1
|
Yadav UP, Yaseen M, Singh S, Babu MA, Bhat MA, Kumar R, Tyagi Y, Ullah I, Huang Y. Design and development of new substituted pyrimidine hybrids with imidazole and triazole: Exploring utility as an anticancer agent via human topoisomerase-II and tubulin inhibition. Bioorg Chem 2025; 158:108334. [PMID: 40058226 DOI: 10.1016/j.bioorg.2025.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
In the present research, we developed pyrimidine-based hybridized molecules with either imidazole or triazole to find effective anticancer drugs. The reaction was accomplished using a multicomponent reaction pathway. The synthetics were explored for their utility as an anticancer agent via human topoisomerase-II and tubulin inhibition. Among the synthetics, compounds 1B4, 1B5, and 1B6 were potent anticancer agents tested in five cancer cell lines compared to colchicine and etoposide employed as positive controls. These synthetics were found further devoid of any significant cytotoxicity towards normal cells, thus proving their selective anticancer nature. Further, these compounds inhibited both the tubulin and hTopoII as indicated by in vitro-based assay. The mechanistic insights were corroborated using molecular docking studies. Besides this, the molecules were found to portray their secondary anticancer cell death mechanism via apoptosis. They decreased the oxidative stress, induced apoptosis, and arrested the cell cycle arrest at the G2/M phase in cancer cells.
Collapse
Affiliation(s)
- Umesh Prasad Yadav
- Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, USA 91010
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| | - Shareen Singh
- Centre of Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura- 140401, Punjab, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, (Uttar Pradesh), India
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Clement Town, Dehradun-248002, India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun 248007, Uttarakhand, India
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Charbagh, 19130, Swat, Pakistan
| | - Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Kumar V, Jangid K, Kumar N, Kumar V, Kumar V. 3D-QSAR-based pharmacophore modelling of quinazoline derivatives for the identification of acetylcholinesterase inhibitors through virtual screening, molecular docking, molecular dynamics and DFT studies. J Biomol Struct Dyn 2025; 43:2631-2645. [PMID: 38329085 DOI: 10.1080/07391102.2024.2313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder responsible for the cognitive dysfunction and cognitive impairment in the patients. Acetylcholinesterase inhibitors (AChEIs) are used to treat AD however, these only provided symptomatic relief and more efficient drug molecules are desired for the effective treatment of the disease. In this article, ligand-based drug-designing strategy was used to develop and validate a field-based 3D-QSAR pharmacophore model on quinazoline-based AChEIs reported in the literature. The validated pharmacophore model (AAAHR_1) was used as a prefilter to screen an ASINEX database via virtual screening workflow (VSW). The hits generated were subjected to MM-GBSA to identify potential AChEIs and top three scoring molecules (BAS 05264565, LEG 12727144 and SYN 22339886) were evaluated for thermodynamic stability at the target site using molecular dynamic simulations. Additionally, DFT study was performed to predict the reactivity of lead molecules towards acetylcholinesterase (AChE). Thus, by utilising various computational tools, three molecules were identified as potent AChEIs that can be developed as potential drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Naveen Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Vinay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Dwivedi AR, Kumar V, Prashar V, Jangid K, Kumar N, Devi B, Parkash J, Kumar V. Synthesis and screening of novel 2,4-bis substituted quinazolines as tubulin polymerization promoters and antiproliferative agents. RSC Med Chem 2025:d4md00755g. [PMID: 39897391 PMCID: PMC11781317 DOI: 10.1039/d4md00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Twelve 2,4-bis-substituted quinazoline-based compounds were synthesized and screened for antiproliferative and tubulin polymerization enhancing potential. In the series, compound A4V-3 substituted with an imidazole ring displayed IC50 values of 4.25 μM, 2.65 μM, and 9.95 μM, and A4V-5 with a benzotriazole substitution displayed IC50 values of 3.45 μM, 7.25 μM, and 8.14 μM against MCF-7, HCT-116 and SHSY-5Y cancer cells, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, compound A4V-3 was found to arrest the cells in the G2/M phase of the cell cycle and induce mitochondria-mediated apoptosis. In addition, compound A4V-3 displayed significant tubulin polymerization-enhancing potential. 2,4-Bis-substituted quinazoline-based compounds showed appreciable drug-like characteristics and can be developed as potent anticancer agents.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Kailash Jangid
