1
|
Mukherjee A, Dhak P, Mandal D, Dhak D. Solvothermal synthesis of 3D rod-shaped Ti/Al/Cr nano-oxide for photodegradation of wastewater micropollutants under sunlight: a green way to achieve SDG:6. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56901-56916. [PMID: 37812343 DOI: 10.1007/s11356-023-30112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Waterbodies are day-by-day polluted by the various colored micropollutants, e.g., azo dyes enriched (carcinogenic, non-biodegradable) colored wastewater from textile industries. Water pollution has become a serious global issue as ~ 25% of health diseases are prompted by pollution as reported by WHO. Around 1 billion people will face water scarcity by 2025 and this water crisis is also a prime focus to the UNs' sustainable development goal 6 (SDG6: clean water and sanitation). To prevent the water pollution caused by micropollutants, a mesoporous, 3D rod-like nano-oxide Ti/Al/Cr (abbreviated as TAC) has been synthesized via the solvothermal method. TAC degraded all classes of azo dyes (mono, di, tri, etc.) with > 90% efficiency under renewable energy source solar irradiation within the pH range 2-11. The detailed study was done on the photodegradation of carcinogenic di-azo dye Congo red (CR) which is banned in many countries. TAC showed 90.64 ± 2% degradation efficiency for CR at pH 7. The proposed photodegradation mechanism of CR was confirmed by the high-resolution liquid chromatography-mass spectroscopy (HRLC-MS) analysis obeying the Pirkanniemi path. The photodegradation obeyed the pseudo-1st-order kinetics and was reusable up to successive 5 cycles which can be an efficient tool to meet the UNs' SDG:6.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, Kolkata, 700091, India
| | - Debpriya Mandal
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
2
|
Saka A, Jule LT, Badassa B, Gudata L, Nagaprasad N, Shanmugam R, Dwarampudi LP, Seenivasan V, Ramaswamy K. Biosynthesis of TiO 2 nano particles by using Rosemary (Rosmarinus officinalis) leaf extracts and its application for crystal dye degradation under sunlight. BMC Chem 2024; 18:123. [PMID: 38951843 PMCID: PMC11218237 DOI: 10.1186/s13065-024-01229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Titanium dioxide (TiO2) nanoparticles were prepared through Rosmarinus-officinalis leaf extracts at 90 and 200°C. In this research, the degradations of methylene blues by using TiO2 nanoparticles Sun light radiations were studied. The synthesized materials were characterized using XRDs, UV-Vis, PL, SEM, TEM, EDS and XPS. The results displayed that bio-synthesis temperatures intrude the shapes and sizes of TiO2 nanoparticles. For TiO2-90, micrographs show separable crystalline with irregular morphologies and agglomerate cubic particles. For the other TiO2-200 sample, SEM and TEM micro-imaging shows crumbly agglomerated cubic structures. The XRD shows that the intense peaks observed at angles of 25.37°, 37.19°, 47.81° and 53.89° confirming a highly crystalline oriented as (004), (200), and (105) planes respectively. The optical properties of TiO2 nanoparticles synthesized were conveyed by PL and UV-Vis. The energy band gap calculated was 3.0 eV for both samples; that indicates heating temperature didn't influence the band gap of the samples. The elemental composition Ti and O2 is shown by EDS and XPS. Photo-catalytic experiments discovered that TiO2-90 nanoparticles were well-organized in photo-degradations of MB, likened to TiO2-200. The great activities of TiO2-90 were because of better physicochemical characteristics associated with TiO2-200 effectively degrading MB under photo-light. Photo-degradations of dye under sunlight as plentifully obtainable energy sources by TiO2, synthesized by simpler techniques, can be hopeful to grow an eco-friendly and economical process.
Collapse
Affiliation(s)
- Abel Saka
- Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - Leta Tesfaye Jule
- Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia
- Ministry of innovation and technology, Dambi Dollo, Ethiopia
| | - Bayissa Badassa
- Ministry of innovation and technology, Dambi Dollo, Ethiopia
| | - Lamessa Gudata
- Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, 625 104, Tamil Nadu, India
| | - R Shanmugam
- Department of Pharmacognosy, TIFAC, CORE-HD, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - L Priyanka Dwarampudi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Venkatesh Seenivasan
- Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, India
| | - Krishnaraj Ramaswamy
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Ministry of innovation and technology, Dambi Dollo, Ethiopia.
