1
|
Acar Cevik U, Ünver H, Bostancı HE, Tüzün B, Gedik Nİ, Kocyigit ÜM. New hydrazone derivatives: synthesis, characterization, carbonic anhydrase I-II enzyme inhibition, anticancer activity and in silico studies. Z NATURFORSCH C 2025:znc-2024-0226. [PMID: 40080398 DOI: 10.1515/znc-2024-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
A new series of hydrazone derivatives (1a-1l) were prepared from a condensation reaction between different hydrazide derivatives and 3-formylbenzoic acid. Through the use of several spectral techniques, such as 1H-NMR, 13C-NMR, and elemental analysis, the structures of the compounds were clarified. The crystal structure of compound 1d was obtained by single-crystal X-ray crystallography. They were found to have inhibitory effects on the anticancer potentials and human carbonic anhydrase isoforms I and II. Compound 1d was found to be the strongest inhibitor, with IC50 values of 0.133 µM against hCA I. Also, compound 1l showed the highest inhibitory activity with IC50 values of 3.244 µM against hCA II. Moreover, their cytotoxic effects on rat glioma cell and colon adeno carcinoma cell lines were evaluated. According to the cytotoxicity results, compounds 1j and 1l exhibited the highest cytotoxicity on the HT29 cell, while compounds 1e, 1g, and 1l showed the strongest cytotoxic effect on C6 cell line. Compound 1l, which carries the methoxy substituent at the 3rd position on the phenyl ring, was effective against both cancer cells and showed the highest inhibitory effect on hCA II. The ADME/T properties and molecular docking of the molecules with the highest activity were examined.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 52944 Anadolu University , Eskişehir 26470, Türkiye
| | - Hakan Ünver
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskisehir, Türkiye
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nurten İrem Gedik
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Ümit M Kocyigit
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
2
|
Seyfi S, Salarinejad S, Moghimi S, Toolabi M, Sadeghian N, Tüzün B, Firoozpour L, Ketabforoosh SHME, Taslimi P, Foroumadi A. Synthesis, biological activities, and molecular docking studies of triazolo[4,3-b]triazine derivatives as a novel class of α-glucosidase and α-amylase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300628. [PMID: 38501879 DOI: 10.1002/ardp.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units. Herein, we reported the discovery of a series of substituted triazolo[4,3-b][1,2,4]triazine derivatives as α-glucosidase and α-amylase inhibitors. All target compounds demonstrated significant inhibitory activities against α-glucosidase and α-amylase enzymes compared with acarbose as the positive control. The most potent compound 10k, 2-[(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)thio]-N-[4-(trifluoromethyl)phenyl]acetamide, demonstrated IC50 values of 31.87 and 24.64 nM against α-glucosidase and α-amylase enzymes, respectively. To study their mechanism of action, kinetic studies were also done, which determined the mode of inhibition of both enzymes. Molecular docking was used to confirm the binding interactions of the most active compounds.
Collapse
Affiliation(s)
- Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima H M E Ketabforoosh
- Department of Medicinal Chemistry, School of Pharmacy, Alborz University of Medical Science, Karaj, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Taysi MR, Kirici M, Kirici M, Tuzun B, Poustforoosh A. Antioxidant enzyme activities, molecular docking studies, MM-GBSA, and molecular dynamic of chlorpyrifos in freshwater fish Capoeta umbla. J Biomol Struct Dyn 2024; 42:163-176. [PMID: 36974945 DOI: 10.1080/07391102.2023.2192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Chlorpyrifos (CPF), which was started to be used in 1965, is a broad spectrum organophosphate insecticide that is used more and more day by day. Commonly used to control pests in farmland and homes, CPF is more toxic to fish than organochlorine compounds. CPF poses a serious threat to the health of humans and aquatic organisms. This paper studies the relationship between CPF exposure and antioxidant enzyme activities in gill, kidney and liver tissues of Capoeta umbla. Different time intervals (12, 24, 48, 72, and 96 h) and CPF doses (55 and 110 µg L-1) were used in the study. Spectrophotometrical measures were taken in all tissues for antioxidant enzyme activities and malondialdehyde (MDA) levels, as indices of the lipid peroxidation (LPO). A positive relationship between CPF and MDA levels was found in the study at a statistically