1
|
Lian W, Yang X, Duan Q, Li J, Zhao Y, Yu C, He T, Sun T, Zhao Y, Wang W. The Biological Activity of Ganoderma lucidum on Neurodegenerative Diseases: The Interplay between Different Active Compounds and the Pathological Hallmarks. Molecules 2024; 29:2516. [PMID: 38893392 PMCID: PMC11173733 DOI: 10.3390/molecules29112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenhui Lian
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Xu Yang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Qidong Duan
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Jie Li
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yuting Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Chunhui Yu
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Tianzhu He
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Weinan Wang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
2
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, Vom Berg J, Hutter G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front Immunol 2020; 11:571951. [PMID: 33117364 PMCID: PMC7552736 DOI: 10.3389/fimmu.2020.571951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.
Collapse
Affiliation(s)
- Tomás A Martins
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Steven Zanganeh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Skill NJ, Elliott CM, Ceballos B, Saxena R, Pepin R, Bettcher L, Ellensberg M, Raftery D, Malucio MA, Ekser B, Mangus RS, Kubal CA. Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS). Ann Transplant 2019; 24:341-349. [PMID: 31182705 PMCID: PMC6582681 DOI: 10.12659/aot.913800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.
Collapse
Affiliation(s)
- Nicholas J Skill
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Campbell M Elliott
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Brian Ceballos
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology, Indiana University Medical School, Indianapolis, IN, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Matthew Ellensberg
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Mary A Malucio
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Richard S Mangus
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | | |
Collapse
|
4
|
Daimon CM, Jasien JM, Wood WH, Zhang Y, Becker KG, Silverman JL, Crawley JN, Martin B, Maudsley S. Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder. Front Physiol 2015; 6:324. [PMID: 26635614 PMCID: PMC4656818 DOI: 10.3389/fphys.2015.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Joan M Jasien
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - William H Wood
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institutes of Health Baltimore, MD, USA
| | - Jill L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Jacqueline N Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health Bethesda, MD, USA ; MIND Institute, University of California Davis School of Medicine Sacramento, CA, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA ; Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp Antwerp, Belgium ; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp Antwerpen, Belgium
| |
Collapse
|
5
|
The Potential of Proteomics in Understanding Neurodegeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:25-58. [DOI: 10.1016/bs.irn.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Allele-specific network reveals combinatorial interaction that transcends small effects in psoriasis GWAS. PLoS Comput Biol 2014; 10:e1003766. [PMID: 25233071 PMCID: PMC4168982 DOI: 10.1371/journal.pcbi.1003766] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/20/2014] [Indexed: 12/20/2022] Open
Abstract
Hundreds of genetic markers have shown associations with various complex diseases, yet the “missing heritability” remains alarmingly elusive. Combinatorial interactions may account for a substantial portion of this missing heritability, but their discoveries have been impeded by computational complexity and genetic heterogeneity. We present BlocBuster, a novel systems-level approach that efficiently constructs genome-wide, allele-specific networks that accurately segregate homogenous combinations of genetic factors, tests the associations of these combinations with the given phenotype, and rigorously validates the results using a series of unbiased validation methods. BlocBuster employs a correlation measure that is customized for single nucleotide polymorphisms and returns a multi-faceted collection of values that captures genetic heterogeneity. We applied BlocBuster to analyze psoriasis, discovering a combinatorial pattern with an odds ratio of 3.64 and Bonferroni-corrected p-value of 5.01×10−16. This pattern was replicated in independent data, reflecting robustness of the method. In addition to improving prediction of disease susceptibility and broadening our understanding of the pathogenesis underlying psoriasis, these results demonstrate BlocBuster's potential for discovering combinatorial genetic associations within heterogeneous genome-wide data, thereby transcending the limiting “small effects” produced by individual markers examined in isolation. Most complex diseases arise due to combinations of genetic factors, yet current genome-wide association studies (GWAS) typically examine individual genetic markers in isolation because of the complexity of considering a prohibitively large number of marker combinations. Another complication for GWAS stems from genetic heterogeneity, in which different subsets of individuals develop a given disease due to different sets of genetic factors. We present BlocBuster, a network-based method that addresses these challenges and extracts inter-correlated genetic markers that manifest significant associations with complex diseases. Our analysis of psoriasis GWAS data revealed a significant combinatorial genetic pattern, which was validated using stringent computational tests and replication in independent data. This pattern is more significant than other previously identified markers. We also compared Pearson's correlation coefficient and observed that it introduced more type I errors and produced a less structured network than BlocBuster; the former also broke the combinatorial pattern into pieces. In addition to improving prediction of disease susceptibility and broadening our understanding of the pathogenesis underlying psoriasis, these results demonstrate BlocBuster's effectiveness for discovering combinatorial genetic associations within heterogeneous backgrounds, thereby transcending the limiting “small effects” produced by individual markers examined in isolation.