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia.
| |
Collapse
|
3
|
Ozdal OG. Green synthesis of Ag, Se, and Ag 2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol (Praha) 2024; 69:625-638. [PMID: 37917276 DOI: 10.1007/s12223-023-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticles have drawn significant interest in a range of applications, ranging from biomedical to environmental sciences, due to their distinctive physicochemical characteristics. In this study, it was reported that simple biological production of Ag, Se, and bimetallic Ag2Se nanoparticles (NPs) with Pseudomonas aeruginosa is a promising, low-cost, and environmentally friendly method. For the first time in the scientific literature, Ag2Se nanoparticles have been generated via green bacterial biosynthesis. UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDX were used to characterize the produced NPs. Biosynthesized NPs were examined for antibacterial, antibiofilm, and photocatalytic properties, and it was determined that the effects of NPs were dose dependent. The biosynthesized AgNPs, SeNPs, and Ag2Se NPs showed anti-microbial activity against Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of E. coli and S. aureus were between 150 and 250 µg/mL. The NPs showed antibiofilm activity against E. coli and S. aureus at sub-MIC levels and reduced biofilm formation by at least 80% at a concentration of 200 µg/mL of each NPs. To photocatalyze the breakdown of Congo red, Ag, Se, and Ag2Se NPs were utilized, and their photocatalytic activity was tested at various concentrations and intervals. A minor decrease of photocatalytic degradation was detected throughout the NPs reuse operation (five cycles). Based on the encouraging findings, the synthesized NPs demonstrated antibacterial, antibiofilm, and photocatalytic properties, suggesting that they might be used in pharmaceutical, medical, environmental, and other applications.
Collapse
Affiliation(s)
- Ozlem Gur Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
- Koprukoy Anatolian High School, Erzurum, Turkey.
| |
Collapse
|
4
|
Farhan AM, Abu-Taweel GM, Sayed IR, Rudayni HA, Allam AA, Al Zoubi W, Abukhadra MR. Steric, Synergetic, Energetic Studies on the Impact of the Type of the Hybridized Polymers (Chitosan and β-Cyclodextrin) on the Adsorption Properties of Zeolite-A for Congo Red Dye. ACS OMEGA 2024; 9:21204-21220. [PMID: 38764688 PMCID: PMC11097194 DOI: 10.1021/acsomega.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Zeolite-A was synthesized successfully from kaolinite and hybridized with two species of biopolymers (chitosan (CH/Z) and β-cyclodextrin (CD/Z)). The obtained hybridized forms were assessed as potential adsorbents of Congo red synthetic dye (CR) with enhanced affinities and elimination capacities. The synthesized CD/Z and CH/Z hybrids demonstrated uptake capacities of 223.6 and 208.7 mg/g, which are significantly higher than single-phase zeolite-A (140.3 mg/g). The integrated polymers change the surface area, surface reactivity, and number of free active receptors that are already present. The classic isotherm investigations validate Langmuir equilibrium behavior for ZA and Freundlich properties for CD/Z and CH/Z. The steric parameters validate a strong increase in the existing active receptors after the incorporation of CD (CD/Z) to be 98.1 mg/g as compared to 83 mg/g for CH/Z and 60.6 mg/g for ZA, which illustrate the detected uptake behaviors. Moreover, the CR dye was adsorbed as several molecules per single site, reflecting the vertical uptake of these molecules by multimolecular mechanisms. The energetic assessment, considering both Gaussian energies and adsorption energies (<40 kJ/mol), validates the dominant impact of the physical mechanism during the sequestration of CR (dipole binding interactions (2-29 kJ/mol) and hydrogen bonds (<30 kJ/mol)), in addition to the considerable effect of ion exchange processes. Based on the thermodynamic parameters, the CR molecules were adsorbed by exothermic and spontaneous reactions.