significant level (p < 0.05). The study also found a negative relationship between CPF levels and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activity. Independent variables in the study can act as biomarkers of CPF exposure. The study recommends employing proper ecotoxicological risk evaluations in cases of CPF usage as a pesticide. The activities of the studied molecules against various proteins that are crystal structure of human peroxiredoxin 5 (PDB ID: 1HD2) has docking score value is -2.67, crystal structure of Bovine Xanthine Oxidase (PDB ID: 3NRZ) has docking score value is -3.76, and crystal structure of antibacterial FabH (PDB ID: 4Z8D) has docking score value is -3.16, were compared. Molecular dynamic (MD) calculations were made in 100 ns. MM/GBSA methods are calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Reşit Taysi
- Department of Fisheries, Faculty of Agriculture, Bingol University, Bingöl, Turkey
| | - Muammer Kirici
- Department of Veterinary Health, Food Agriculture and Livestock Vocational School, Bingöl University, Bingöl, Turkey
| | - Mahinur Kirici
- Department of Chemistry, Faculty of Arts and Science, Bingöl University, Bingöl, Turkey
| | - Burak Tuzun
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Alireza Poustforoosh
- Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
5
|
Tokalı FS, Taslimi P, Tuzun B, Karakuş A, Sadeghian N, Gulçin İ. Novel Quinazolinone Derivatives: Potential Synthetic Analogs for the Treatment of Glaucoma, Alzheimer's Disease and Diabetes Mellitus. Chem Biodivers 2023; 20:e202301134. [PMID: 37695993 DOI: 10.1002/cbdv.202301134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85-94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR, 13 C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I-II (hCA I-II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26-93.42±9.44 nM for AChE, 8.48±0.92-25.84±2.59 nM for BChE, 66.17±5.16-818.06±44.41 for α-Glu, 2.56±0.26-88.23±9.72 nM for hCA I, and 1.68±0.14-85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, 36100, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - Burak Tuzun
- Departmentof Plant and Animal Production, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, 58140, Sivas, Turkiye
| | - Ahmet Karakuş
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, 74100, Turkiye
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240-, Erzurum, Turkiye
| |
Collapse
|
6
|
Akkurt M, Naghiyev FN, Khrustalev VN, Asadov KA, Khalilov AN, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of (2 E)-1-(4-bromo-phen-yl)-3-(2-methyl-phen-yl)prop-2-en-1-one. Acta Crystallogr E Crystallogr Commun 2023; 79:847-851. [PMID: 37693662 PMCID: PMC10483568 DOI: 10.1107/s2056989023007387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
In the title com-pound, C16H13BrO, the planes of the aromatic rings are inclined at an angle of 23.49 (15)°, and the configuration about the C=C bond is E. In the crystal, the mol-ecules are linked into chains by weak C-H⋯O inter-actions along the b axis. Successive chains form a zigzag structure along the c axis, and these chains are connected to each other by face-to-face π-π stacking inter-actions along the a axis. These layers, parallel to the (001) plane, are linked by van der Waals inter-actions, thus consolidating the crystal structure. Hirshfeld surface analysis showed that the most significant contacts in the structure are H⋯H (43.1%), C⋯H/H⋯C (17.4%), Br⋯H/H⋯Br (14.9%), C⋯C (11.9%) and O⋯H/H⋯O (9.8%).
Collapse
Affiliation(s)
- Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Farid N. Naghiyev
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Khammed A. Asadov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan
| | - Ali N. Khalilov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan
- ‘Composite Materials’ Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan
| |
Collapse
|
7
|
Khalilov AN, Khrustalev VN, Samigullina AI, Akkurt M, Rzayev RM, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of ( E)-1-(2,4-di-methyl-furan-3-yl)-3-phenyl-prop-2-en-1-one. Acta Crystallogr E Crystallogr Commun 2023; 79:736-740. [PMID: 37601402 PMCID: PMC10439413 DOI: 10.1107/s2056989023006084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
The title compound, C15H14O2, adopts an E configuration about the C=C double bond. The furan ring is inclined to the phenyl ring by 12.03 (9)°. In the crystal, pairs of mol-ecules are linked by C-H⋯O hydrogen bonds, forming dimers with R 2 2(14) ring motifs. The mol-ecules are connected via C-H⋯π inter-actions, forming a three dimensional network. No π-π inter-actions are observed.
