1
|
Manohar SM. Shedding Light on Intracellular Proteins using Flow Cytometry. Cell Biochem Biophys 2024; 82:1693-1707. [PMID: 38831173 DOI: 10.1007/s12013-024-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Intracellular protein abundance is routinely measured in mammalian cells using population-based techniques such as western blotting which fail to capture single cell protein levels or using fluorescence microscopy which is although suitable for single cell protein detection but not for rapid analysis of large no. of cells. Flow cytometry offers rapid, high-throughput, multiparameter-based analysis of intracellular protein expression in statistically significant no. of cells at single cell resolution. In past few decades, customized assays have been developed for flow cytometric detection of specific intracellular proteins. This review discusses the scope of flow cytometry for intracellular protein detection in mammalian cells along with specific applications. Technological advancements to overcome the limitations of traditional flow cytometry for the same are also discussed.
Collapse
Affiliation(s)
- Sonal M Manohar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
2
|
Önen S, Gizer M, Korkusuz P. Flow Cytometric and Immunohistochemical Follow-Up of Spermatogonial Lineage Commitment. Methods Mol Biol 2024; 2849:239-251. [PMID: 37801256 DOI: 10.1007/7651_2023_506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Flow cytometry and immunohistochemistry techniques both determine the target protein by immunolabeling. Flow cytometric analysis quantifies total number of fluorescent labeled cells and qualify sup-populations according to size and granularity. Immunohistochemistry is able to map immune-labeled cells and extracellular matrix components under light and electron microscope by enzyme or fluorescent molecules. Real-time identification, in-time classification, and final plotting of spermatogonial lineage are of crucial importance for monitoring the fertility potential of spermatogonial stem cell microenvironment and predicting progress of spermatogenesis. Here we define the evaluation of mouse male germ cell microenvironment at single cell and whole tissue section levels by using flow cytometric and immunohistochemical approaches.
Collapse
Affiliation(s)
| | - Merve Gizer
- METU MEMS Center, Ankara, Turkey
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
El-Hajjar L, Ali Ahmad F, Nasr R. A Guide to Flow Cytometry: Components, Basic Principles, Experimental Design, and Cancer Research Applications. Curr Protoc 2023; 3:e721. [PMID: 36946745 DOI: 10.1002/cpz1.721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Flow cytometry (FCM) is a state-of-the-art technique for the qualitative and quantitative assessment of cells and other particles' physical and biological properties. These cells are suspended within a high-velocity fluid stream and pass through a laser beam in single file. The main principle of the FCM instrument is the light scattering and fluorescence emission upon the interaction of the fluorescent particle with the laser beam. It also allows for the physical sorting of particles depending on different parameters. A flow cytometer comprises different components, including fluidic, optics, and electronics systems. This article briefly explains the mechanism of all components of a flow cytometer to clarify the FCM technique's general principles, provides some useful guidelines for the proper design of FCM panels, and highlights some general applications and important applications in cancer research. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Layal El-Hajjar
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Ali Ahmad
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
In Vitro Exploration of Probiotic Bacteria Interactions with Candida Using Culture Techniques to Model Dysbiotic Conditions in Colonized Tissues. Pathogens 2021; 10:pathogens10030289. [PMID: 33802379 PMCID: PMC7999685 DOI: 10.3390/pathogens10030289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Candida albicans overgrowth at various mucosal sites is an ongoing and complex clinical concern involving interactions with indigenous microbiota and therapeutic or preventive measures superimposed on the pathogen-microbiome interaction. In this paper we describe the use of quantitative flow cytometry (specific to the cytometer’s sample introduction mechanism) to explore the in vitro interaction between Candida albicans, probiotic lactobacilli and a topical vaginal therapeutic. Our central hypothesis was cytometric measurements of co-cultures of yeast and bacteria could provide a useful method for exploring the dynamics of different microbial species in culture, with and without inhibitors. Two commercial products were used as exemplars for this research, a vaginal antimicrobial gel and two species of probiotic lactobacillus intended or oral administration with crystalline bovine lactoferrin to augment the vaginal gel. The cytometer forward channel height parameter distinguished yeast from bacteria in co-culture experiments in the presence of a vaginal therapeutic gel or components of its formulation including EDTA, glycogen, polydextrose as well as the host defense factor, lactoferrin. Flow cytometry showed lactobacilli influenced yeast counts in co-culture, with the technique lending itself to wide-ranging test conditions including organisms, media composition and screening of various antimicrobials. Key findings: The proprietary vaginal gel augmented the effect of lactobacilli, as did EDTA and lactoferrin. Prebiotic compounds also enhanced Candida inhibition by lactobacilli. Propidium iodide (Fluorescence channel 3) discriminated between necrotic and non-necrotic yeast and bacteria in co-cultures under various culture conditions. This research demonstrates the value of flow cytometry to evaluate the population dynamics of yeast and bacteria in co-culture using a proprietary product and its components. We discuss both the limitations of the current study and describe how methods employed here would be transferrable to the investigation of organisms present in defined cultures or at body sites colonized by fungal species and the effects of therapeutics or probiotics on Candida.