Collapse
Affiliation(s)
- Amna M. Farhan
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Chemistry
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| | - Gasem M. Abu-Taweel
- Department
of Biology, College of Science, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Islam R. Sayed
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| | - Hassan Ahmed Rudayni
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Ahmed A. Allam
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| |
Collapse
|
5
|
Othman SI, Alfassam HE, Alqhtani HA, Al-Waili MA, Allam AA, Abukhadra MR. Insight into the catalytic performances of Fe 0@chitosan/cellulose green hybrid structure for enhanced photo-Fenton's oxidation of levofloxacin toxic residuals: Pathway and toxicity. Int J Biol Macromol 2024; 265:130615. [PMID: 38538375 DOI: 10.1016/j.ijbiomac.2024.130615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 04/18/2024]
Abstract
A green hybridized structure of Fe0 painted chitosan/cellulose base (Fe0@CS/CF) has been developed using cellulose extracted from sugarcane bagasse along with reduction agents sourced from Khaya senegalensis leaves. The composite was assessed as an affordable, powerful, and multifunctional catalyst for enhancing the degradation of Levofloxacin (LVX) remnants within water supplies via photo-Fenton's interactions. Using a dosage of 0.5 g/L, the Fe0@CS/CF blend demonstrated noteworthy catalytic qualities, resulting in the complete photo-Fenton's degradation of LVX at a level of 25 mg/L after 40 min. However, the complete diminution of organic carbon (TOC) occurred only after 100 min, suggesting the presence of significant intermediate residues. The identified intermediate chemicals and confirmed hydroxyl radicals as the main oxidizer suggest that the degradation pathway involves carboxylation/decarboxylation, hydroxylation, demethylation, and oxidation of quinolone rings. The toxicity properties of untreated LVX solutions and their subsequent oxidized byproducts were assessed by evaluating their inhibiting impact on Vibrio fischeri over various durations. The samples that experienced partial oxidation at initial testing demonstrated a higher level of toxicity in comparison to the parent LVX. However, the sample that was treated for 100 min demonstrated substantial biological safety and a non-toxic nature. The blend of ingredients has a synergistic impact that enhances the uptake, Fenton's, photocatalytic, and photo-Fenton's characteristics of the hosted Fe0 nanoparticles.
Collapse
Affiliation(s)
- Sarah I Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia.
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Haifa A Alqhtani
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Maha A Al-Waili
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| |
Collapse
|
6
|
Taheri E, Fatehizadeh A, Hadi S, Amin MM, Khiadani M, Ghasemian M, Rafiei N, Rezakazemi M, Aminabhavi TM. Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced photodegradation of 4-chlorophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119460. [PMID: 37939471 DOI: 10.1016/j.jenvman.2023.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Magnesium oxides (MgO) have gained shown significant promise for a variety of applications, which can be modified by ions doping. In this study, bimetallic Ag-doped S-MgO nanoparticles were prepared by hydrothermal method and used for photocatalytic degradation of 4-chlorophenl (4-CP). EDX suggested the presence of no impurities, which mainly contained Mg, Ag, and S elements, suggesting that S and Ag were incorporated into the lattice of MgO as a result of successful doping. Estimated bandgap of Ag-doped S-MgO nanoparticles was 3.7 eV, lower than MgO (7.8 eV), but useful to improve optical characteristics and photocatalytic efficiency to degrade 4-CP up to a maximum of 99.60 ± 0.50%. The synergetic parameter during photocatalysis of 4-CP was 6.91, confirming the degradation of 4-CP. Quenching experiments proved the presence of hydroxyl radicals (•OH) and singlet dioxygen (1O2) that were critical in 4-CP degradation. The kinetics rate constant was increased by 24.8% from 0.086 ± 0.004 to 0.108 ± 0.005 min-1 by the addition of sulfate in the reaction medium. The work proposes a new synthetic method for preparing catalysts that are capable of producing in-situ •OH radicals and 1O2 to decompose the organic contaminants.