Collapse
Affiliation(s)
- Ali N. Khalilov
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Aida I. Samigullina
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Rovnag M. Rzayev
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| |
Collapse
|
8
|
Bostancı HE, Çevik UA, Kapavarapu R, Güldiken YC, Inan ZDŞ, Güler ÖÖ, Uysal TK, Uytun A, Çetin FN, Özkay Y, Kaplancıklı ZA. Synthesis, biological evaluation and in silico studies of novel thiadiazole-hydrazone derivatives for carbonic anhydrase inhibitory and anticancer activities. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:543-567. [PMID: 37538028 DOI: 10.1080/1062936x.2023.2240698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thiadiazole and hydrazone derivatives (5a-5i) were synthesized and their chemical structures were verified and described by 1H NMR, 13C NMR, and HRMS spectra. Three cancer cell lines (MCF-7, MDA, and HT-29) and one healthy cell line (L929) were used to test the cytotoxicity activity of synthesized compounds as well as their inhibitory activity against carbonic anhydrase I, II and IX isoenzymes. Compound 5d (29.74 µM) had a high inhibitory effect on hCA I and compound 5b (23.18 µM) had a high inhibitory effect on hCA II. Furthermore, compound 5i was found to be the most potent against CA IX. Compounds 5a-5i, 5b and 5i showed the highest anticancer effect against MCF-7 cell line with an IC50 value of 9.19 and 23.50 µM, and compound 5d showed the highest anticancer effect against MDA cell line with an IC50 value of 10.43 µM. The presence of fluoro substituent in the o-position of the phenyl ring increases the effect on hCA II, while the methoxy group in the o-position of the phenyl ring increases the activity on hCA I as well as increase the anticancer activity. Cell death induction was evaluated by Annexin V assay and it was determined that these compounds cause cell death by apoptosis. Molecular docking was performed for compounds 5b and 5d to understand their biological interactions. The physical and ADME properties of compounds 5b and 5d were evaluated using SwissADME.
Collapse
Affiliation(s)
- H E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - U A Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - R Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, India
| | - Y C Güldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit, Turkey
| | - Z D Ş Inan
- Department of Histology and Embryology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ö Ö Güler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - T K Uysal
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - A Uytun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - F N Çetin
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Y Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Z A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
9
|
Kekeçmuhammed H, Tapera M, Aydoğdu E, Sarıpınar E, Aydin Karatas E, Mehtap Uc E, Akyuz M, Tüzün B, Gulcin İ, Emin Bora R, Özer İlhan İ. Synthesis, Biological Activity Evaluation and Molecular Docking of Imidazole Derivatives Possessing Hydrazone Moiety. Chem Biodivers 2023; 20:e202200886. [PMID: 37132191 DOI: 10.1002/cbdv.202200886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
In an attempt to identify potential active anticancer agents with low cytotoxic properties and CA inhibitors, a new series of hybrid compounds incorporating imidazole ring and hydrazone moiety as part of their structure were synthesized by aza-Michael addition reaction followed by intramolecular cyclization. The structure of synthesized compounds was elucidated using various spectral techniques. Synthesized compounds were evaluated for their in vitro anticancer (prostate cell lines; PC3) and CA inhibitory (hCA I and hCA II) activity. Among them, some compound displayed remarkable anticancer activity and CA inhibitory activity with Ki values in range of 17.53±7.19-150.50±68.87 nM against cytosolic hCA I isoform associated with epilepsy, and 28.82±14.26-153.27±55.80 nM against dominant cytosolic hCA II isoforms associated with glaucoma. Furthermore, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities. The proteins used for the calculations are prostate cancer protein (PDB ID: 3RUK and 6XXP). ADME/T analysis was carried out to examine the drug properties of the studied molecules.