Collapse
|
7
|
Karch A, Manthey H, Ponto C, Hermann P, Heinemann U, Schmidt C, Zerr I. Investigating the association of ApoE genotypes with blood-brain barrier dysfunction measured by cerebrospinal fluid-serum albumin ratio in a cohort of patients with different types of dementia. PLoS One 2013; 8:e84405. [PMID: 24386372 PMCID: PMC3874026 DOI: 10.1371/journal.pone.0084405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/13/2013] [Indexed: 12/02/2022] Open
Abstract
Background Since more than a decade ApoE is known to be a strong risk factor for Alzheimer's disease (AD); however, molecular pathways mediating this risk are still unclear. In recent years it has been hypothesized that ApoE might play a role in the disintegration of blood-brain barrier (BBB). In the present study we addressed the question if ApoE genotypes might be associated with BBB function measured by albumin ratio (QAlb) in a large cohort of patients with different types of dementia. Methods Five hundred twenty (520) patients with Creutzfeldt-Jakob disease (CJD, n = 350), Alzheimer's disease (n = 71) and cerebral small vessel disease (n = 99) were assessed for their ApoE genotype. BBB function was measured in all patients using QAlb and was compared between ApoE genotypes. Dominant and additive genetic models were assumed in order to investigate the potential effect of ApoE on BBB function. Results We observed no systematic differences in QAlb between ApoE genotypes within the present study. Increased QAlb levels were shown for those without E3 allele in the subgroup of CJD patients when assuming a dominant genetic model (p = 0.035). This could not be confirmed for patients with other forms of dementia (p = 0.234). Discussion Although there was some evidence for a protective effect of E3 alleles in CJD patients, this study does not support the hypothesis of a systematic role of ApoE genotypes in BBB function in individuals with a diagnosis of dementia. Thus, changes in BBB function do not seem to contribute to the increased risk of cognitive decline associated with certain ApoE genotypes. The interpretation of the results of this study must take into account that BBB function was only assessed by measuring QAlb which has been shown to be a good marker for overall BBB integrity but might not reflect all qualities of the barrier.
Collapse
Affiliation(s)
- André Karch
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Henrike Manthey
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| | - Claudia Ponto
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| | - Peter Hermann
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| | - Uta Heinemann
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Centre, University Hospital Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
New insight into neurodegeneration: the role of proteomics. Mol Neurobiol 2013; 49:1181-99. [PMID: 24323427 DOI: 10.1007/s12035-013-8590-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.