Collapse
Affiliation(s)
- Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sousan Hadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Mohammad Ghasemian
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| |
Collapse
|
7
|
Allah AF, Abdel-Khalek AA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Synthesis and Characterization of Iron-Rich Glauconite Nanorods by a Facile Sonochemical Method for Instantaneous and Eco-friendly Elimination of Malachite Green Dye from Aquatic Environments. ACS OMEGA 2023; 8:49347-49361. [PMID: 38162761 PMCID: PMC10753568 DOI: 10.1021/acsomega.3c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Novel glauconite nanorods (GNRs) were synthesized by the sonication-induced chemical expansion and scrolling process of natural glauconite. The synthetic nanostructure was characterized by different analytical techniques as a superior adsorbent for the malachite green dye (MG). The synthetic GNRs were detected as porous nanorods with an average length of 150 nm to 5 μm, an average diameter of 25 to 200 nm, and a specific surface area of 123.7 m2/g. As an adsorbent for MG, the synthetic GNRs showed superior uptake capacity up to 1265.6 mg/g at the saturation stage, which is higher than most of the recently developed highly adsorbent dyes. The adsorption behavior and mechanistic properties were depicted by using modern and traditional equilibrium modeling. The kinetic assumption of the pseudo-first-order model (R2 > 0.94) and the classic isotherm of the Langmuir equilibrium model (R2 > 0.97) were used to describe the adsorption reactions. The steric investigation demonstrates that each active site on the surface of GNRs can adsorb up to three MG molecules (n = 2.19-2.48) in vertical orientation involving multimolecular mechanisms. Also, the determined active site density (577.89 mg/g) demonstrates the enrichment of the surface of GNRs with numerous adsorption receptors with strong affinity for the MG dye. The energetic study, including Gaussian energy (6.27-7.97 kJ/mol) and adsorption energy (9.45-10.43 kJ/mol), revealed that GNRs had physically adsorbed the dye, which might involve electrostatic attraction, hydrogen bonding, van der Waals forces, and dipole forces. The internal energy, enthalpy, and entropy determined the exothermic and spontaneous uptake of MG.
Collapse
Affiliation(s)
- Aya Fadl Allah
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed A. Abdel-Khalek
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62511, Egypt
| |
Collapse
|
8
|
Nasser N, Rady A, Al Zoubi W, Allam AA, Abukhadra MR. Advanced Equilibrium Modeling for the Synergetic Effect of β-Cyclodextrin Integration on the Adsorption Efficiency of Methyl Parathion by β-Cyclodextrin/Exfoliated Kaolinite Nanocomposite. ACS OMEGA 2023; 8:48166-48180. [PMID: 38144066 PMCID: PMC10733953 DOI: 10.1021/acsomega.3c07088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Exfoliated kaolinite nanosheets (EXK) and their hybridization with β-cyclodextrin (β-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with β-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by β-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of β-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.
Collapse
Affiliation(s)
- Nourhan Nasser
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Ahmed Rady
- Department
of Zology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| |
Collapse
|
9
|
Rajeshwari K, Suhasini M, Bindya S, Hemavathi A, Ali N, Amachawadi RG, Shivamallu C, Hallur RL, Majani SS, Prasad Kollur S. Photocatalytic efficacy of Magnesium oxide nanoparticles in dye Degradation: A sustainable One-Pot synthesis utilizing Syzygium samarangense L. Extract. RESULTS IN CHEMISTRY 2023; 6:101193. [DOI: 10.1016/j.rechem.2023.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
|
10
|
Wang J, Wang G, Wang S, Hao T, Hao J. Coupling of Nd doping and oxygen-rich vacancy in CoMoO 4@NiMoO 4 nanoflowers toward advanced supercapacitors and photocatalytic degradation. Phys Chem Chem Phys 2023; 25:26748-26766. [PMID: 37781847 DOI: 10.1039/d3cp04070d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this paper, we successfully prepared rare earth element-doped 0.8% Nd-CoMoO4@NiMoO4 nanoflowers with a large specific surface area using the sol-gel method for the first time. In the experiment, we added a structure-directing agent to successfully assemble the nanosheets into a three-dimensional ordered micro-flower shape. By using the strategy of forming a flower-shaped morphology with a structure-directing agent and doping Nd elements to generate oxygen vacancies, the problems of the collapse of the active material structure and slow reaction kinetics were solved. Through relevant electrochemical performance tests, it was found that when the rare earth element Nd was doped at a concentration of 0.8%, the material exhibited exceptional specific capacitance (2387 F g-1 at 1 A g-1) and cycling stability (99.3% after 10 000 cycles at 5 A g-1). These performance characteristics far surpassed those of the other synthesized products. We assembled 0.8% Nd-CoMoO4@NiMoO4 with hydrophilic CNTs into an asymmetric device, 0.8% Nd-CoMoO4@NiMoO4//CNTs. This device exhibited high specific capacitance (262 F g-1 at 1 A g-1) and cycling stability (99.2% after 3000 cycles), with a good energy storage effect. In addition, 0.8% Nd-CoMoO4@NiMoO4 has a low band gap, which broadens the absorption range of the product and improves the utilization rate of visible light. The photocatalyst showed good degradation efficiency (all exceeding 96%) and cycling stability (96%) for all four dyes. This paper provides a new strategy and method for preparing doped polymetallic mixtures, which has potential application value.