Collapse
Affiliation(s)
- Hüseyin Kekeçmuhammed
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Michael Tapera
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Ekrem Aydoğdu
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Emin Sarıpınar
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Eda Mehtap Uc
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, 58140-, Sivas, Turkey
| | - İlhami Gulcin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Rıfat Emin Bora
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - İlhan Özer İlhan
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
10
|
Naghiyev FN, Khrustalev VN, Mamedov HM, Akkurt M, Khalilov AN, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 5-oxo-7-phenyl-2-(phenyl-amino)-1 H-[1,2,4]triazolo[1,5- a]pyridine-6,8-dicarbo-nitrile dimethyl sulfoxide monosolvate. Acta Crystallogr E Crystallogr Commun 2023; 79:567-570. [PMID: 37288458 PMCID: PMC10242740 DOI: 10.1107/s2056989023004383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
In the title compound, C20H12N6O·C2H6OS, the [1,2,4]triazolo[1,5-a]pyridine ring system is almost planar and makes dihedral angles of 16.33 (7) and 46.80 (7)°, respectively, with the phenyl-amino and phenyl rings. In the crystal, mol-ecules are linked by inter-molecular N-H⋯O and C-H⋯O hydrogen bonds into chains along the b-axis direction through the dimethyl sulfoxide solvent mol-ecule, forming C(10)R 2 1(6) motifs. These chains are connected via S-O⋯π inter-actions, π-π stacking inter-actions between the pyridine rings [centroid-to-centroid distance = 3.6662 (9) Å] and van der Waals inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (28.1%), C⋯H/H⋯C (27.2%), N⋯H/H⋯N (19.4%) and O⋯H/H⋯O (9.8%) inter-actions.
Collapse
Affiliation(s)
- Farid N. Naghiyev
- Faculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Huseyn M. Mamedov
- Faculty of Physics, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Ali N. Khalilov
- Faculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Faculty of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| |
Collapse
|
11
|
Naghiyev FN, Khrustalev VN, Asadov KA, Akkurt M, Khalilov AN, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 2-amino-6-[(1-phenyl-eth-yl)amino]-4-(thio-phen-2-yl)pyridine-3,5-dicarbo-nitrile. Acta Crystallogr E Crystallogr Commun 2023; 79:526-530. [PMID: 37288460 PMCID: PMC10242736 DOI: 10.1107/s2056989023003845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
In the title compound, C19H15N5S, the thio-phene ring is disordered in a 0.6:0.4 ratio by an approximate 180° rotation of the ring around the C-C bond linking it to the pyridine ring. In the crystal, the mol-ecules are linked by N-H⋯N hydrogen bonds into dimers with an R 2 2(12) motif, forming chains along the b-axis direction. These chains are connected to each other by further N-H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, N-H⋯π and π-π [centroid-centroid separations = 3.899 (8) and 3.7938 (12) Å] inter-actions also contribute to the crystal cohesion. A Hirshfeld surface analysis indicated that the most important contributions to the surface contacts are from H⋯H (46.1%), N⋯H/H⋯N (20.4%) and C⋯H/H⋯C (17.4%) inter-actions.
Collapse
Affiliation(s)
- Farid N. Naghiyev
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Khammed A. Asadov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Ali N. Khalilov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| |
Collapse
|
12
|
Naghiyev FN, Khrustalev VN, Akkurt M, Khalilov AN, Bhattarai A, Kerimli FS, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 1,6-di-amino-2-oxo-4-(thio-phen-2-yl)-1,2-di-hydro-pyridine-3,5-dicarbo-nitrile. Acta Crystallogr E Crystallogr Commun 2023; 79:494-498. [PMID: 37151830 PMCID: PMC10162080 DOI: 10.1107/s2056989023003237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
The asymmetric unit of the title compound, C11H7N5OS, contains two independent mol-ecules (1 and 2). The thio-phene ring in mol-ecule 2 is rotationally disordered (flip disorder) by ca 180° (around the single C-C bond, to which it is attached) over two sites with the site-occupation factors of 0.9 and 0.1. These two orientations of the thio-phene ring in mol-ecule 2 are not equivalent. In the crystal, mol-ecules are linked by inter-molecular N-H⋯O and N-H⋯N hydrogen bonds into ribbons parallel to (022) along the a axis. Within the (022) planes, these ribbons are connected by van der Waals inter-actions and between the (022) planes by N-H⋯O hydrogen bonds. In mol-ecule 1, Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from N⋯H/H⋯N (27.1%), H⋯H (17.6%), C⋯H/H⋯C (13.6%) and O⋯H/H⋯O (9.3%) inter-actions, while in mol-ecule 2, H⋯H (25.4%) inter-actions are the most significant contributors to the crystal packing.