Collapse
|
9
|
Trippier PC, Labby KJ, Hawker DD, Mataka JJ, Silverman RB. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem 2013; 56:3121-47. [PMID: 23458846 PMCID: PMC3637880 DOI: 10.1021/jm3015926] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms: N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action, should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul C. Trippier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Kristin Jansen Labby
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Dustin D. Hawker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jan J. Mataka
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA
| |
Collapse
|
10
|
Benosman S, Meng X, Von Grabowiecki Y, Palamiuc L, Hritcu L, Gross I, Mellitzer G, Taya Y, Loeffler JP, Gaiddon C. Complex regulation of p73 isoforms after alteration of amyloid precursor polypeptide (APP) function and DNA damage in neurons. J Biol Chem 2011; 286:43013-25. [PMID: 22002055 DOI: 10.1074/jbc.m111.261271] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic ablations of p73 have shown its implication in the development of the nervous system. However, the relative contribution of ΔNp73 and TAp73 isoforms in neuronal functions is still unclear. In this study, we have analyzed the expression of these isoforms during neuronal death induced by alteration of the amyloid-β precursor protein function or cisplatin. We observed a concomitant up-regulation of a TAp73 isoform and a down-regulation of a ΔNp73 isoform. The shift in favor of the pro-apoptotic isoform correlated with an induction of the p53/p73 target genes such as Noxa. At a functional level, we showed that TAp73 induced neuronal death and that ΔNp73 has a neuroprotective role toward amyloid-β precursor protein alteration or cisplatin. We investigated the mechanisms of p73 expression and found that the TAp73 expression was regulated at the promoter level. In contrast, regulation of ΔNp73 protein levels was regulated by phosphorylation at residue 86 and multiple proteases. Thus, this study indicates that tight transcriptional and post-translational mechanisms regulate the p73 isoform ratios that play an important role in neuronal survival.
Collapse
|
11
|
Alves da Costa C, Checler F. Apoptosis in Parkinson's disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cell Signal 2011; 23:963-8. [DOI: 10.1016/j.cellsig.2010.10.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/11/2010] [Indexed: 01/27/2023]
|
12
|
Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 2009; 28:1792-806. [DOI: 10.1038/onc.2009.25] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Abstract
Environmental agents, including viruses, prions, and toxins, have been implicated in the cause of a number of neurodegenerative diseases, most notably Alzheimer's and Parkinson's diseases. The presence of smell loss and the pathological involvement of the olfactory pathways in the formative stages of Alzheimer's and Parkinson's diseases, together with evidence that xenobiotics, some epidemiologically linked to these diseases, can readily enter the brain via the olfactory mucosa, have led to the hypothesis that Alzheimer's and Parkinson's diseases may be caused or catalyzed by agents that enter the brain via this route. Evidence for and against this concept, the "olfactory vector hypothesis," is addressed in this review.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Di Napoli M, Shah IM, Stewart DA. Molecular pathways and genetic aspects of Parkinson's disease: from bench to bedside. Expert Rev Neurother 2008; 7:1693-729. [PMID: 18052765 DOI: 10.1586/14737175.7.12.1693] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuronal loss within the substantia nigra. The incidence and prevalence of PD is rising with an increasing aging population. PD is a slowly progressive condition and patients can develop debilitating motor and functional impairment. Current research has implicated oxidative stress, alpha-synucleinopathy and dysfunction of the ubiquitin-proteasome system in the pathogenesis of PD. A number of gene mutations have also been linked to the development of PD. The elucidation of these new molecular pathways has increased our knowledge of PD pathophysiology. This article reviews important molecular mechanisms and genetic causes implicated in the pathogenesis of PD, which has led to new areas of therapeutic drug research.
Collapse
Affiliation(s)
- Mario Di Napoli
- Neurological Service, San Camillo de'Lellis General Hospital, I-2100 Rieti, Italy.
