1
|
Pennisi G, Bruzzaniti P, Burattini B, Piaser Guerrato G, Della Pepa GM, Sturiale CL, Lapolla P, Familiari P, La Pira B, D’Andrea G, Olivi A, D’Alessandris QG, Montano N. Advancements in Telomerase-Targeted Therapies for Glioblastoma: A Systematic Review. Int J Mol Sci 2024; 25:8700. [PMID: 39201386 PMCID: PMC11354571 DOI: 10.3390/ijms25168700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms "GBM", "high-grade gliomas", "hTERT" and "telomerase". We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.
Collapse
Affiliation(s)
- Giovanni Pennisi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Placido Bruzzaniti
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Benedetta Burattini
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giacomo Piaser Guerrato
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | | | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza, University of Rome, 00157 Rome, Italy;
| | - Biagia La Pira
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Giancarlo D’Andrea
- Department of Neurosurgery, F. Spaziani Hospital, 03100 Frosinone, Italy; (B.L.P.); (G.D.)
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Quintino Giorgio D’Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| | - Nicola Montano
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (B.B.); (G.P.G.); (G.M.D.P.); (C.L.S.); (A.O.); (Q.G.D.); (N.M.)
| |
Collapse
|
2
|
Ng GYQ, Hande MP. Use of peptide nucleic acid probe to determine telomere dynamics in improving chromosome analysis in genetic toxicology studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503773. [PMID: 39054004 DOI: 10.1016/j.mrgentox.2024.503773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Rivas SR, Mendez Valdez MJ, Chandar JS, Desgraves JF, Lu VM, Ampie L, Singh EB, Seetharam D, Ramsoomair CK, Hudson A, Ingle SM, Govindarajan V, Doucet-O’Hare TT, DeMarino C, Heiss JD, Nath A, Shah AH. Antiretroviral Drug Repositioning for Glioblastoma. Cancers (Basel) 2024; 16:1754. [PMID: 38730705 PMCID: PMC11083594 DOI: 10.3390/cancers16091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Outcomes for glioblastoma (GBM) remain poor despite standard-of-care treatments including surgical resection, radiation, and chemotherapy. Intratumoral heterogeneity contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. Drug repositioning studies on antiretroviral therapy (ART) have shown promising potent antineoplastic effects in multiple cancers; however, its efficacy in GBM remains unclear. To better understand the pleiotropic anticancer effects of ART on GBM, we conducted a comprehensive drug repurposing analysis of ART in GBM to highlight its utility in translational neuro-oncology. To uncover the anticancer role of ART in GBM, we conducted a comprehensive bioinformatic and in vitro screen of antiretrovirals against glioblastoma. Using the DepMap repository and reversal of gene expression score, we conducted an unbiased screen of 16 antiretrovirals in 40 glioma cell lines to identify promising candidates for GBM drug repositioning. We utilized patient-derived neurospheres and glioma cell lines to assess neurosphere viability, proliferation, and stemness. Our in silico screen revealed that several ART drugs including reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) demonstrated marked anti-glioma activity with the capability of reversing the GBM disease signature. RTIs effectively decreased cell viability, GBM stem cell markers, and proliferation. Our study provides mechanistic and functional insight into the utility of ART repurposing for malignant gliomas, which supports the current literature. Given their safety profile, preclinical efficacy, and neuropenetrance, ARTs may be a promising adjuvant treatment for GBM.
