two cyclo-hexenone rings is 39.33 (10)°. Each cyclo-hexenone ring has a carbon atom bonded to two methyl groups, which acts as the flap atom, resulting in an envelope conformation. The opposite orientation of the hy-droxy and carbonyl oxygen atoms allows for the formation of two intra-molecular O-H⋯O hydrogen bonds and C-H⋯π (ring) inter-actions also help to establish the molecular conformation.
Collapse
Affiliation(s)
- N. Suresh Babu
- Department of Chemistry, Government College of Engineering, Tirunelveli-627 007, Tamilnadu, India
| | - S. Anbu Chudar Azhagan
- Department of Physics, Government College of Engineering, Tirunelveli-627 007, Tamilnadu, India
| | - B. Loganathan
- Department of Chemistry (Science and Humanities), Dr. N. G. P. Institute of Technology, Coimbatore-641 048, Tamil Nadu, India
| | - V. Sughanya
- Department of Chemistry, Periyar Government Arts College, Cuddalore-607 001., Tamil Nadu, India
| | - J. Ayyappan
- Department of Physics, Government College of Engineering, Salem-636 011, Tamilnadu, India
| |
Collapse
|
2
|
Yuriy K, Kusdemir G, Volodymyr P, Tüzün B, Taslimi P, Karatas OF, Anastasia K, Maryna P, Sayın K. A biochemistry-oriented drug design: synthesis, anticancer activity, enzymes inhibition, molecular docking studies of novel 1,2,4-triazole derivatives. J Biomol Struct Dyn 2024; 42:1220-1236. [PMID: 37671856 DOI: 10.1080/07391102.2023.2253906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/28/2023] [Indexed: 09/07/2023]
Abstract
In this study, we researched the reactions of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiol and 5-thiophene-(3-ylmethyl)-4R-1,2,4-triazole-3-thiols with some halogen-containing compounds, a number of new compounds were synthesized (1.1-1.5 and 2.1-2.8). These compounds showed excellent to good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. For obtaining the effects of these compounds on AChE and BChE enzymes were determined spectrophotometrically according to Ellman. IC50 values of these enzymes were ranging between 1.63 and 17.68 nM for AChE and 8.71 and 84.02 nM for BChE. After, prostate cancer is the second leading cause of cancer-related mortality for men over the age of 65 in developed countries. Current treatment options remain limited in the treatment of advanced-stage prostate cancer leading to biochemical recurrence in almost 40% of the patients. Therefore, there is an urgent need for development of novel therapeutic tools for treatment of prostate cancer patients. In this study, we aimed at analyzing the potential of all compounds against prostate cancer cells. We found that, of the tested compounds, 2.1, 2.2 and 2.3 showed significant cytotoxic activities against PC3 prostate cancer cells, although their effect on the viability of normal prostate cells was limited. These findings suggest their selective targeting potential for prostate cancer cells and offer them as candidate therapeutic agents against prostate cancer. The inhibitory activities of some chemical compounds, such as (1.1-1.5 and 2.1-2.8) were assessed by performing the molecular docking study in the presence of AChE, BChE and prostate cancer protein. MM/GBSA methods are calculated binding free energy. Finally, ADME/T analysis was performed to examine the drug properties of the 13 studied molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karpenko Yuriy
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Gulnur Kusdemir
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Parchenko Volodymyr
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Khilkovets Anastasia
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Parchenko Maryna
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Koray Sayın
- Deparment of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
4
|
Suleiman M, Almalki FA, Ben Hadda T, Kawsar SMA, Chander S, Murugesan S, Bhat AR, Bogoyavlenskiy A, Jamalis J. Recent Progress in Synthesis, POM Analyses and SAR of Coumarin-Hybrids as Potential Anti-HIV Agents-A Mini Review. Pharmaceuticals (Basel) 2023; 16:1538. [PMID: 38004404 PMCID: PMC10675815 DOI: 10.3390/ph16111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), one of the deadliest pandemic diseases. Various mechanisms and procedures have been pursued to synthesise several anti-HIV agents, but due to the severe side effects and multidrug resistance spawning from the treatment of HIV/AIDS using highly active retroviral therapy (HAART), it has become imperative to design and synthesise novel anti-HIV agents. Literature has shown that natural sources, particularly the plant kingdom, can release important metabolites that have several biological, mechanistic and structural representations similar to chemically synthesised compounds. Certainly, compounds from natural and ethnomedicinal sources have proven to be effective in the management of HIV/AIDS with low toxicity, fewer side effects and affordability. From plants, fungi and bacteria, coumarin can be obtained, which is a secondary metabolite and is well known for its actions in different stages of the HIV replication cycle: protease, integrase and reverse transcriptase (RT) inhibition, cell membrane fusion and viral host attachment. These, among other reasons, are why coumarin moieties will be the basis of a good building block for the development of potent anti-HIV agents. This review aims to outline the synthetic pathways, structure-activity relationship (SAR) and POM analyses of coumarin hybrids with anti-HIV activity, detailing articles published between 2000 and 2023.