| | | | | |
Collapse
|
15
|
Gowthaman R, Gowthaman N, Rajangam MK, Srinivasan K. Database of neurodegenerative disorders. Bioinformation 2007; 2:153-4. [PMID: 21670793 PMCID: PMC2255066 DOI: 10.6026/97320630002153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED A neurological disorder is a disorder caused by the deterioration of certain nerve cells called neurons. Changes in these cells cause them to function abnormally, eventually bringing about their death. In this paper we present a comprehensive database for neurodegenerative diseases, a first-of-its kind covering all known or suspected genes, proteins, pathways related to neurodegenerative diseases. This dynamically compiled database allows researchers to link neurological disorders to the candidate genes & proteins. It serves as a tool to navigate potential gene-protein-pathway relationships in the context of neurodegenerative diseases. The neurodegenerative disorder database covers more then 100 disease concepts including synonyms and research topics. The current version of the database provides links to 728 abstracts and over 203 unique genes/proteins with 137 drugs. Also it is integrated well with other related databases. The aim of this database is to provide the researcher with a quick overview of potential links between genes and proteins with related neurodegenerative diseases. Thus DND providing a user-friendly interface is designed as a source to enhance research on neurodegenerative disorders. AVAILABILITY http://www.bioinfosastra.com/services/dnd/dnd.html.
Collapse
Affiliation(s)
- Ragul Gowthaman
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613402, India
- Corresponding author: E-mail:
| | - Nithiyadevi Gowthaman
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613402, India
| | - Madhan Kumar Rajangam
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613402, India
| | | |
Collapse
|
16
|
Rogelj B, Mitchell JC, Miller CCJ, McLoughlin DM. The X11/Mint family of adaptor proteins. BRAIN RESEARCH REVIEWS 2006; 52:305-15. [PMID: 16764936 DOI: 10.1016/j.brainresrev.2006.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/27/2006] [Accepted: 04/16/2006] [Indexed: 12/25/2022]
Abstract
The X11 protein family are multidomain proteins composed of a conserved PTB domain and two C-terminal PDZ domains. They are involved in formation of multiprotein complexes and two of the family members, X11alpha and X11beta, are expressed primarily in neurones. Not much is known about the principal function of X11s, but through interactions with other neuronal proteins, they are believed to be involved in regulating neuronal signaling, trafficking and plasticity. Furthermore, they have been shown to modulate processing of APP and accumulation of Abeta, making them potential therapeutic targets for Alzheimer's disease. This article reviews the known interactions of the different X11s and their involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Boris Rogelj
- King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | | | | | | |
Collapse
|
17
|
Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE, Gearing M, Levey AI, Chin LS, Li L. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 2006; 281:10816-24. [PMID: 16517609 PMCID: PMC1850953 DOI: 10.1074/jbc.m509079200] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in DJ-1 cause an autosomal recessive, early onset familial form of Parkinson disease (PD). However, little is presently known about the role of DJ-1 in the more common sporadic form of PD and in other age-related neurodegenerative diseases, such as Alzheimer disease (AD). Here we report that DJ-1 is oxidatively damaged in the brains of patients with idiopathic PD and AD. By using a combination of two-dimensional gel electrophoresis and mass spectrometry, we have identified 10 different DJ-1 isoforms, of which the acidic isoforms (pI 5.5 and 5.7) of DJ-1 monomer and the basic isoforms (pI 8.0 and 8.4) of SDS-resistant DJ-1 dimer are selectively accumulated in PD and AD frontal cortex tissues compared with age-matched controls. Quantitative Western blot analysis shows that the total level of DJ-1 protein is significantly increased in PD and AD brains. Mass spectrometry analyses reveal that DJ-1 is not only susceptible to cysteine oxidation but also to previously unsuspected methionine oxidation. Furthermore, we show that DJ-1 protein is irreversibly oxidized by carbonylation as well as by methionine oxidation to methionine sulfone in PD and AD. Our study provides new insights into the oxidative modifications of DJ-1 and indicates association of oxidative damage to DJ-1 with sporadic PD and AD.