Collapse
|
5
|
Abstract
Flow cytometry (FCM) is a sophisticated technique that works on the principle of light scattering and fluorescence emission by the specific fluorescent probe-labeled cells as they pass through a laser beam. It offers several unique advantages as it allows fast, relatively quantitative, multiparametric analysis of cell populations at the single cell level. In addition, it also enables physical sorting of the cells to separate the subpopulations based on different parameters. In this constantly evolving field, innovative technologies such as imaging FCM, mass cytometry and Raman FCM are being developed in order to address limitations of traditional FCM. This review explains the general principles, main applications and recent advances in the field of FCM.
Collapse
|
6
|
Gontero D, Veglia AV, Bracamonte AG. In flow metal-enhanced fluorescence for biolabelling and biodetection. Photochem Photobiol Sci 2020; 19:1168-1188. [PMID: 32677642 DOI: 10.1039/d0pp00145g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Escherichia coli bacteria were determined by in flow cytometry with laser excitation and fluorescence detection applying ultraluminescent core-shell nanoparticles based on Metal Enhanced Fluorescence (MEF). Core-shell nanoparticles consisted of a 40 nm core modified with a silica spacer grafted with Rhodamine B (RhB). The electromagnetic field in the near field of the core surface enhanced the fluorescence of RhB by plasmonic and fluorophore coupling. The hydrophilic silica spacer allowed the non-covalent interaction with the polar E. coli surface and thus ultraluminescent bacteria biolabelling was developed. Clearly, well defined and bright bacteria imaging was recorded by Laser Fluorescence Microscopy based on the non-covalent deposition of the ultraluminescent nano-emitters. Using these nano-labellers, it was possible to detect labelled E. coli by in flow cytometry. Higher values of Side-scattered light (SSC) and Forward-scattered light (FSC), and number of fluorescent event detections, were observed for labelled bacteria compared to those non-labelled. The sensitivity of the methodology was evaluated by varying bacteria concentration and acceptable analytical figures of merit were determined. Applying this methodology we could quantify E. coli from a synthetic real sample of fortified water. Similar results were obtained by bacteria counting with Laser Fluorescence Microscopy and with a cell-bacteria counter.
Collapse
Affiliation(s)
- Daniela Gontero
- Laboratorio de Análisis Clínicos y Bacteriológicos, Clínica de la Familia II, 5850, Río Tercero, Córdoba, Argentina
| | - Alicia V Veglia
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - A Guillermo Bracamonte
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina. .,Departement de chimie and Centre d'optique, photonique et laser (COPL), Université Laval, Québec, QC, Canada.
| |
Collapse
|
7
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Darnell M, Mooney DJ. Leveraging advances in biology to design biomaterials. NATURE MATERIALS 2017; 16:1178-1185. [PMID: 29170558 DOI: 10.1038/nmat4991] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/25/2017] [Indexed: 05/06/2023]
Abstract
Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.
Collapse
Affiliation(s)
- Max Darnell
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02138, USA
| | - David J Mooney
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
9
|
Aebisher D, Bartusik D, Tabarkiewicz J. Laser flow cytometry as a tool for the advancement of clinical medicine. Biomed Pharmacother 2017; 85:434-443. [DOI: 10.1016/j.biopha.2016.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
|
10
|
Hoffman AN, Bamba R, Pollins AC, Thayer WP. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization. J Clin Neurosci 2016; 36:125-128. [PMID: 27825612 DOI: 10.1016/j.jocn.2016.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022]
Abstract
Polyethylene glycol (PEG) has long been used as a membrane fusogen, but recently it has been adopted as a technique for peripheral nerve repair. Vertebrate models using PEG fusion have shown improved outcomes when PEG is applied during repair of severed peripheral nerves. The cellular mechanism of PEG fusion in the peripheral nerve repair model has not previously been assessed via flow cytometry. PEG fusion was assessed in this experiment by dying B35 rat neuroblastoma cells with different color fluorescent labels. The different color cells were combined and PEG was applied in concentrations of 50%, 75% and 100%. The amount of cell fusion was assessed via flow cytometry as the percentage of double positive cells. Results showed increasing fusion and decreasing viability with increasing concentrations of PEG.
Collapse
Affiliation(s)
- Ashley N Hoffman
- Vanderbilt School of Medicine, 1161 21st Ave S # T1217, Nashville, TN 37232, United States.
| | - Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| |
Collapse
|