Collapse
Affiliation(s)
- Sarah R. Rivas
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Jay S. Chandar
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Jelisah F. Desgraves
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Victor M. Lu
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Leo Ampie
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Eric B. Singh
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Deepa Seetharam
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Christian K. Ramsoomair
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Anna Hudson
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Shreya M. Ingle
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Vaidya Govindarajan
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine DeMarino
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Avindra Nath
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| |
Collapse
|
4
|
Gorini F, Miceli M, de Antonellis P, Amente S, Zollo M, Ferrucci V. Epigenetics and immune cells in medulloblastoma. Front Genet 2023; 14:1135404. [PMID: 36968588 PMCID: PMC10036437 DOI: 10.3389/fgene.2023.1135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood tumor of the cerebellum. Transcriptional and epigenetic signatures have classified MB into four molecular subgroups, further stratified into biologically different subtypes with distinct somatic copy-number aberrations, driver genes, epigenetic alterations, activated pathways, and clinical outcomes. The brain tumor microenvironment (BTME) is of importance to regulate a complex network of cells, including immune cells, involved in cancer progression in brain malignancies. MB was considered with a “cold” immunophenotype due to the low influx of immune cells across the blood brain barrier (BBB). Recently, this assumption has been reconsidered because of the identification of infiltrating immune cells showing immunosuppressive phenotypes in the BTME of MB tumors. Here, we are providing a comprehensive overview of the current status of epigenetics alterations occurring during cancer progression with a description of the genomic landscape of MB by focusing on immune cells within the BTME. We further describe how new immunotherapeutic approaches could influence concurring epigenetic mechanisms of the immunosuppressive cells in BTME. In conclusion, the modulation of these molecular genetic complexes in BTME during cancer progression might enhance the therapeutic benefit, thus firing new weapons to fight MB.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualino de Antonellis
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico, Naples, Italy
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- *Correspondence: Veronica Ferrucci,
| |
Collapse
|
5
|
Suzuki K, Tange M, Yamagishi R, Hanada H, Mukai S, Sato T, Tanaka T, Akashi T, Kadomatsu K, Maeda T, Miida T, Takeuchi I, Murakami H, Sekido Y, Murakami-Tonami Y. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Dis 2022; 8:446. [PMID: 36335095 PMCID: PMC9637146 DOI: 10.1038/s41420-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.
Collapse
Affiliation(s)
- Koya Suzuki
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Masaki Tange
- grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan
| | - Ryota Yamagishi
- grid.258799.80000 0004 0372 2033Department of Pathophysiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Hanada
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Satomi Mukai
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tatsuhiro Sato
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Tomohiro Akashi
- grid.27476.300000 0001 0943 978XDepartment of Integrative Cellular Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- grid.27476.300000 0001 0943 978XDepartment of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInstitute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tohru Maeda
- grid.411042.20000 0004 0371 5415College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takashi Miida
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ,grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- grid.443595.a0000 0001 2323 0843Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yoshitaka Sekido
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDivision of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Murakami-Tonami
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
6
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
7
|
Perla A, Fratini L, Cardoso PS, Nör C, Brunetto AT, Brunetto AL, de Farias CB, Jaeger M, Roesler R. Histone Deacetylase Inhibitors in Pediatric Brain Cancers: Biological Activities and Therapeutic Potential. Front Cell Dev Biol 2020; 8:546. [PMID: 32754588 PMCID: PMC7365945 DOI: 10.3389/fcell.2020.00546] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Brain cancers are the leading cause of cancer-related deaths in children. Biological changes in these tumors likely include epigenetic deregulation during embryonal development of the nervous system. Histone acetylation is one of the most widely investigated epigenetic processes, and histone deacetylase inhibitors (HDACis) are increasingly important candidate treatments in many cancer types. Here, we review advances in our understanding of how HDACis display antitumor effects in experimental models of specific pediatric brain tumor types, i.e., medulloblastoma (MB), ependymoma (EPN), pediatric high-grade gliomas (HGGs), and rhabdoid and atypical teratoid/rhabdoid tumors (ATRTs). We also discuss clinical perspectives for the use of HDACis in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- Alexandre Perla
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula S Cardoso
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Carella A, Roviello V, Iannitti R, Palumbo R, La Manna S, Marasco D, Trifuoggi M, Diana R, Roviello GN. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int J Biol Macromol 2018; 121:77-88. [PMID: 30261256 DOI: 10.1016/j.ijbiomac.2018.09.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
Four 4-nitrophenyl-functionalized benzofuran (BF1, BF2) and benzodifuran (BDF1, BDF2) compounds were synthesized by a convenient route based on the Craven reaction. All the compounds underwent a detailed chemical-physical characterization to evaluate their structural, thermal and optical properties. An investigation on the therapeutic potential of the reported compounds was performed by analyzing their antiproliferative activity on prostatic tumour cells (PC-3). In both classes of compounds, anticancer potential is in direct correlation with the lipophilicity. From our study it emerged that antiproliferative activity was higher for benzofuran derivatives as compared to benzodifuran systems. Moreover, we report a mechanistic study relative to the most promising molecule, i.e. the apolar benzofuran BF1, that relates the antiproliferative properties found in our investigation to its ability to bind telomeric DNA (proven by CD and fluorescence techniques on tel22 G4 DNA), and highlights its unexpected impact on cell cycle progression.