Collapse
Affiliation(s)
- Mustapha Suleiman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
- Department of Chemistry, Sokoto State University, Birnin Kebbi Road, Sokoto 852101, Nigeria
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida 201313, India;
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani Campus, Pilani 333031, India;
| | - Ajmal R. Bhat
- Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, India;
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
5
|
Hilmy KMH, Kishk FNM, Shahen EBA, Sobh EA, Hawata MA. New pyrrole derivatives as DNA gyrase and 14α-demethylase inhibitors: Design, synthesis, antimicrobial evaluation, and molecular docking. Drug Dev Res 2023; 84:1204-1230. [PMID: 37165799 DOI: 10.1002/ddr.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/12/2023]
Abstract
An efficient one-pot reaction utilizing readily available chemical reagents was used to prepare novel 2-amino-1,5-diaryl-1H-pyrrole-3-carbonitrile derivatives and the structures of these compounds were validated by spectroscopic data and elemental analyses. All the synthetic compounds were evaluated for their antimicrobial activities (MZI assay). The tested compounds proved high activities on Staphylococcus aureus (Gram-positive bacteria) and Candida albicans (Pathogenic fungi). However, they did not show any activity on Escherichia coli (Gram-negative bacteria). The most effective compounds in MZI assay 7c, 9a, 9b, 11a, and 11b were selected to determine their MIC on S. aureus and C. albicans. Furthermore, DNA gyrase and 14-α demethylase inhibitory assays were performed to study the inhibitory activities of 7c, 9a, 9b, 11a, and 11b. The results illustrated that compound 9b was the most DNA gyrase inhibitor (IC50 of 0.0236 ± 0.45 µM, which was 1.3- fold higher than gentamicin reference IC50 values of 0.0323 ± 0.81 µM). In addition, compound 9b demonstrated the highest 14-α demethylase inhibitory effect with IC50 of 0.0013 ± 0.02 µM, compared to ketoconazole (IC50 of 0.0008 ± 0.03 µM) and fluconazole (IC50 of 0.00073 ± 0.01 µM), as antifungal reference drugs. Lastly, docking studies were performed to rationalize the dual inhibitory activities of the highly active compounds on both DNA gyrase and 14-α demethylase enzymes.
Collapse
Affiliation(s)
- Khaled M H Hilmy
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Fawzya N M Kishk
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Esmat B A Shahen
- Depatment of Biochemistry, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shebin El-Kom, Egypt
| | - Mohamed A Hawata
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
6
|
Kekeçmuhammed H, Tapera M, Aydoğdu E, Sarıpınar E, Aydin Karatas E, Mehtap Uc E, Akyuz M, Tüzün B, Gulcin İ, Emin Bora R, Özer İlhan İ. Synthesis, Biological Activity Evaluation and Molecular Docking of Imidazole Derivatives Possessing Hydrazone Moiety. Chem Biodivers 2023; 20:e202200886. [PMID: 37132191 DOI: 10.1002/cbdv.202200886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
In an attempt to identify potential active anticancer agents with low cytotoxic properties and CA inhibitors, a new series of hybrid compounds incorporating imidazole ring and hydrazone moiety as part of their structure were synthesized by aza-Michael addition reaction followed by intramolecular cyclization. The structure of synthesized compounds was elucidated using various spectral techniques. Synthesized compounds were evaluated for their in vitro anticancer (prostate cell lines; PC3) and CA inhibitory (hCA I and hCA II) activity. Among them, some compound displayed remarkable anticancer activity and CA inhibitory activity with Ki values in range of 17.53±7.19-150.50±68.87 nM against cytosolic hCA I isoform associated with epilepsy, and 28.82±14.26-153.27±55.80 nM against dominant cytosolic hCA II isoforms associated with glaucoma. Furthermore, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities. The proteins used for the calculations are prostate cancer protein (PDB ID: 3RUK and 6XXP). ADME/T analysis was carried out to examine the drug properties of the studied molecules.