Collapse
Affiliation(s)
- Farid N. Naghiyev
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Ali N. Khalilov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - Fuad Sh. Kerimli
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan
| |
Collapse
|
13
|
Khalilov AN, Khrustalev VN, Aleksandrova LV, Akkurt M, Rzayev RM, Bhattarai A, Mamedov İG. Crystal structure and Hirshfeld surface analysis of 2,2'-[(3,5-di- tert-butyl-4-hy-droxy-phen-yl)methanedi-yl]bis-(3-hy-droxy-5,5-di-methyl-cyclo-hex-2-en-1-one). Acta Crystallogr E Crystallogr Commun 2023; 79:436-440. [PMID: 37151828 PMCID: PMC10162074 DOI: 10.1107/s2056989023003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In the title compound, C31H44O5, mol-ecules are connected by O-H⋯O and C-H⋯O hydrogen bonds, forming hydrogen-bonded zigzag chains running along the b axis and parallel to the (001) plane. The mol-ecular packing is stabilized by van der Waals inter-actions between these chains along the a and c axes. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Ali N. Khalilov
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Larissa V. Aleksandrova
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
| | - Rovnag M. Rzayev
- "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
| | - İbrahim G. Mamedov
- Department of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan
| |
Collapse
|
14
|
Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting α-glucosidase. Bioorg Chem 2023; 132:106384. [PMID: 36696731 DOI: 10.1016/j.bioorg.2023.106384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
To develop novel α-glucosidase inhibitors, a series of chromone-based phenylhydrazone and benzoylhydrazone derivatives were designed, synthesized, and evaluated their inhibitory effects on α-glucosidase. The target compounds were characterized using 1H NMR, 13C NMR, and high-resolution mass spectra. Some of the compounds showed a varying degree of α-glucosidase inhibitory activity with IC50 values ranging from 6.59 ± 0.09 to 158.55 ± 0.87 μM. Among them, compound 5c (IC50 = 6.59 ± 0.09 μM) was the most potent inhibitor by comparison with positive control acarbose (IC50 = 685.11 ± 7.46 μM). Enzyme kinetic, fluorescence analysis, circular dichroism spectra, and molecular docking techniques were employed to explain the underlying molecular mechanisms of 5c inhibition on α-glucosidase. In vivo sucrose-loading test showed that 5c could suppress the rise of blood glucose levels after loading sucrose in normal Kunming mice. The cytotoxicity assay indicated that 5c exhibited low cytotoxicity.
Collapse
|
15
|
TEGEGN G, MELAKU Y, ENDALE ANNİSA M, ESWARAMOORTHY R. Pharmacokinetics, drug-likeness, antibacterial and antioxidant activity of secondary metabolites from the roots extracts of Crinum abyssinicum and Calotropis procera and in silico molecular docking study. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crinum abyssinicum and Calotropis procera were traditionally used for the treatment of different diseases such as hypertension, diabetes, hepatitis B, skin infection, anticancer, asthma, fever, and diarrhea. The structures of the compounds were characterized by 1H NMR, 13C NMR, and DEPT-135 spectra. Compounds 1-3 were reported herein for the first time from the species of C. abyssinicum. The DCM/MeOH (1:1) and MeOH roots extracts of C. abyssinicum showed significant inhibitory activity against S. aureus and P. aeruginosa with a mean inhibition zone of 16.67 ± 1.20 and 16.33 ± 0.33 mm, respectively. Compounds 4 and 5 showed promising activity against E. coli with a mean inhibition zone of 17.7 0.8 and 17.7 1.2 mm, respectively. The results of DPPH activity showed the DCM: MeOH (1:1) and MeOH roots extracts of C. abyssinicum inhibited the DPPH radical by 52.86 0.24 % and 45.6 0.11 %, respectively, whereas compound 5 displayed 85.7 % of inhibition. The drug-likeness analysis showed that compounds 2-4 satisfy Lipinski’s rule of five with zero violations. Compounds 2, and 6 showed binding affinities of −6.0, and −6.7 kcal/mol against E. coli DNA gyrase B, respectively, while 3 and 5 showed −5.0 and −5.0 kcal/mol, respectively against human peroxiredoxin 5. Therefore, the in vitro antibacterial, radical scavenging activity along with the molecular docking analysis suggest the potential use of the extracts of C. abyssinicum and compounds 2, 5, 6, and 3, 5 can be considered as promising antibacterial agents and free radical scavengers, respectively.
Collapse
Affiliation(s)
| | - Yadessa MELAKU
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Milkyas ENDALE ANNİSA
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Rajalakshmanan ESWARAMOORTHY
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| |
Collapse
|