Collapse
Affiliation(s)
- Antonio Carella
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples Federico II, Corso N. Protopisani, 80146 Naples, Italy
| | - Roberta Iannitti
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy
| | - Rosanna Palumbo
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy
| | - Sara La Manna
- University of Naples Federico II, Department of Pharmacy, Via Mezzocannone 16, 80134 Naples, Italy
| | - Daniela Marasco
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy; University of Naples Federico II, Department of Pharmacy, Via Mezzocannone 16, 80134 Naples, Italy
| | - Marco Trifuoggi
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Rosita Diana
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Giovanni N Roviello
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy.
| |
Collapse
|
9
|
Eitsuka T, Nakagawa K, Kato S, Ito J, Otoki Y, Takasu S, Shimizu N, Takahashi T, Miyazawa T. Modulation of Telomerase Activity in Cancer Cells by Dietary Compounds: A Review. Int J Mol Sci 2018; 19:E478. [PMID: 29415465 PMCID: PMC5855700 DOI: 10.3390/ijms19020478] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is expressed in ~90% of human cancer cell lines and tumor specimens, whereas its enzymatic activity is not detectable in most human somatic cells, suggesting that telomerase represents a highly attractive target for selective cancer treatment. Accordingly, various classes of telomerase inhibitors have been screened and developed in recent years. We and other researchers have successfully found that some dietary compounds can modulate telomerase activity in cancer cells. Telomerase inhibitors derived from food are subdivided into two groups: one group directly blocks the enzymatic activity of telomerase (e.g., catechin and sulfoquinovosyldiacylglycerol), and the other downregulates the expression of human telomerase reverse transcriptase (hTERT), the catalytic subunit of human telomerase, via signal transduction pathways (e.g., retinoic acid and tocotrienol). In contrast, a few dietary components, including genistein and glycated lipid, induce cellular telomerase activity in several types of cancer cells, suggesting that they may be involved in tumor progression. This review summarizes the current knowledge about the effects of dietary factors on telomerase regulation in cancer cells and discusses their molecular mechanisms of action.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Kiyotaka Nakagawa
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Shunji Kato
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Junya Ito
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Yurika Otoki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Soo Takasu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Naoki Shimizu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Takumi Takahashi
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan.
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| |
Collapse
|
10
|
Dinami R, Buemi V, Sestito R, Zappone A, Ciani Y, Mano M, Petti E, Sacconi A, Blandino G, Giacca M, Piazza S, Benetti R, Schoeftner S. Epigenetic silencing of miR-296 and miR-512 ensures hTERT dependent apoptosis protection and telomere maintenance in basal-type breast cancer cells. Oncotarget 2017; 8:95674-95691. [PMID: 29221158 PMCID: PMC5707052 DOI: 10.18632/oncotarget.21180] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The catalytic subunit of the telomerase complex, hTERT, ensures unlimited proliferative potential of cancer cells by maintaining telomere function and protecting from apoptosis. Using a miRNA screening approach we identified miR-296-5p and miR-512-5p as miRNAs that target hTERT in breast cancer cells. Ectopic miR-296-5p and miR-512-5p reduce telomerase activity, drive telomere shortening and cause proliferation defects by enhancing senescence and apoptosis in breast cancer cells. In line with the relevance of hTERT expression for human cancer we found that miR-296-5p and miR-512-5p expression is reduced in human breast cancer. Accordingly, high expression of miR-296-5p and miR-512-5p target genes including hTERT is linked with significantly reduced distant metastasis free survival and relapse free survival of basal type breast cancer patients. This suggests relevance of the identified miRNAs in basal type breast cancer. Epigenetic silencing of miR-296 and miR-512 encoding genes is responsible for low levels of miR-296-5p and miR-512-5p expression in basal type breast cancer cells. Disrupting gene silencing results in a dramatic upregulation of miR-296-5p and miR-512-5p levels leading to reduced hTERT expression and increased sensitivity to the induction of apoptosis. Altogether, our data suggest that epigenetic regulatory circuits in basal type breast cancer may contribute to high hTERT levels by silencing miR-296-5p and miR-512-5p expression, thereby contributing to the aggressiveness of basal type breast cancer.