Collapse
Affiliation(s)
- Hüseyin Kekeçmuhammed
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Michael Tapera
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Ekrem Aydoğdu
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Emin Sarıpınar
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Eda Mehtap Uc
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, 58140-, Sivas, Turkey
| | - İlhami Gulcin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Rıfat Emin Bora
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - İlhan Özer İlhan
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
7
|
Abd El-Lateef HM, Elmaaty AA, Abdel Ghany LMA, Abdel-Aziz MS, Zaki I, Ryad N. Design and Synthesis of 2-(4-Bromophenyl)Quinoline-4-Carbohydrazide Derivatives via Molecular Hybridization as Novel Microbial DNA-Gyrase Inhibitors. ACS OMEGA 2023; 8:17948-17965. [PMID: 37251193 PMCID: PMC10210181 DOI: 10.1021/acsomega.3c01156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Microbial DNA gyrase is regarded as an outstanding microbial target. Hence, 15 new quinoline derivatives (5-14) were designed and synthesized. The antimicrobial activity of the afforded compounds was pursued via in vitro approaches. The investigated compounds displayed eligible MIC values, particularly against G-positive Staphylococcus aureus species. Consequently, an S. aureus DNA gyrase supercoiling assay was performed, using ciprofloxacin as a reference control. Obviously, compounds 6b and 10 unveiled IC50 values of 33.64 and 8.45 μM, respectively. Alongside, ciprofloxacin exhibited an IC50 value of 3.80 μM. Furthermore, a significant docking binding score was encountered by compound 6b (-7.73 kcal/mol), surpassing ciprofloxacin (-7.29 kcal/mol). Additionally, both compounds 6b and 10 revealed high GIT absorption without passing the blood brain barrier. Finally, the conducted structure-activity relationship study assured the usefulness of the hydrazine moiety as a molecular hybrid for activity either in cyclic or opened form.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag 82524, Egypt
| | - Ayman Abo Elmaaty
- Medicinal
Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Lina M. A. Abdel Ghany
- Pharmaceutical
Chemistry Department, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, 6th of
October City 3236101, Egypt
| | - Mohamed S. Abdel-Aziz
- Microbial
Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Islam Zaki
- Pharmaceutical
Organic Chemistry Department, Faculty of pharmacy, Port Said University, Port Said 42526, Egypt
| | - Noha Ryad
- Pharmaceutical
Organic Chemistry Department, College of Pharmaceutical Sciences and
Drug Manufacturing, Misr University for
Science and Technology, 6th of October
City, P.O. Box 77, Giza 3236101, Egypt
| |
Collapse
|
8
|
Bogoyavlenskiy A, Alexyuk M, Alexyuk P, Berezin V, Almalki FA, Ben Hadda T, Alqahtani AM, Ahmed SA, Dall'Acqua S, Jamalis J. Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site. Molecules 2023; 28:molecules28093766. [PMID: 37175179 PMCID: PMC10179817 DOI: 10.3390/molecules28093766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.
Collapse
Affiliation(s)
- Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Madina Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Pavel Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Vladimir Berezin
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Alaa M Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
9
|
Naghiyev FN, Khrustalev VN, Akkurt M, Khalilov AN, Bhattarai A, Kerimli FS, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 1,6-di-amino-2-oxo-4-(thio-phen-2-yl)-1,2-di-hydro-pyridine-3,5-dicarbo-nitrile. Acta Crystallogr E Crystallogr Commun 2023; 79:494-498. [PMID: 37151830 PMCID: PMC10162080 DOI: 10.1107/s2056989023003237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
The asymmetric unit of the title compound, C11H7N5OS, contains two independent mol-ecules (1 and 2). The thio-phene ring in mol-ecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C-C bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1. These two orientations of the thio-phene ring in mol-ecule 2 are not equivalent. In the crystal, mol-ecules are linked by inter-molecular N-H⋯O and N-H⋯N hydrogen bonds into ribbons parallel to (022) along the a axis. Within the (022) planes, these ribbons are connected by van der Waals inter-actions and between the (022) planes by N-H⋯O hydrogen bonds. In mol-ecule 1, Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from N⋯H/H⋯N (27.1%), H⋯H (17.6%), C⋯H/H⋯C (13.6%) and O⋯H/H⋯O (9.3%) inter-actions, while in mol-ecule 2, H⋯H (25.4%) inter-actions are the most significant contributors to the crystal packing.