Collapse
Affiliation(s)
- Joungil Choi
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Giaime E, Sunyach C, Herrant M, Grosso S, Auberger P, McLean PJ, Checler F, da Costa CA. Caspase-3-derived C-terminal Product of Synphilin-1 Displays Antiapoptotic Function via Modulation of the p53-dependent Cell Death Pathway. J Biol Chem 2006; 281:11515-22. [PMID: 16495229 DOI: 10.1074/jbc.m508619200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson disease is the second most frequent neurodegenerative disorder after Alzheimer disease. A subset of genetic forms of Parkinson disease has been attributed to alpha-synuclein, a synaptic protein with remarkable chaperone properties. Synphilin-1 is a cytoplasmic protein that has been identified as a partner of alpha-synuclein (Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M., and Ross, C. A. (1999) Nat. Gen. 22, 110-114), but its function remains totally unknown. We show here for the first time that synphilin-1 displays an antiapoptotic function in the control of cell death. We have established transient and stable transfectants overexpressing wild-type synphilin-1 in human embryonic kidney 293 cells, telecephalon-specific murine 1 neurons, and SH-SY5Y neuroblastoma cells, and we show that both cell systems display lower responsiveness to staurosporine and 6-hydroxydopamine. Thus, synphilin-1 reduces procaspase-3 hydrolysis and thereby caspase-3 activity and decreases poly(ADP-ribose) polymerase cleavage, two main indicators of apoptotic cell death. Furthermore, we establish that synphilin-1 drastically reduces p53 transcriptional activity and expression and lowers p53 promoter transactivation and mRNA levels. Interestingly, we demonstrate that synphilin-1 catabolism is enhanced by staurosporine and blocked by caspase-3 inhibitors. Accordingly, we show by transcription/translation assay that recombinant caspase-3 and, to a lesser extent, caspase-6 but not caspase-7 hydrolyze synphilin-1. Furthermore, we demonstrate that mutated synphilin-1, in which a consensus caspase-3 target sequence has been disrupted, resists proteolysis by cellular and recombinant caspases and displays drastically reduced antiapoptotic phenotype. We further show that the caspase-3-derived C-terminal fragment of synphilin-1 was probably responsible for the antiapoptotic phenotype elicited by the parent wild-type protein. Altogether, our study is the first demonstration that synphilin-1 harbors a protective function that is controlled by the C-terminal fragment generated by its proteolysis by caspase-3.
Collapse
Affiliation(s)
- Emilie Giaime
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR6097/Université de Nice Sophia Antipolis, Equipe Labellisée Fondation pour la Recherche Médicale, 660 Route des Lucioles, 06560, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Skipper L, Li Y, Bonnard C, Pavanni R, Yih Y, Chua E, Sung WK, Tan L, Wong MC, Tan EK, Liu J. Comprehensive evaluation of common genetic variation within LRRK2 reveals evidence for association with sporadic Parkinson's disease. Hum Mol Genet 2005; 14:3549-56. [PMID: 16269443 DOI: 10.1093/hmg/ddi376] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder whose aetiologies are largely unknown. To date, mutations in six genes have been found causal for some rare familial forms of the disease and common variation within at least three of these is associated with the more common sporadic forms of PD. LRRK2 is the most recently identified familial PD gene, although its role in sporadic disease is unknown. In this study, we have performed the first comprehensive evaluation of common genetic variation within LRRK2 and investigated its contribution to risk of sporadic PD. We first characterized the linkage disequilibrium within LRRK2 using a panel of densely spaced SNPs across the gene. We then identified a subset of tagging-SNPs (tSNP) that capture the majority of common variation within LRRK2. Both single tSNP and tSNP haplotype analyses, using a large epidemiologically matched sporadic case-control series comprising 932 individuals, yielded significant evidence for disease association. We identified a haplotype that dramatically increases disease risk when present in two copies (OR=5.5, 95%CI=2.1-14.0, P=0.0001). Thus, we provide the first evidence that common genetic variation within LRRK2 contributes to the risk of sporadic PD in the Chinese population.
Collapse
Affiliation(s)
- Lisa Skipper
- Population Genetics, Genome Institute of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|