1
|
Doğan Ulu Ö, Kuruçay A, Gümüşhan İY, Özdemir N, Ateş B, Özdemir İ. Design, synthesis, characterization, and biological activities of novel Ag(I)-NHC complexes based on 1,3-dioxane ligand. J Inorg Biochem 2024; 261:112719. [PMID: 39236445 DOI: 10.1016/j.jinorgbio.2024.112719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Herein, a series of new Ag(I)-NHC complexes containing 1,3-dioxane group were synthesized by the direct reaction of Ag2O and benzimidazolium salts in light-free conditions. All Ag(I)-NHC complexes were spectrally characterized using 1H, 13C NMR, FT-IR, LC-MS, and elemental analysis. Additionally, the structures of compounds 1a and 1e were elucidated by the single X-ray diffraction techniques. Further, the synthesized Ag(I)-NHC complexes were evaluated for cytotoxicity study on the L-929 cells and the anticancer activity against the HCT 116 and MCF-7 cancer cell lines. Notably, 1a showed significant anticancer activity against HCT 116 with an IC50 of 6.37 ± 0.92 μg/mL compared to cisplatin (IC50 = 36.75 ± 1.76 μg/mL). 1c (IC50 = 3.21 ± 1.96 μg/mL) and 1e (IC50 = 3.72 ± 1.12 μg/mL) exhibited significant anticancer activity against MCF-7 cells and was similar to cisplatin (IC50 = 32.17 ± 2.85 μg/mL). Meanwhile, 1a and 1e displayed the highest selectivity index. Most importantly, the cell viability test showed that 1e induced neglectable cytotoxicity (IC50 = 36.38 ± 2.27 μg/mL) toward L-929 and was similar to cisplatin (IC50 = 36.11 ± 2.09 μg/mL). The anticancer activities of Ag(I)-NHC complexes vary depending on the substituent group of the silver complex and the cell line type. Moreover, the inhibitory mechanism of 1e was not dependent on caspase-associated apoptosis initiated by the lysosomal-mitochondrial pathway. Taken together, we conclude that this work provides a simple and rapid protocol for the synthesis of Ag(I)-NHC complexes and the featured Ag(I)-NHC complexes have an anticancer drug potential for biomedical applications.
Collapse
Affiliation(s)
- Öznur Doğan Ulu
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Türkiye; Scientific And Technological Research Center, İnönü University, 44280 Malatya, Türkiye
| | - Ali Kuruçay
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | | | - Namık Özdemir
- Department of Physics, Faculty of Science, Ondokuz Mayıs University, 55139 Samsun, Türkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - İsmail Özdemir
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Drug Application and Research Center, İnönü University, 44280 Malatya, Türkiye.
| |
Collapse
|
2
|
Min L, Liang W, Bajsa-Hirschel J, Ye P, Wang Q, Sun X, Cantrell CL, Han L, Sun N, Duke SO, Liu X. Synthesis, Herbicidal Activity, Mode of Action, and In Silico Analysis of Novel Pyrido[2,3- d]pyrimidine Compounds. Molecules 2023; 28:7363. [PMID: 37959782 PMCID: PMC10647610 DOI: 10.3390/molecules28217363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Natural products are a main source of new chemical entities for use in drug and pesticide discovery. In order to discover lead compounds with high herbicidal activity, a series of new pyrido[2,3-d] pyrimidine derivatives were designed and synthesized using 2-chloronicotinic acid as the starting material. Their structures were characterized with 1H NMR, 13C NMR and HRMS, and the herbicidal activities against dicotyledonous lettuce (Lactuca sativa), field mustard (Brassica campestris), monocotyledonous bentgrass (Agrostis stolonifera) and wheat (Triticum aestivum) were determined. The results indicated that most of the pyrido[2,3-d] pyrimidine derivatives had no marked inhibitory effect on lettuce at 1 mM. However, most of the pyrido[2,3-d] pyrimidine derivatives possessed good activity against bentgrass at 1 mM. Among them, the most active compound, 3-methyl-1-(2,3,4-trifluorophenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (2o), was as active as the positive controls, the commercial herbicides clomazone and flumioxazin. Molecular simulation was performed with molecular docking and DFT calculations. The docking studies provided strong evidence that 2o acts as an herbicide by inhibition of protoporphyrinogen oxidase. However, the physiological results indicate that it does not act on this target in vivo, implying that it could be metabolically converted to a compound with a different molecular target.
Collapse
Affiliation(s)
- Lijing Min
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Wei Liang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA; (J.B.-H.); (C.L.C.)
| | - Peng Ye
- Shanghai Souguo Science & Technology Co. Ltd., Shanghai 201708, China;
| | - Qiao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Xinpeng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA; (J.B.-H.); (C.L.C.)
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (W.L.); (Q.W.); (X.S.); (L.H.)
| |
Collapse
|
3
|
Syntheses, crystal structure, luminescent properties and Hirshfeld surface of a set of triazole-based salts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
One pot synthesis of two potent Ag(I) complexes with quinoxaline ligand, X-ray structure, Hirshfeld analysis, antimicrobial, and antitumor investigations. Sci Rep 2022; 12:20881. [PMID: 36463246 PMCID: PMC9719528 DOI: 10.1038/s41598-022-24030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
In one pot, the self-assembly of AgNO3 and 2-chloroquinoxaline (2Cl-quinox) in water-ethanol mixture afforded two novel crystalline Ag(I) complexes. The major product is the polymeric complex [Ag(2Cl-quinox)(NO3)]n; (1), while the minor product (2) comprises two molecules which are the monomeric [Ag(2Cl-quinox)2(NO3)]; (2a) and polymeric [Ag(2Cl-quinox)(NO3)]n; (2b) complexes. The single crystal X-ray structure revealed that 1 and 2b are made up of two-dimensional infinite sheets. In contrast, 2a is a monomeric complex which has a highly distorted tetrahedral geometry around Ag(I) center. In all cases, the 2Cl-quinox molecule acts as a terminal monodentate ligand. Complexes 1 and 2b have similar molecular structures and also have almost similar crystal packing. Using Hirshfeld surface analysis, the O…H hydrogen bonds and π-π stacking interactions contributed significantly to the molecular packing. Both complexes have broad-spectrum action towards multi drug-resistance bacteria. The most effective function of 2 is against Proteus morganii, with a MIC value of 8 μg/mL. Complex 2 (IC50 = 5.93 ± 0.52 μg/mL) has remarkably greater cytotoxic effect against lung carcinoma (A-549) than cis-platin (IC50 = 7.5 ± 0.69 μg/mL) and AgNO3 (IC50 = 14.7 ± 0.53 μg/mL). The higher Ag-content in 2 could be the main reason for its higher cytotoxicity than 1.
Collapse
|