Collapse
Affiliation(s)
- Jing Wang
- School of Light Industry, Harbin University of Commerce, Harbin 150028, China.
| | - Gang Wang
- School of Light Industry, Harbin University of Commerce, Harbin 150028, China.
| | - Shen Wang
- School of Chemistry and Chemical Engineering, Quzhou College, Quzhou 324000, China
| | - Tingting Hao
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Hao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Ningxia 750021, China
| |
Collapse
|
11
|
Chen L, Chuang Y, Nguyen TB, Wu CH, Chen CW, Dong CD. A novel tungsten diselenide nanoparticles for enhanced photocatalytic performance of Cr (VI) reduction and ciprofloxacin (CIP). CHEMOSPHERE 2023; 339:139701. [PMID: 37543232 DOI: 10.1016/j.chemosphere.2023.139701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/30/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Nanoparticles (NPs) fabrication is a significant approach to enhance the visible light response of photocatalysts, to realize inexpensive and more harmful compound removal, at larger scale. The poor electrons and holes separation capability and low light activity of bulk materials can be notably enhanced through developing NPs. From photocatalytic investigation, better performance was received in the tungsten diselenide (WSe2) NPs than that in bare WSe2, exhibiting the action of restrained recombination of charge carriers in the NPs. The photocatalytic Cr(VI) reduction efficiency of WSe2 NPs is 2.7 folds greater than that by bare WSe2. On the other hand, the photocatalytic efficiency follows the order of nano WSe2-3 > nano WSe2-2 > nano WSe2-1 > bare WSe2, nano WSe2-3 is nearly 2.7 folds greater than that of bare WSe2. The results imply the fabrication of WSe2 NPs and it possesses improved visible light utilization. The proposed WSe2 NPs have merged with the three aspects of photocatalytic capability including the visible light activity, the valid separation of photo-response charge carriers and enough surface active sites owing to the nanoscale formed. This research endows conduct on the potential style of NPs for photo-response water environmental remediation.
Collapse
Affiliation(s)
- Linjer Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yuliv Chuang
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
12
|
Fernández L, Bustos F, Correa D, Seguel M, Suarez C, Caro C, Leyton P, Cabello-Guzmán G. A photochemical route in the synthesis and characterization of La 2Ti 2O 7 and La 2Ti 2O 7/AgO films and its evaluation in Congo red degradation and as antibacterial control to Staphylococcus aureus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107580-107597. [PMID: 37737945 DOI: 10.1007/s11356-023-29847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
In this article, we propose a simple photochemical method to synthesize pure La2Ti2O7 films and La2Ti2O7 films doped with silver at 1.0, 3.0, and 5.0 mol%. After annealing the photo-deposited films at 900 °C, XRD, SEM, and XPS analyses showed the formation of a monoclinic La2Ti2O7 phase and the presence of Ag and AgO in doped samples. Photocatalytic tests for Congo red degradation demonstrated that pure La2Ti2O7 achieved 25.4% degradation, while doped samples reached a maximum of 92.7% degradation. Moreover, increasing silver doping on La2Ti2O7 films significantly reduced the growth of Staphylococcus aureus, indicating potential antibacterial properties. The enhanced photoactivity was attributed to the formation of a type I heterojunction between La2Ti2O7 and AgO, and a degradation mechanism was proposed based on Congo red degradation.