Collapse
Affiliation(s)
- Roberto Dinami
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Genomic Stability Unit, Trieste 34149, Italy.,Italian National Cancer Institute, Regina Elena, Rome 00144, Italy
| | - Valentina Buemi
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Genomic Stability Unit, Trieste 34149, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Trieste 34127, Italy
| | - Rosanna Sestito
- Italian National Cancer Institute, Regina Elena, Rome 00144, Italy
| | - Antonina Zappone
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Genomic Stability Unit, Trieste 34149, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Trieste 34127, Italy
| | - Yari Ciani
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Bioinformatics and Functional Genomics Unit (BFGU), Trieste 34149, Italy
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine Laboratory, Trieste 34149, Italy
| | - Eleonora Petti
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Genomic Stability Unit, Trieste 34149, Italy.,Italian National Cancer Institute, Regina Elena, Rome 00144, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Trieste 34127, Italy
| | - Andrea Sacconi
- Italian National Cancer Institute, Regina Elena, Translational Oncogenomics Group, Rome 00144, Italy
| | - Giovanni Blandino
- Italian National Cancer Institute, Regina Elena, Translational Oncogenomics Group, Rome 00144, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Medicine Laboratory, Trieste 34149, Italy
| | - Silvano Piazza
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Bioinformatics and Functional Genomics Unit (BFGU), Trieste 34149, Italy
| | - Roberta Benetti
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Cancer Epigenetics Unit, Trieste 34149, Italy.,Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine 33100, Italy
| | - Stefan Schoeftner
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie (LNCIB), Genomic Stability Unit, Trieste 34149, Italy.,Italian National Cancer Institute, Regina Elena, Rome 00144, Italy.,Department of Life Sciences, Università degli Studi di Trieste, Trieste 34127, Italy
| |
Collapse
|
11
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Melicher D, Buzas EI, Falus A. Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics. Cell Mol Life Sci 2015; 72:4095-109. [PMID: 26190020 PMCID: PMC11113282 DOI: 10.1007/s00018-015-1991-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023]
Abstract
Telomeres are protective heterochromatic structures that cap the end of linear chromosomes and play a key role in preserving genomic stability. Telomere length represents a balance between processes that shorten telomeres during cell divisions with incomplete DNA replication and the ones that lengthen telomeres by the action of telomerase, an RNA-protein complex with reverse transcriptase activity which adds telomeric repeats to DNA molecule ends. Telomerase activity and telomere length have a crucial role in cellular ageing and in the pathobiology of several human diseases attracting intense research. The last few decades have witnessed remarkable advances in our understanding about telomeres, telomere-associated proteins, and the biogenesis and regulation of the telomerase holoenzyme complex, as well as about telomerase activation and the telomere-independent functions of telomerase. Emerging data have revealed that telomere length can be modified by genetic and epigenetic factors, sex hormones, reactive oxygen species and inflammatory reactions. It has become clear that, in order to find out more about the factors influencing the rate of telomere attrition in vivo, it is crucial to explore both genetic and epigenetic mechanisms. Since the telomere/telomerase assembly is under the control of multiple epigenetic influences, the unique design of twin studies could help disentangle genetic and environmental factors in the functioning of the telomere/telomerase system. It is surprising that the literature on twin studies investigating this topic is rather scarce. This review aims to provide an overview of some important immune response- and epigenetics-related aspects of the telomere/telomerase system demanding more research, while presenting the available twin data published in connection with telomere research so far. By emphasising what we know and what we still do not know in these areas, another purpose of this review is to urge more twin studies in telomere research.