Collapse
Affiliation(s)
- Farid N. Naghiyev
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Ali N. Khalilov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - Fuad Sh. Kerimli
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| |
Collapse
|
10
|
Khalilov AN, Khrustalev VN, Aleksandrova LV, Akkurt M, Rzayev RM, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 2,2'-[(3,5-di- tert-butyl-4-hy-droxy-phen-yl)methanedi-yl]bis-(3-hy-droxy-5,5-di-methyl-cyclo-hex-2-en-1-one). Acta Crystallogr E Crystallogr Commun 2023; 79:436-440. [PMID: 37151828 PMCID: PMC10162074 DOI: 10.1107/s2056989023003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In the title compound, C31H44O5, mol-ecules are connected by O-H⋯O and C-H⋯O hydrogen bonds, forming hydrogen-bonded zigzag chains running along the b axis and parallel to the (001) plane. The mol-ecular packing is stabilized by van der Waals inter-actions between these chains along the a and c axes. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Ali N. Khalilov
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Larissa V. Aleksandrova
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Rovnag M. Rzayev
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| |
Collapse
|
11
|
Design, Synthesis, In Silico and POM Studies for the Identification of the Pharmacophore Sites of Benzylidene Derivatives. Molecules 2023; 28:molecules28062613. [PMID: 36985587 PMCID: PMC10053039 DOI: 10.3390/molecules28062613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Due to the uneven distribution of glycosidase enzyme expression across bacteria and fungi, glycoside derivatives of antimicrobial compounds provide prospective and promising antimicrobial materials. Therefore, herein, we report the synthesis and characterization of six novel methyl 4,6-O-benzylidene-α-d-glucopyranoside (MBG) derivatives (2–7). The structures were ascertained using spectroscopic techniques and elemental analyses. Antimicrobial tests (zone of inhibition, MIC and MBC) were carried out to determine their ability to inhibit the growth of different Gram-positive, Gram-negative bacteria and fungi. The highest antibacterial activity was recorded with compounds 4, 5, 6 and 7. The compounds with the most significant antifungal efficacy were 4, 5, 6 and 7. Based on the prediction of activity spectra for substances (PASS), compounds 4 and 7 have promising antimicrobial capacity. Molecular docking studies focused on fungal and bacterial proteins where derivatives 3 and 6 exhibited strong binding affinities. The molecular dynamics study revealed that the complexes formed by these derivatives with the proteins L,D-transpeptidase Ykud and endoglucanase from Aspergillus niger remained stable, both over time and in physiological conditions. Structure–activity relationships, including in vitro and in silico results, revealed that the acyl chains [lauroyl-(CH3(CH2)10CO-), cinnamoyl-(C6H5CH=CHCO-)], in combination with sugar, were found to have the most potential against human and fungal pathogens. Synthetic, antimicrobial and pharmacokinetic studies revealed that MBG derivatives have good potential for antimicrobial activity, developing a therapeutic target for bacteria and fungi. Furthermore, the Petra/Osiris/Molinspiration (POM) study clearly indicated the presence of an important (O1δ−----O2δ−) antifungal pharmacophore site. This site can also be explored as a potential antiviral moiety.
Collapse
|
12
|
Çetinkaya S, Eyupoglu V, Çetintaş Hİ, Yenidünya AF, Kebabcı Ö, Tüzün B. Removal of Erythrosine B dye from wastewater by Penicillium italicum: experimental, DFT, and molecular docking studies. J Biomol Struct Dyn 2023; 41:14212-14223. [PMID: 36889933 DOI: 10.1080/07391102.2023.2186704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
The study involved the adsorption of Erythrosine B onto the dead, dry, and unmodified Penicillium italicum cells and the analytical, visual, theoretical assessment of the adsorbent-adsorbate interactions. It also included desorption studies and reiterative usability of the adsorbent. The fungus was a local isolate and it was identified by partial proteomic experiment in a MALDI-TOFF mass spectrometer. Chemical features of the adsorbent surface were analysed by FT-IR and EDX. Surface topology was visualized by SEM. Isotherm parameters of the adsorption were determined by using three most frequently used models. Erythrosine B appeared to form a monolayer onto the biosorbent and some of the dye molecules could have also penetrated into the adsorbent particles. Kinetic results suggested a spontaneous and exothermic reaction taken place between the dye molecules and the biomaterial. Theoretical approach involved the determination of some of the quantum parameters as well as the toxic or drug potentials of the some of the components of the biomaterial.