Collapse
Affiliation(s)
- Luis Fernández
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Felipe Bustos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Diana Correa
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Mathias Seguel
- Instituto de Química, Facultad de Ciencias, P, Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristian Suarez
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Claudia Caro
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Patricio Leyton
- Instituto de Química, Facultad de Ciencias, P, Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gerardo Cabello-Guzmán
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
13
|
Abukhadra MR, Saad I, Al Othman SI, Alfassam HE, Allam AA. Insight into the synergetic, steric and energetic properties of zeolitization and cellulose fiber functionalization of diatomite during the adsorption of Cd(ii): advanced equilibrium studies. RSC Adv 2023; 13:23601-23618. [PMID: 37555098 PMCID: PMC10405048 DOI: 10.1039/d3ra03939k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The adsorption potentiality of zeolitized diatomite (ZD) frustules and their cellulose hybridized (C/ZD) product for Cd(ii) ions was assessed in synergetic studies to investigate the impact of the modification processes. The adsorption properties were illustrated based on the steric and energetic parameters of the applied advanced equilibrium modeling (monolayer model of one energy). The cellulose hybridization process increased the adsorption properties of Cd(ii) significantly to 229.4 mg g-1 as compared to ZD (180.8 mg g-1) and raw diatomite (DA) (127.8 mg g-1) during the saturation state. The steric investigation suggested a notable increase in the quantities of the active sites after the zeolitization (Nm = 62.37 mg g-1) and cellulose functionalization (Nm = 98.46 mg g-1), which illustrates enhancement in the Cd(ii) uptake capacity of C/ZD. Moreover, each active site of C/ZD can absorb about 4 ions of Cd(ii) ZD, which occur in a vertical orientation. The energetic studies, including Gaussian energy (<8 kJ mol-1) and retention energy (<8 kJ mol-1), demonstrate the physical uptake of Cd(ii), which might involve cooperating van der Waals forces (4-10 kJ mol-1), hydrophobic bonds (5 kJ mol-1), dipole forces (2-29 kJ mol-1), and hydrogen bonding (<30 kJ mol-1) in addition to zeolitic ion exchange mechanisms (0.6-25 kJ mol-1). The behaviors and values of entropy, internal energy, and free enthalpy as the assessed thermodynamic functions validate the exothermic and spontaneous properties of the Cd(ii) retention by ZD and the C/ZD composite.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
| | - Islam Saad
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
14
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Choi M, Wang MH. Bimetallic (Ag and MgO) nanoparticles, Aloe vera extracts loaded xanthan gum nanocomposite for enhanced antibacterial and in-vitro wound healing activity. Int J Biol Macromol 2023; 242:124813. [PMID: 37172699 DOI: 10.1016/j.ijbiomac.2023.124813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
We prepared nanocomposite (XG-AVE-Ag/MgO NCs) using the bimetallic Ag/MgO NPs, Aloe vera extract (AVE), and biopolymer (Xanthan gum (XG)) to archive a synergetic antibacterial and wound healing activity. The changes in XRD peaks at 20° of XG-AVE-Ag/MgO NCs indicated the XG encapsulation. The XG-AVE-Ag/MgO NCs showed the zeta potential and zeta size of 151.3 ± 3.14 d·nm and -15.2 ± 1.08 mV with a PDI of 0.265 while TEM showed an average size of 61.19 ± 3.89. The EDS confirmed the co-existence of Ag, Mg, carbon, oxygen, and nitrogen in NCs. XG-AVE-Ag/MgO NCs displayed higher antibacterial activity in terms of zone of inhibition, at 15.00 ± 0.12 mm for B. cereus and 14.50 ± 0.85 mm for E. coli. Moreover, NCs exhibited MICs of 2.5 μg/mL for E. coli, and 0.62 μg/mL for B. cereus. The in vitro cytotoxicity and hemolysis assays indicated the non-toxic properties of XG-AVE-Ag/MgO NCs. The higher wound closure activity was observed with the treatment of XG-AVE-Ag/MgO NCs (91.19 ± 1.87 %) compared to the control, untreated group (68.68 ± 3.54 %) at 48 h of incubation. These findings revealed that XG-AVE-Ag/MgO NCs was promising non-toxic, antibacterial, and wound-healing agent that deserved further in-vivo studies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Miri Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
15
|
Swathi BN, Krushna BRR, Daruka Prasad B, Sharma SC, Subramanian B, Nagabhushana H. Unclonable fluorescence of MgO-ZrO 2 :Tb 3+ nanocomposite for versatile applications in data security, dermatoglyphics. LUMINESCENCE 2023; 38:232-249. [PMID: 36626333 DOI: 10.1002/bio.4440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Latent fingerprints (LFPs) are one among the most important types of evidences at crime scenes because of the distinctiveness and tenacity of the friction ridges in fingerprints (FPs). Therefore, it is essential in forensic science to develop a reliable method to detect LFPs. Traditional detection methods still face a number of difficulties, such as limited sensitivity, low contrast, strong background, and complex processing stages. In this study, MgO-ZrO2 :Tb3+ (1-5 mol%) (MZ:Tb) nanocomposites (NCs) were prepared via a simple solution combustion (SC) method at low temperature. The photoluminescence (PL) investigation demonstrates that when excited at 379 nm, the produced NCs emits distinctive emission peaks of terbium ions (Tb3+ ). According to the photometric results, the NCs can be employed as warm light NCs and emit light in the green portion of the colour spectrum. The estimated optical band gap from diffuse reflectance spectra is found to be in the range 4.84-4.97 eV. Regardless of the type of surface being used, the optimized MgO-ZrO2 :Tb3+ (4 mol%) (MZ:4Tb) NCs has a strong ability to minimize background fluorescence interference. With high contrast LFP and I-V type of cheiloscopy, these NCs present a flexible fluorescent mark for the identification of levels 1-3 details in forensic investigation.