Collapse
Affiliation(s)
- Dora Melicher
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Moradi Binabaj M, Hosseini SA, Khoshbin Khoshnazar A, Asadi J. The Simultaneous Effect of Valproic Acid and Gamma Radiation on Telomerase Activity and Bax and Bcl-2 Protein Levels in MCF-7 Breast Cancer Cell Line. Jundishapur J Nat Pharm Prod 2015. [DOI: 10.17795/jjnpp-22818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Abstract
Histone deacetylase inhibitors (HDACis) have fascinated researchers in almost all fields of oncology for many years owing to their pleiotropic effects on nearly every aspect of cancer biology. Since the approval of the first HDACi vorinostat for the treatment of cutaneous T-cell leukemia in 2006, more than a hundred clinical trials have been initiated with a HDACi as a single agent or in combination therapy. Although a number of epigenetic and nonepigenetic molecular mechanisms of action have been proposed, biomarkers for response prediction and patient selection are still lacking. One of the inherent problems in the field of HDACis is their 'reverse' history of drug development: these compounds reached clinical application at an early stage, before the biology of their targets, HDAC1-11, was sufficiently understood. This review summarizes the current knowledge on the human family of HDACs as drug targets in pediatric and adult brain tumors, the efficacy and molecular action of HDACis in preclinical models, as well as the current status of the clinical development of these compounds in the field of neuro-oncology.
Collapse
Affiliation(s)
- Jonas Ecker
- Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
15
|
Miyazaki Y, Yoshida N, Nozaki T, Inoue H, Kikuchi K, Kusama K. Telomerase activity in the occurrence and progression of oral squamous cell carcinoma. J Oral Sci 2015; 57:295-303. [DOI: 10.2334/josnusd.57.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| | - Noriaki Yoshida
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| | - Tadashige Nozaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
- Department of Pharmacology, Osaka Dental University
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| | - Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry
| |
Collapse
|
16
|
Sui X, Kong N, Wang Z, Pan H. Epigenetic regulation of the human telomerase reverse transciptase gene: A potential therapeutic target for the treatment of leukemia (Review). Oncol Lett 2013; 6:317-322. [PMID: 24137323 PMCID: PMC3789043 DOI: 10.3892/ol.2013.1367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/17/2013] [Indexed: 12/21/2022] Open
Abstract
Telomerase activation is a critical step in human carcinogenesis through the maintenance of telomeres. Telomerase activity is primarily regulated by the human telomerase reverse transcriptase gene (hTERT), thus, an improved understanding of the transcriptional control of hTERT may provide potential therapeutic targets for the treatment of leukemia and other forms of cancer. Epigenetic modulation, a significant regulatory process in cell biology, has recently been shown to be involved in the regulation of the hTERT gene. Moreover, several epigenetic modifiers, including DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, are now in pre- and early clinical trials of leukemia as monotherapies or in combination with other drugs, and have achieved significant clinical success. In the present review, the epigenetic mechanisms associated with telomerase activity in leukemia, and the therapeutic potential of an antitelomerase strategy that combines epigenetic modifiers with telomerase hTR subunit small molecule inhibitors are discussed.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, P.R. China
| | | | | | | |
Collapse
|
17
|
Telomere lengthening by trichostatin A treatment in cloned pigs. YI CHUAN = HEREDITAS 2012; 34:1583-90. [DOI: 10.3724/sp.j.1005.2012.01583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Characterization of ectonucleotidases in human medulloblastoma cell lines: ecto-5'NT/CD73 in metastasis as potential prognostic factor. PLoS One 2012; 7:e47468. [PMID: 23094051 PMCID: PMC3475694 DOI: 10.1371/journal.pone.0047468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/11/2012] [Indexed: 01/08/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.
Collapse
|
19
|
Nie D, Huang K, Yin S, Li Y, Xie S, Ma L, Wang X, Wu Y, Xiao J. Synergistic/additive interaction of valproic acid with bortezomib on proliferation and apoptosis of acute myeloid leukemia cells. Leuk Lymphoma 2012; 53:2487-95. [DOI: 10.3109/10428194.2012.698273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Doss CGP, Debajyoti C, Debottam S. The impact of gold nanoparticles on hTERT gene expression leading to termination of malignant tumor. Gene 2012; 493:140-1. [PMID: 22155706 DOI: 10.1016/j.gene.2011.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/07/2011] [Accepted: 11/14/2011] [Indexed: 11/30/2022]
Abstract
Cancer nanotechnology is a fascinating field with broad applications in the fight against cancer which includes molecular imaging, molecular diagnosis, and targeted therapy. One of the emerging field of nanotechnology is applying of cancer therapy to specifically target therapeutic agents to tumor cells while sparing healthy tissues from harm. Among the many nanomaterials being developed in nanomedicine application, gold nano particles have found promising application in treatment of cancer because of its unique properties. In this study, we have proposed a hypothetical approach to terminate solid tumors using anticancerous nanotherapeutic via gold nano particles. These gold nano particles target the promoter region of hTERT by stabilizing the G-quadruplex structure and block the transcription of 5'-UTR region of hTERT gene.
