1
|
Rivera JP, Yeh YC, Chen PCH, Hang JF. Multifocal Papillary Thyroid Carcinomas With Discordant Molecular Drivers: Emphasizing the Morphology and Collision Tumors. Am J Surg Pathol 2024; 48:1359-1371. [PMID: 38818543 DOI: 10.1097/pas.0000000000002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Multifocal papillary thyroid carcinomas (PTCs) are common and the majority of the tumors harbor mutual BRAF p.V600E mutation. This study aimed to investigate a contemporary series of multifocal PTCs with discordant molecular drivers. Consecutive thyroidectomies diagnosed with multifocal PTCs ≥0.5 cm between 2019 and 2023 were reviewed. Immunohistochemistry (IHC) for BRAF VE1 was performed for all tumors. Cases with discordant BRAF IHC results or morphologic discrepancy were identified, and BRAF IHC-negative tumors were subjected to RAS Q61R IHC and/or targeted RNA next-generation sequencing. A total of 770 patients with a main PTC ≥0.5 cm were identified; 255 (33.1%) had multifocal disease, and 142 (18.4%) had at least another PTC ≥0.5 cm. Among them, 13 cases (9.2%, 13/142) had discordant molecular drivers. Twelve cases had one or more BRAF -positive PTCs accompanied by a BRAF -negative PTC (3 with CCDC6::RET fusion, 1 with NCOA4::RET fusion, 1 with ACBD5::RET fusion, 2 with ETV6::NTRK3 fusion, 1 with TG::FGFR1 fusion, 1 with LMTK2::BRAF fusion, 1 with AGK::BRAF fusion and RAS p.Q61R mutation, 1 with RAS p.Q61R mutation, and 1 without detectable molecular drivers). The last case had tumors with discordant fusion drivers ( VIM::NTRK3 and TNS1::BRAF ). Most cases showed tumors that were morphologically distinct (92.3%, 12/13) and occurred in the contralateral lobes (76.9%, 10/13). Notably, we identified 4 cases (30.8%) that presented as collision tumors and 6 cases (46.2%) that showed lymph node metastases, including 2 with simultaneous involvement by tumors with discordant molecular drivers, as novel findings. In summary, a subset (9.2%) of multifocal PTCs had discordant molecular drivers and 84.6% of them were a combination of BRAF -positive and kinase gene fusion-associated PTCs, most with distinct morphologies. Almost half of the cases had nodal metastasis and a third of them showed simultaneous involvement by tumors with discordant molecular drivers. The results highlight the clinical importance of identifying such cases, given the potentially different treatments.
Collapse
Affiliation(s)
- Jonathan P Rivera
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Laboratories, Philippine General Hospital, Manila, Philippines
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine
- Institute of Biomedical Informatics
| | - Paul Chih-Hsueh Chen
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Okubo Y, Toda S, Kadoya M, Sato S, Yoshioka E, Hasegawa C, Ono K, Washimi K, Yokose T, Miyagi Y, Masudo K, Iwasaki H, Hayashi H. Clinicopathological analysis of thyroid carcinomas with the RET and NTRK fusion genes: characterization for genetic analysis. Virchows Arch 2024; 485:509-518. [PMID: 38472412 PMCID: PMC11415398 DOI: 10.1007/s00428-024-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Thyroid carcinomas exhibit various genetic alterations, including the RET and NTRK fusion genes that are targets for molecular therapies. Thus, detecting fusion genes is crucial for devising effective treatment plans. This study characterized the pathological findings associated with these genes to identify the specimens suitable for genetic analysis. Thyroid carcinoma cases positive for the fusion genes were analyzed using the Oncomine Dx Target Test. Clinicopathological data were collected and assessed. Among the 74 patients tested, 8 had RET and 1 had NTRK3 fusion gene. Specifically, of the RET fusion gene cases, 6 exhibited "BRAF-like" atypia and 2 showed "RAS-like" atypia, while the single case with an NTRK3 fusion gene presented "RAS-like" atypia. Apart from one poorly differentiated thyroid carcinoma, most cases involved papillary thyroid carcinomas (PTCs). Primary tumors showed varied structural patterns and exhibited a high proportion of non-papillary structures. Dysmorphic clear cells were frequently observed. BRAF V600E immunoreactivity was negative in all cases. Interestingly, some cases exhibited similarities to diffuse sclerosing variant of PTC characteristics. While calcification in lymph node metastases was mild, primary tumors typically required hydrochloric acid-based decalcification for tissue preparation. This study highlights the benefits of combining morphological and immunohistochemical analyses for gene detection and posits that lymph node metastases are more suitable for genetic analysis owing to their mild calcification. Our results emphasize the importance of accurate sample processing in diagnosing and treating thyroid carcinomas.