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| |
Collapse
|
4
|
Saruengkhanphasit R, Ngiwsara L, Lirdprapamongkol K, Chatwichien J, Niwetmarin W, Eurtivong C, Kittakoop P, Svasti J, Ruchirawat S. Synthesis, in silico, in vitro evaluation of furanyl- and thiophenyl-3-phenyl-1 H-indole-2-carbohydrazide derivatives as tubulin inhibitors and anticancer agents. RSC Med Chem 2024; 15:2483-2495. [PMID: 39026641 PMCID: PMC11253851 DOI: 10.1039/d4md00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
Twenty-one new indole derivatives comprising of seven furanyl-3-phenyl-1H-indole-carbohydrazide derivatives and fourteen thiophenyl-3-phenyl-1H-indole-carbohydrazide derivatives were synthesised and biologically evaluated for their microtubule-destabilising effects, and antiproliferative activities against the National Cancer Institute 60 (NCI60) human cancer cell line panel. Among the derivatives, 6i showed the best cytotoxic activity exhibiting selectivity for COLO 205 colon cancer (LC50 = 71 nM), SK-MEL-5 melanoma cells (LC50 = 75 nM), and MDA-MB-435 (LC50 = 259 nM). Derivative 6j showed the strongest microtubule-destabilising effect. Both 6i and 6j were able to induce G2/M cell cycle arrest and apoptosis in MDA-MB-231 triple-negative breast cancer cells. Molecular docking simulation results suggested that these derivatives inhibit tubulin by binding at the colchicine site. The calculated molecular descriptors showed that the most potent derivatives have acceptable pharmacokinetic profiles and are favourable for oral drug administration.
Collapse
Affiliation(s)
- Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Kriengsak Lirdprapamongkol
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Chulabhorn Royal Academy Bangkok 10210 Thailand
| | - Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road, Ratchathewi Bangkok 10400 Thailand +66 26448677-91 ext. 5402
| | - Prasat Kittakoop
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| |
Collapse
|
5
|
Song J, Zhang S, Zhang B, Ma J. The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids. Arch Pharm (Weinheim) 2024; 357:e2300641. [PMID: 38110853 DOI: 10.1002/ardp.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo, China
| | - Shuai Zhang
- Department of General Surgery, People's Hospital of Zhoucun District, Zibo, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo, China
| | - Junwei Ma
- Department of General Surgery, Zibo 148 Hospital, Zibo, China
| |
Collapse
|
6
|
Jangid K, Devi B, Sahoo A, Kumar V, Dwivedi AR, Thareja S, Kumar R, Kumar V. Virtual screening and molecular dynamics simulation approach for the identification of potential multi-target directed ligands for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2024; 42:509-527. [PMID: 37114423 DOI: 10.1080/07391102.2023.2201838] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder characterized by memory loss and cognitive impairment. The currently available single-targeting drugs have miserably failed in the treatment of AD, and multi-target directed ligands (MTDLs) are being explored as an alternative treatment strategy. Cholinesterase and monoamine oxidase enzymes are reported to play a crucial role in the pathology of AD, and multipotent ligands targeting these two enzymes simultaneously are under various phases of design and development. Recent studies have revealed that computational approaches are robust and trusted tools for identifying novel therapeutics. The current research work is focused on the development of potential multi-target directed ligands that simultaneously inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B) enzymes employing a structure-based virtual screening (SBVS) approach. The ASINEX database was screened after applying pan assay interference and drug-likeness filter to identify novel molecules using three docking precision criteria; High Throughput Virtual Screening (HTVS), Standard Precision (SP), and Extra Precision (XP). Additionally, binding free energy calculations, ADME, and molecular dynamic simulations were employed to get structural insights into the mechanism of protein-ligand binding and pharmacokinetic properties. Three lead molecules viz. AOP19078710, BAS00314308 and BDD26909696 were successfully identified with binding scores of -10.565, -10.543 & -8.066 kcal/mol against AChE and -11.019, -12.357 & -10.068 kcal/mol against MAO-B, better score as compared to the standard inhibitors. In the near future, these molecules will be synthesized and evaluated through in vitro and in vivo assays for their inhibition potential against AChE and MAO-B enzymes.