Collapse
|
21
|
Histone deacetylase inhibition as an anticancer telomerase-targeting strategy. Int J Cancer 2011; 129:2765-74. [DOI: 10.1002/ijc.26241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
|
22
|
Rahman R, Osteso-Ibanez T, Hirst RA, Levesley J, Kilday JP, Quinn S, Peet A, O'Callaghan C, Coyle B, Grundy RG. Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells. Mol Cancer Ther 2010; 9:2568-81. [PMID: 20643785 DOI: 10.1158/1535-7163.mct-10-0272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant epigenetic regulation of gene expression contributes to tumor initiation and progression. Studies from a plethora of hematologic and solid tumors support the use of histone deacetylase inhibitors (HDACi) as potent anticancer agents. However, the mechanism of HDACi action with respect to the temporal order of induced cellular events is unclear. The present study investigates the anticancer effects of the HDACi trichostatin A in high-grade childhood brain tumor cells. Acute exposure to trichostatin A resulted in marked inhibition of cell proliferation, an increase in the proportion of G(2)-M cells, activation of H2A.X, and subsequent induction of apoptosis in the majority of cell lines. These phenotypic effects were associated with abrogation of telomerase activity and human telomerase reverse transcriptase downregulation in the majority of cell lines. In contrast, no cytotoxicity was observed in primary ependymal cells with respect to cilia function. Thus, inhibition of histone deacetylases leads to antiproliferative and proapoptotic effects in childhood brain tumor cells, likely to involve altered chromatin regulation at the human telomerase reverse transcriptase promoter.
Collapse
Affiliation(s)
- Ruman Rahman
- Children's Brain Tumor Research Centre, Medical School, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sharma V, Koul N, Joseph C, Dixit D, Ghosh S, Sen E. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity. J Cell Mol Med 2010; 14:2151-61. [PMID: 19583803 PMCID: PMC3823006 DOI: 10.1111/j.1582-4934.2009.00844.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study identified a novel mechanism of induction of apoptosis in glioblastoma cells by scriptaid – a histone deacetylase (HDAC) inhibitor. Scriptaid reduced glioma cell viability by increasing Jun N-terminal kinase (JNK) activation. Although scriptaid induced activation of both p38MAPK and JNK, it was the inhibition of JNK that attenuated scriptaid-induced apoptosis significantly. Scriptaid also increased the expression of (i) p21 and p27 involved in cell-cycle regulation and (ii) γH2AX associated with DNA damage response in a JNK-dependent manner. Treatment with scriptaid increased Ras activity in glioma cells, and transfection of cells with constitutively active RasV12 further sensitized glioma cells to scriptaid-induced apoptosis. Scriptaid also inhibited telomerase activity independent of JNK. Taken together, our findings indicate that scriptaid (i) induces apoptosis and reduces glioma cell proliferation by elevating JNK activation and (ii) also decreases telomerase activity in a JNK-independent manner.
Collapse
Affiliation(s)
- Vivek Sharma
- National Brain Research Centre, Manesar, Haryana, India
| | | | | | | | | | | |
Collapse
|
24
|
TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116. Biochem Biophys Res Commun 2009; 391:449-54. [PMID: 19914212 DOI: 10.1016/j.bbrc.2009.11.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022]
Abstract
Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter.