Collapse
Affiliation(s)
- Serap Çetinkaya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Volkan Eyupoglu
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankırı, Turkey
| | - Halil İbrahim Çetintaş
- Advanced Technology Research and Application Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | - Ali Fazıl Yenidünya
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Özgür Kebabcı
- Department of Molecular Biology and Genetics, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
13
|
Salih RHH, Hasan AH, Hussen NH, Hawaiz FE, Hadda TB, Jamalis J, Almalki FA, Adeyinka AS, Coetzee LCC, Oyebamiji AK. Thiazole-Pyrazoline Hybrids as Potential Antimicrobial Agent: Synthesis, Biological Evaluation, Molecular Docking, DFT Studies and POM analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Chalkha M, Ameziane el Hassani A, Nakkabi A, Tüzün B, Bakhouch M, Benjelloun AT, Sfaira M, Saadi M, Ammari LE, Yazidi ME. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
16
|
Yadav M, Kumar A, Lal K, Singh MB, Kumari K. Facile synthesis, antimicrobial screening and docking studies of pyrrole-triazole hybrids as potential antimicrobial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Çelik MS, Çetinus ŞA, Yenidünya AF, Çetinkaya S, Tüzün B. Biosorption of Rhodamine B dye from aqueous solution by Rhus coriaria L. plant: Equilibrium, kinetic, thermodynamic and DFT calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Sun XP, Yu W, Min LJ, Han L, Sun NB, Liu XH. Synthesis, Crystal Structure and Antifungal Activities of New Quinoline Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Gassoumi B, Dlala NA, Echabaane M, Ghalla H, Zhou Y, Castro ME, Melendez FJ, Leila N, Madi F, Chaabane RB. Adsorption of toxic and non-toxic metals with new model of CX[4]: Experimental and computational investigation, Spectroscopic, QTAIM, and Antibacterial activity analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Kawsar SMA, Almalki FA, Hadd TB, Laaroussi H, Khan MAR, Hosen MA, Mahmud S, Aounti A, Maideen NMP, Heidarizadeh F, Soliman SSM. Potential antifungal activity of novel carbohydrate derivatives validated by POM, molecular docking and molecular dynamic simulations analyses. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taibi Ben Hadd
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Muhammad A. R. Khan
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammed A. Hosen
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine –Dalgarno Centre for RNA Innovations, The Australian National University, Canberra, Australia
| | - Abdelouahed Aounti
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | | | | | | |
Collapse
|
21
|
Huseynzada A, Mori M, Meneghetti F, Israyilova A, Tuzun G, Sayin K, Chiarelli L, Mutlu C, Demiralp M, Hasanova U, Abbasov V. Synthesis, crystal structure, Hirshfeld surface, computational and antibacterial studies of a 9-phenanthrenecarboxaldehyde-based thiodihydropyrimidine derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Erdogan MK, Gundogdu R, Yapar Y, Gecibesler IH, Kirici M, Behcet L, Tuzun B, Taslimi P. The Evaluation of Anticancer, Antioxidant, Antidiabetic and Anticholinergic Potentials of Endemic
Rhabdosciadium microcalycinum
Supported by Molecular Docking Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202200400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ramazan Gundogdu
- Department of Pharmacy Services Vocational School of Health Services Bingol University 12000- Bingol Turkey
| | - Yakup Yapar
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Ibrahim Halil Gecibesler
- Department of Occupational Health and Safety Faculty of Health Science Bingol University 12000- Bingol Turkey
| | - Mahinur Kirici
- Department of Chemistry Faculty of Arts and Sciences Bingol University 12000- Bingol Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University 12000 Bingol Turkey
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University Sivas Turkey
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100 - Bartin Turkey
| |
Collapse
|