Collapse
Affiliation(s)
- Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Soji Toda
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Mei Kadoya
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Shinya Sato
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2Asahi-Ku, NakaoYokohama, Kanagawa, 241-8515, Japan
| | - Emi Yoshioka
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Chie Hasegawa
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kyoko Ono
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2Asahi-Ku, NakaoYokohama, Kanagawa, 241-8515, Japan
| | - Katsuhiko Masudo
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Iwasaki
- Department of Endocrine Surgery, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, 1-1 Mitsuzawanishimachi, Kanagawa-Ku, Yokohama, Kanagawa, 221-0855, Japan
| |
Collapse
|
3
|
Velez Torres JM, Vaickus LJ, Kerr DA. Thyroid Fine-Needle Aspiration: The Current and Future Landscape of Cytopathology. Surg Pathol Clin 2024; 17:371-381. [PMID: 39129137 DOI: 10.1016/j.path.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Thyroid cytology is a rapidly evolving field that has seen significant advances in recent years. Its main goal is to accurately diagnose thyroid nodules, differentiate between benign and malignant lesions, and risk stratify nodules when a definitive diagnosis is not possible. The current landscape of thyroid cytology includes the use of fine-needle aspiration for the diagnosis of thyroid nodules with the use of uniform, tiered reporting systems such as the Bethesda System for Reporting Thyroid Cytopathology. In recent years, molecular testing has emerged as a reliable preoperative diagnostic tool that stratifies patients into different risk categories (low, intermediate, or high) with varying probabilities of malignancy and helps guide patient treatment.
Collapse
Affiliation(s)
- Jaylou M Velez Torres
- University of Miami Hospital, Miller School of Medicine, 1400 NW 12th Avenue, Room 4078, Miami, FL 33136, USA. https://twitter.com/JaylouVelez
| | - Louis J Vaickus
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
4
|
Alzumaili BA, Fisch AS, Faquin WC, Nosé V, Randolph GW, Sadow PM. Detection of RAS p.Q61R by Immunohistochemistry in Practice: A Clinicopathologic Study of 217 Thyroid Nodules with Molecular Correlates. Endocr Pathol 2024; 35:219-229. [PMID: 39096324 DOI: 10.1007/s12022-024-09821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
RAS p.Q61R is the most prevalent hot-spot mutation in RAS and RAS-like mutated thyroid nodules. A few studies evaluated RAS p.Q61R by immunohistochemistry (RASQ61R-IHC). We performed a retrospective study of an institutional cohort of 150 patients with 217 thyroid lesions tested for RASQ61R-IHC, including clinical, cytologic and molecular data. RASQ61R-IHC was performed on 217 nodules (18% positive, 80% negative, and 2% equivocal). RAS p.Q61R was identified in 76% (n = 42), followed by RAS p.Q61K (15%; n = 8), and RAS p.G13R (5%; n = 3). NRAS p.Q61R isoform was the most common (44%; n = 15), followed by NRAS p.Q61K (17%; n = 6), KRAS p.Q61R (12%; n = 4), HRAS p.Q61R (12%; n = 4), HRAS p.Q61K (6%; n = 2), HRAS p.G13R (6%; n = 2), and NRAS p.G13R (3%; n = 1). RASQ61R-IHC was positive in 47% of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP; 17/36), 22% of follicular thyroid carcinomas (FTC; 5/23), 10% of follicular thyroid adenomas (FTA; 4/40), and 8% of papillary thyroid carcinomas (PTC; 9/112). Of PTC studied (n = 112), invasive encapsulated follicular variant (IEFVPTC; n = 16) was the only subtype with positive RASQ61R-IHC (56%; 9/16). Overall, 31% of RAS-mutated nodules were carcinomas (17/54); and of the carcinomas, 94% (16/17) were low-risk per American Thyroid Associated (ATA) criteria, with only a single case (6%; 1/17) considered ATA high-risk. No RAS-mutated tumors recurred, and none showed local or distant metastasis (with a follow-up of 0-10 months). We found that most RAS-mutated tumors are low-grade neoplasms. RASQ61R-IHC is a quick, cost-effective, and reliable way to detect RAS p.Q61R in follicular-patterned thyroid neoplasia and, when malignant, guide surveillance.
Collapse
Affiliation(s)
- Bayan A Alzumaili
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - Adam S Fisch
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - William C Faquin
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Vania Nosé
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - Gregory W Randolph
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA.