Collapse
|
25
|
Wang X, Hao MW, Dong K, Lin F, Ren JH, Zhang HZ. Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Arch Pharm Res 2009; 32:1263-9. [PMID: 19784583 DOI: 10.1007/s12272-009-1912-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 12/23/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), the major component of green tea polyphenol, has potent efficiency to prevent the growth of a variety of cancer cells. As a novel anticancer agent for treatment of cancers, EGCG is promising and the mechanism has not been fully understood. Laryngeal squamous cell carcinoma (LSCC) is one common tumor in head and neck cancers. In the present study, we assess the effects of EGCG on LSCC cell line Hep-2, and their possible involvement in EGCG-induced apoptosis. The result showed that treatment of Hep-2 cells with EGCG decreased the cell viability, inhibited the growth and proliferation, induced apoptosis and increased the activity of caspase-3 in a dose-dependent manner. Furthermore, we found that EGCG-treatment repressed telomerase activity effectively in a concentration-dependent manner. The combined results show that EGCG induced apoptosis in Hep-2 cells via inhibiting the telomerase activity.
Collapse
Affiliation(s)
- Xi Wang
- Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
26
|
Giustiniani J, Daire V, Cantaloube I, Durand G, Poüs C, Perdiz D, Baillet A. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 2008; 21:529-39. [PMID: 19136058 DOI: 10.1016/j.cellsig.2008.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 01/30/2023]
Abstract
Involved in a wide range of cellular processes such as signal transduction, microtubules are highly dynamic polymers that accumulate various post-translational modifications including polyglutamylation, polyglycylation, carboxyterminal cleavage and acetylation, the functions of which just begin to be uncovered. The molecular chaperone Hsp90, which is essential for the folding and activity of numerous client proteins involved in cell proliferation and apoptosis, associates with the microtubule network but the effects of tubulin post-translational modifications on its microtubule binding has not yet been investigated. Herein, we show that both the constitutive (beta) and the inducible (alpha) Hsp90 isoforms bind to microtubules in a way that depends on the level of tubulin acetylation. Tubulin acetylation also stimulates the binding and the signaling function of at least two of its client proteins, the kinase Akt/PKB and the transcription factor p53. This study highlights the role of tubulin acetylation in modulating microtubule-based transport of Hsp90-chaperoned proteins and thus in regulating signaling dynamics in the cytoplasm.
Collapse
Affiliation(s)
- Julien Giustiniani
- Laboratoire de Biochimie et Biologie Cellulaire, UPRES JE 2493-IFR141, Univ. Paris-Sud 11, Faculté de Pharmacie, 5 rue J.B. Clément, 92290 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou P, Fang DC, Chen B, Mao GP, Liu WW, Cao CP, Bu XH, Zhang QJ. Cloning of a group of telomere-associated proteins. Shijie Huaren Xiaohua Zazhi 2008; 16:1507-1512. [DOI: 10.11569/wcjd.v16.i14.1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the biological function and molecular mechanism of telomerase in immortal and/or tumor cells.
METHODS: Based on the principle of the yeast two-hybrid technology, the recombinant of human telomerase catalytic subunit bait fusion gene was constructed by DNA recombination technique, which was employed to screen cDNA libraries. The positive clones were confirmed by β-galactosidase colony-lift filter assay and furthermore the obtained plasmids cDNA sequences were compared with the isogenous sequences in GenBank.
RESULTS: The gene phenotypes of AH109 and Y187 yeast strains were stable and there was no leak expression of His. The recombinant of human telomerase catalytic subunit bait fusion gene, which was named as pGBKT7-hTERT, was constructed, and its bait fusion protein had no toxic effects on AH109 yeast cells and no activation effect on the autonomous reporter gene LacZ. Twenty-eight Ade+, Leu+, Trp+, and His+ clones were screened from the cDNA libraries and 12 Ade+, His+ and LacZ+ clones were obtained by the print analysis of β-galactosidase colony-lift filter assay. Of the 12 positive clones, 5 library plasmids possessed the effect of autonomously activating the reporter gene, so they were removed. There were 7 true positive clones among the library plasmids, 2 of which were found repeated after sequencing. The six obtained plasmids cDNA sequences were compared with the isogenous sequences in GenBank by Blast software via Internet. Finally, 6 recorded cDNA sequences were obtained, including T-STAR, PAWR, I-1, SMARCB1, LOXL3 and HKR3.
CONCLUSION: The 6 obtained telomere-associated proteins may help us understand the structure of telomerase holoenzyme and the biological function and molecular mechanism of telomerase in tumor and/or immortal cells, providing a theoretical basis for the tumor genesis, aging and prevention.
Collapse
|