1
|
Fan YG, Ge RL, Ren H, Jia RJ, Wu TY, Lei XF, Wu Z, Zhou XB, Wang ZY. Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice. Pharmacol Res 2024; 209:107404. [PMID: 39306020 DOI: 10.1016/j.phrs.2024.107404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 11/11/2024]
Abstract
Increased astrocytic lactoferrin (Lf) expression was observed in the brains of elderly individuals and Alzheimer's disease (AD) patients. Our previous study revealed that astrocytic Lf overexpression improved cognitive capacity by facilitating Lf secretion to neurons to inhibit β-amyloid protein (Aβ) production in APP/PS1 mice. Here, we further discovered that astrocytic Lf overexpression inhibited neuronal loss by decreasing iron accumulation and increasing glutathione peroxidase 4 (GPX4) expression in neurons within APP/PS1 mice. Furthermore, human Lf (hLf) treatment inhibited ammonium ferric citrate (FAC)-induced ferroptosis by chelating intracellular iron. Additionally, machine learning analysis uncovered a correlation between Lf and GPX4. hLf treatment boosted low-density lipoprotein receptor-related protein 1 (LRP1) internalization and facilitated its interaction with heat shock cognate 70 (HSC70), thereby inhibiting HSC70 binds to GPX4, and eventually attenuating GPX4 degradation and FAC-induced ferroptosis. Overall, astrocytic Lf overexpression inhibited neuronal ferroptosis through two pathways: reducing intracellular iron accumulation and promoting GPX4 expression via inhibiting chaperone-mediated autophagy (CMA)-mediated GPX4 degradation. Hence, upregulating astrocytic Lf expression is a promising strategy for combating AD.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ri-Le Ge
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Xian-Fang Lei
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zheng Wu
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Xiao-Bei Zhou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Ma L, Xia B, Zhang Y, Lv J, Lv Y, Zhang X. A highly sensitive fluorescent probe for the detection of Al3+ and study of its practical application. J Mol Struct 2024; 1316:138886. [DOI: 10.1016/j.molstruc.2024.138886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Babagond V, Katagi KS, Akki M, Jaggal A. Colorimetric and Fluorimetric Detection of Fe(III) Using a Rhodamine-Imidazole Hydrazone Based Chemosensor: Photophysical Properties, DFT, TGA, and DSC Studies. J Fluoresc 2024:10.1007/s10895-024-03942-z. [PMID: 39325303 DOI: 10.1007/s10895-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Rhodamine-imidazole hydrazones (RIH-1 & RIH-2) based chemosensors have been synthesized. These are characterised and evaluated by FT-IR spectroscopy, 1H-NMR, 13C-NMR, LCMS, absorption and fluorescence spectroscopy. These chemosensors exhibit enhanced sensitivity and selectivity in detecting the biologically significant Fe3+ metal ion through both colorimetric and fluorescence changes. The optical properties have been investigated using binary acetonitrile-water (7:3 v/v) semi-aqueous solution. The probe RIH-1 can be deployed as a fluorescent and colorimetric probe for the detection of Fe3+ ion. It shows an absorption band at 559 nm and an intensity band at 579 nm increasing up to 50-fold with the increase in the concentration of Fe3+ with the detection limit as low as 11nM. In the visible light, RIH-1 helps in the detection of Fe3+ ion through the naked eye, while the addition of Fe3+ to the probe RIH-1 results in a colour change from colourless to pink. This is primarily due to the opening of the lactone ring in RIH-1. Notably, RIH-1 probe displays a high quantum yield of 0.51, after binding with Fe3+ ions. Indeed, it has been found that sensor RIH-1 is very effective in sensing Fe3+ ions through both fluorescence based and visual detection methods. Additionally, DFT studies of these chemosensors have been evaluated, TGA and DSC analysis showed good thermal stability.
Collapse
Affiliation(s)
- Vardhaman Babagond
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
| | - Kariyappa S Katagi
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India.
| | - Mahesh Akki
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, Karnataka, India
| | - Ashwini Jaggal
- Research Center, Department of Chemistry, Karnatak University's Karanatak Science College Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
4
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Tang X, Han Y, Zhou W, Shen W, Wang Y. A FRET Based Composite Sensing Material Based on UCNPs and Rhodamine Derivative for Highly Sensitive and Selective Detection of Fe 3. J Fluoresc 2023; 33:2219-2228. [PMID: 37004623 DOI: 10.1007/s10895-023-03223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The existence of excessive concentration of iron ion (Fe3+) in water will do harm to the environment and biology. Presently, sensitive and selective determination of Fe3+ directly in real environment samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new sensor system for Fe3+ based on fluorescence resonance energy transfer (FRET) from upconversion nanoparticles (UCNPs) to Rhodamine derivative probe (RhB). The NaYF4: Yb, Er@SiO2@P(NIPAM-co-RhB) nanocomposites was constructed, in which PNIPAm was used as the probe carrier. The nanocomposites can not only be excited by infrared light to avoid the interference of background light in the Fe3+ detection process, but also enhance the detection signal output through temperature control. Under the optimum conditions, the RSD (Relative standard deviation) of actual sample measurements ranges was from 1.95% to 4.96%, with the recovery rate from 97.4% to 103.3%, which showed high reliability for Fe3+ detection. This work could be extended to sensing other target ions or molecules and may promote the widespread use of FRET technique.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Yunlong Han
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wencheng Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenjing Shen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yemei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
6
|
Sun YX, Jia YH, Han WY, Sun YG, Wang JJ, Deng ZP, Sun Y, Yu L. A Highly Selective and Sensitive Coumarin-Based Chemosensor for Recognition of Al3+ and the Continuous Identification of Fe3+ in Water-Bearing System and Biomaging & Biosensing in Zebrafish. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Chuen Chan W, Phin Ng M, Hoe Tan C, Wei Ang C, Shin Sim K, Yin Xin Tiong S, Amira Solehah Pungut N, Hee Ng C, Wai Tan K. A new lipophilic cationic rhodamine-based chemosensor for detection of Al(III)/Cu(II) and intracellular pH change and its application as a smartphone-assisted sensor in water sample analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|