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
5
|
Higgins KE, Sadow PM, Johnson DN, Wang P, Wanjari P, Cipriani NA. Columnar Cell Thyroid Carcinoma: A Heterogeneous Entity Demonstrating Overlap Between Papillary Thyroid Carcinoma and Follicular Neoplasms. Head Neck Pathol 2024; 18:39. [PMID: 38727854 PMCID: PMC11087446 DOI: 10.1007/s12105-024-01645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Columnar cell papillary thyroid carcinoma (CC-PTC) is a morphologic subtype of papillary thyroid carcinoma with a variable prognosis. It is characterized by neoplastic thyroid follicular-derived cells with pseudostratified columnar morphology arranged in papillary or follicular structures with supranuclear or subnuclear vacuoles. The molecular profile of this subtype has only recently come under scrutiny, with mixed results. The aim of this study is to further explore the morphologic, immunohistochemical, and genetic profile of CC-PTC, as well as to correlate these features with clinical outcomes. METHODS CC-PTC cases were identified from 3 institutions. Immunohistochemistry (ER, CDX2) and molecular testing (DNA and RNA sequencing) were performed. Clinicopathologic parameters and patient outcomes were recorded. RESULTS Twelve cases (2006-2023) were identified, all in adults (age 45-91). Two presented with disease outside the thyroid gland (neck and mediastinum) and two presented with distant metastasis. Four were high-grade differentiated thyroid carcinomas (necrosis or mitoses), one of which died of disease. Four were noninvasive or minimally invasive, one of which locally recurred. Three patients had lymph node metastases. ER and CDX2 were positive in 73% and 50%, respectively. Pathogenic mutations were found in TERT promoter (n = 3), RAS (n = 2), ATM, NOTCH1, APC, and ESR1, along with cases bearing AGK::BRAF fusion (n = 1), BRAF VE1 expression (n = 1), and NF2 loss (n = 1). CONCLUSIONS This study represents the largest molecularly defined cohort of non-oncocytic thyroid carcinomas with columnar cell morphology. These tumors represent a genetically and behaviorally heterogeneous group of neoplasms, some of which have RAS-like or follicular neoplasm-like genetics, some of which have BRAF-p.V600E-like or classic papillary thyroid carcinoma-like genetics, and some of which remain unclear. Noninvasive or minimally invasive tumors showed an indolent course compared to those with angioinvasion, gross extrathyroidal growth, or high-grade morphology. Consideration could be given to reclassification of this neoplasm outside of the subtyping of papillary thyroid carcinoma in light of its genetic diversity, distinct morphology, and clinical behavior more closely aligned with follicular thyroid neoplasms.
Collapse
Affiliation(s)
- Kathleen E Higgins
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Peng Wang
- Division of Molecular Pathology, Department of Pathology, The University of Chicago, Chicago, USA
| | - Pankhuri Wanjari
- Division of Molecular Pathology, Department of Pathology, The University of Chicago, Chicago, USA
| | - Nicole A Cipriani
- Division of Anatomic Pathology, Department of Pathology, The University of Chicago, Chicago, USA.
| |
Collapse
|
6
|
Slack JC, Hollowell M, Barletta JA. Thyroid Nodules and Follicular Cell-Derived Thyroid Carcinomas in Children. Endocr Pathol 2023:10.1007/s12022-023-09764-2. [PMID: 37160531 DOI: 10.1007/s12022-023-09764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
Although pediatric thyroid tumors have many similarities to those occurring in adults, significant differences are also recognized. For example, although thyroid nodules in children are much less common than in adults, a higher percentage is malignant. Moreover, while pediatric papillary thyroid carcinoma (PTC) is associated with more advanced disease, death due to disease in children and adolescents is very rare, even when distant metastases are present. Some subtypes of thyroid carcinoma, like diffuse sclerosing variant, are especially common in children and adolescents. Moreover, certain histologic findings, such as a tall cell morphology or increased mitotic activity, may not carry the same prognostic significance in children as in adults. Recent studies exploring the molecular underpinnings of pediatric thyroid carcinoma indicate that while driver alterations of thyroid tumorigenesis in children and adults are essentially the same, they occur at very different frequencies, with translocation-associated tumors (most commonly harboring RET and NTRK fusions) comprising a sizable and distinct group of pediatric PTC. DICER1 mutations, an infrequent mutation in adult thyroid tumors, are relatively frequent in pediatric encapsulated follicular-patterned thyroid tumors (with or without invasion or nuclear features of PTC). Additionally, tumor predisposition syndromes (most notably DICER1 syndrome and PTEN hamartoma tumor syndromes such as Cowden syndrome) should be considered in children with thyroid tumors, especially follicular-patterned thyroid tumors and poorly differentiated thyroid carcinoma. This review will explore the current state of knowledge of thyroid nodules and carcinomas in children and adolescents.
Collapse
Affiliation(s)
- Jonathan C Slack
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Monica Hollowell
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Velez Torres JM, Tjendra Y, Kerr DA. A Triumvirate:: Correlating Thyroid Cytopathology, Molecular Testing, and Histopathology. Surg Pathol Clin 2023; 16:1-14. [PMID: 36739157 DOI: 10.1016/j.path.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Risk stratification is essential in the preoperative evaluation and management of thyroid nodules, most of which are benign. Advances in DNA and RNA sequencing have shed light on the molecular drivers of thyroid cancer. Molecular testing of cytologically indeterminate nodules has helped refine risk stratification, triage patients for surgery, and determine the extent of surgery. Molecular platforms with high negative predictive values can help identify nodules that may be spared surgery and can be managed conservatively. Here we discuss the importance of integrating cytomorphologic, molecular, and histologic features to help avoid errors and improve patient management.
Collapse
Affiliation(s)
- Jaylou M Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12(th) Avenue, Miami, FL 33136, USA. https://twitter.com/JaylouVelez
| | - Youley Tjendra
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1400 NW 12(th) Avenue, Miami, FL 33136, USA. https://twitter.com/Y_Tjendra
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|