Collapse
Affiliation(s)
- Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Ashrulochan Sahoo
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, Gitam School of Pharmacy Hyderabad, Hyderabad, Telangana, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Kumar V, Singh PP, Dwivedi AR, Kumar N, Kumar R, Chandra Sahoo S, Chakraborty S, Kumar V. Caesium carbonate promoted regioselective O-functionalization of 4,6-diphenylpyrimidin-2(1 H)-ones under mild conditions and mechanistic insight. RSC Adv 2023; 13:16899-16906. [PMID: 37288373 PMCID: PMC10242382 DOI: 10.1039/d3ra00773a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
A facile one-step catalyst free methodology has been developed for the regioselective functionalization of 4,6-diphenylpyrimidin-2(1H)-ones under mild conditions. Selectivity towards the O-regioisomer was achieved by using Cs2CO3 in DMF without use of any coupling reagents. A total of 14 regioselective O-alkylated 4,6-diphenylpyrimidines were synthesized in 81-91% yield. In the DFT studies it was observed that the transition state for the formation of the O-regioisomer is more favourable with Cs2CO3 as compared to K2CO3. Furthermore, this methodology was extended to increase the O/N ratio for the alkylation of 2-phenylquinazolin-4(3H)-one derivatives.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864214
| | - Praval Pratap Singh
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab 151401 India
| | - Ashish Ranjan Dwivedi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864214
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864214
| | - Rajesh Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864214
| | | | - Sudip Chakraborty
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab 151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864214
| |
Collapse
|
8
|
Chahat, Bhatia R, Kumar B. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies. Eur J Med Chem 2023; 247:115020. [PMID: 36543034 DOI: 10.1016/j.ejmech.2022.115020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Cancer represents one of the world's biggest hazardous diseases. p53 is the uttermost researched tumour suppressor protein. It is commonly considered the "guardian of the genome," performing a critical function in genetic stability maintenance through controlling the cell cycle, programmed cell death, DNA repair, aging, and angiogenesis. The abnormalities in p53 lead to genetic instability and plays a significant role in carcinogenesis. The role of p53 in tumour suppression is emphasized in addition by the observation that primary silencing with this protein occurred in more than 50% of cancers. MDM2, p53, and the p53-MDM2 connections are well-known targets for the prevention and treatment of cancer. Moreover, in tumors with wild-type p53, their efficacy is decreased due to MDM2 enlargement or by the gradual decrease of MDM2 blocker ARF. As a result, improving p53 activity in cancerous cells provides a promising anticancer strategy. Various techniques are now being investigated, and addressing the p53-MDM2 interaction had also evolved as a potentially feasible strategy for contending with tumors. Both p53 and MDM2, interact via an autoregulation response signal: p53 activity induces MDM2 transcription, which in response interacts with p53's N-terminal transactivation domain, inhibiting its transcriptional activity. This article provides information on the current scenario of anti-tumor activities, with a particular emphasis on structure-activity relationship characteristics (SAR) against the p53-MDM2 to treat cancer. The primary purpose of this review is to cover recent advancements in the creation and testing of anticancer drugs that target the p53-MDM2 structure. This review contains different heterocyclic moieties which show significant results toward cancer. A mechanistic route is shown here, demonstrating both normal and malignant conditions via several stressed factors. Several compounds entered clinical trials as p53-MDM2 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
9
|
Dwivedi AR, Rawat SS, Kumar V, Kumar N, Kumar V, Yadav RP, Baranwal S, Prasad A, Kumar V. Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity. Curr Cancer Drug Targets 2023; 23:278-292. [PMID: 36306454 DOI: 10.2174/1568009623666221028121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
AIMS Development of anticancer agents targeting tubulin protein. BACKGROUND Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. OBJECTIVE Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. METHODS A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. RESULTS ARV-2 with IC50 values of 3.16 μM, 5.31 μM, 10.6 μM against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. CONCLUSION The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Suraj Singh Rawat
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vijay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Naveen Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Vinay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Ravi Prakash Yadav
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Somesh Baranwal
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology, Mandi-175005, HP, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151401, Punjab, India.,Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
10
|
N-(1-azido-2-(azidomethyl)butan-2-yl)-4-methylbenzenesulfonamide. MOLBANK 2022. [DOI: 10.3390/m1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new bi-triazole precursor, N-(1-azido-2-(azidomethyl)butan-2-yl)-4-methylbenzenesulfonamide, was synthesized in two steps from 2-amino-2-ethyl-1,3-propanediol, with an overall yield of 80%. The chemical structures of the products obtained were established based on 1D and 2D NMR, IR spectroscopy, and elemental analysis.
Collapse
|