Collapse
Affiliation(s)
- B N Swathi
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, India
| | - B R Radha Krushna
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, India
| | - B Daruka Prasad
- Department of Physics, BMS Institute of Technology and Management, VTU-Belagavi Affiliated, Bengaluru, India
| | - S C Sharma
- Honarory Professor, Jain Deemed to be University, Bengaluru, India
| | - Balanehru Subramanian
- School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur, India
| |
Collapse
|
16
|
Thakur N, Ghosh J, Kumar Pandey S, Pabbathi A, Das J. A comprehensive review on biosynthesis of magnesium oxide nanoparticles, and their antimicrobial, anticancer, antioxidant activities as well as toxicity study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
M A, M A, Ahmed N, Michel Mary M S, P V, Subitha T K, Noreen R, Ali S. The influence of activated carbon annealing temperature on sunlight-driven photocatalytic dye degradation and biological activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Adly E, Shaban MS, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Enhanced Congo Red Adsorption and Photo-Fenton Oxidation over an Iron-Impeded Geopolymer from Ferruginous Kaolinite: Steric, Energetic, Oxidation, and Synergetic Studies. ACS OMEGA 2022; 7:31218-31232. [PMID: 36092609 PMCID: PMC9453960 DOI: 10.1021/acsomega.2c03365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
An iron-impeded geopolymer (Fe/GP) was synthesized from natural ferruginous kaolinite and optical waste for enhanced decontamination of Congo red (CR) dye. The adsorption properties of Fe/GP were assessed using an advanced monolayer equilibrium model of one energy (R 2 > 0.99). Fe/GP possessed an active site density of 391.3 mg/g, which induced an adsorption capacity of 634 mg/g at the saturation state. The number of adsorbed CR molecules per site (n = 1.56-1.62) reflected the possible uptake of two molecules per site via a multimolecular mechanism. The adsorption energy (5.12-5.7 kJ/mol) reflected the physical adsorption of the CR molecules via hydrogen bonding and/or van der Waals forces. As a catalyst, notable activity toward photo-Fenton oxidation was achieved even at high CR concentrations. Complete oxidation was observed after 30 (CR concentration: 10 mg/L), 50 (20 mg/L), 80 (30 mg/L), 120 (40 mg/L), and 140 min (50 mg/L). High oxidation efficiency was achieved using 0.1 g/L Fe/GP, 0.1 mL of hydrogen peroxide (H2O2), and a visible light source. Increasing the Fe/GP dosage to 0.3 g/L resulted in complete oxidation of CR (100 mg/L) after 220 min. Therefore, synthetic Fe/GP can be used as a low-cost and superior catalyst and adsorbent for the removal of CR-based contaminants via adsorption or advanced oxidation processes.
Collapse
Affiliation(s)
- Esraa
R. Adly
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| | - Mohamed S. Shaban
- Geology
Department, Faculty of Science, New Valley
University, Kharga 72713, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| |
Collapse
|
19
|
Wang Y, Tan Y, Ding Y, Fu L, Qing W. Phenylalanine stabilized copper nanoclusters for specific destruction of Congo red and bacteria in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|