1
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
2
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Leonova E, Ryabokon N, Rostoka E, Borisovs V, Velena A, Bisenieks E, Duburs G, Dzintare M, Goncharova R, Sjakste N. Genotoxic and genoprotective effects of 1,4-dihydropyridine derivatives: a brief review. Arh Hig Rada Toksikol 2023; 74:1-7. [PMID: 37014687 DOI: 10.2478/aiht-2023-74-3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
This review summarises current knowledge about the genotoxic and genoprotective effects of 1,4-dihydropyridines (DHP) with the main focus on the water-soluble 1,4-DHPs. Most of these water-soluble compounds manifest very low calcium channel blocking activity, which is considered "unusual" for 1,4-DHPs. Glutapyrone, diludine, and AV-153 decrease spontaneous mutagenesis and frequency of mutations induced by chemical mutagens. AV-153, glutapyrone, and carbatones protect DNA against the damage produced by hydrogen peroxide, radiation, and peroxynitrite. The ability of these molecules to bind to the DNA may not be the only mechanism of DNA protection, as other mechanisms such as radical scavenging or binding to other genotoxic compounds may take place and enhance DNA repair. These uncertainties and reports of high 1,4-DHP concentrations damaging the DNA call for further in vitro and in vivo preclinical research, pharmacokinetic in particular, as it can help pinpoint the exact mechanism(s) of the genotoxic and/or genoprotective action of 1,4-DHPs.
Collapse
Affiliation(s)
- Elina Leonova
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | - Nadezhda Ryabokon
- 2National Academy of Sciences of Belarus, Institute of Genetics and Cytology, Minsk, Belarus
| | - Evita Rostoka
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | - Vitalijs Borisovs
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| | | | | | - Gunars Duburs
- 3Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dzintare
- 4Latvian Academy of Sport Education, Department of Anatomy, Physiology, Biochemistry, Biomechanics, Hygiene and Informatics, Riga, Latvia
| | - Roza Goncharova
- 2National Academy of Sciences of Belarus, Institute of Genetics and Cytology, Minsk, Belarus
| | - Nikolajs Sjakste
- 1University of Latvia Faculty of Medicine, Medical Biochemistry Department, Riga, Latvia
| |
Collapse
|
4
|
Leonova E, Shvirksts K, Borisovs V, Smelovs E, Sokolovska J, Bisenieks E, Duburs G, Grube M, Sjakste N. Spectroscopic and electrochemical study of interactions between DNA and different salts of 1,4-dihydropyridine AV-153. PeerJ 2020; 8:e10061. [PMID: 33240591 PMCID: PMC7664466 DOI: 10.7717/peerj.10061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
1,4-dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antimutagenic and DNA-binding activity. The latter activity was first described for water-soluble 1,4-DHP with carboxylic group in position 4, the sodium salt of the 1,4-DHP derivative AV-153 among others. Some data show the modification of physicochemical properties and biological activities of organic compounds by metal ions that form the salts. We demonstrated the different affinity to DNA and DNA-protecting capacity of AV-153 salts, depending on the salt-forming ion (Na, K, Li, Rb, Ca, Mg). This study aimed to use different approaches to collate data on the DNA-binding mode of AV-153-Na and five other AV-153 salts. All the AV-153 salts in this study quenched the ethidium bromide and DNA complex fluorescence, which points to an intercalation binding mode. For some of them, the intercalation binding was confirmed using cyclic voltammetry and circular dichroism spectroscopy. It was shown that in vitro all AV-153 salts can interact with four DNA bases. The FTIR spectroscopy data showed the interaction of AV-153 salts with both DNA bases and phosphate groups. A preference for base interaction was observed as the AV-153 salts interacted mostly with G and C bases. However, the highest differences were detected in the spectral region assigned to phosphate groups, which might indicate either conformational changes of DNA molecule (B form to A or H form) or partial denaturation of the molecule. According to the UV/VIS spectroscopy data, the salts also interact with the human telomere repeat, both in guanine quadruplex (G4) and single-stranded form; Na and K salts manifested higher affinity to G4, Li and Rb -to single-stranded DNA.
Collapse
Affiliation(s)
- Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Vitalijs Borisovs
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
5
|
Microglia Implicated in Tauopathy in the Striatum of Neurodegenerative Disease Patients from Genotype to Phenotype. Int J Mol Sci 2020; 21:ijms21176047. [PMID: 32842621 PMCID: PMC7503242 DOI: 10.3390/ijms21176047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA). To test the correlations of microglia dystrophy and tauopathy, we quantified translocator protein (TSPO) and tau fibrils using autoradiography. We chose the caudate and putamen of Lewy body diseases (LBDs) (Parkinson’s disease, Parkinson’s disease dementia, and Dementia with Lewy body), Alzheimer’s disease (AD), and control brains and genotyped for TSPO, TREM2, and bridging integrator 1 (BIN1) genes using single nucleotide polymorphisms (SNP) assays. TREM2 gene variants were absent across all samples. However, associations between TSPO and BIN1 gene polymorphisms and TSPO, MPO, TREM2, and PAR level variations were found. PAR levels reduced significantly in the caudate of LBDs. TSPO density and tau fibrils decreased remarkably in the striatum of LBDs but increased in AD. Oxidative damage, induced by misfolded tau proteins and dopamine metabolism, causes microglia dystrophy or senescence during the late stage of LBDs. Consequently, microglia dysfunction conversely reduces tau propagation. The G allele of the BIN1 gene is a potential risk factor for tauopathy.
Collapse
|
6
|
Leonova E, Ošiņa K, Duburs G, Bisenieks E, Germini D, Vassetzky Y, Sjakste N. Metal ions modify DNA-protecting and mutagen-scavenging capacities of the AV-153 1,4-dihydropyridine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403077. [PMID: 31561891 DOI: 10.1016/j.mrgentox.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 11/30/2022]
Abstract
1,4-Dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. AV-153-Na, an antimutagenic and DNA-repair enhancing compound was shown to interact with DNA by intercalation. Here we studied DNA binding of several AV-153 salts to evaluate the impact of AV-153 modifications on its DNA binding capacity, the ability to scavenge the peroxynitrite, to protect HeLa and B-cells cells against DNA damage. Affinity of the AV-153 salts to DNA measured by a fluorescence assay was dependent on the metal ion forming a salt in position 4 of the 1,4-DHP, and it decreased as follows: Mg > Na > Ca > Li > Rb > K. AV-153-K and AV-153-Rb could not react chemically with peroxynitrite as opposed to AV-153-Mg and AV-153-Ca, the latter increased the decomposition rate of peroxynitrite. AV-153-Na and AV-153-Ca effectively reduced DNA damage induced by peroxynitrite in HeLa cells, while AV-153-K and AV-153-Rb were less effective, AV-153-Li did not protect the DNA, and AV-153-Mg even caused DNA damage itself. The Na, K, Ca and Mg AV-153 salts were also shown to reduce the level of DNA damage in human B-cells from healthy donors. Thus, metal ions modify both DNA-binding and DNA-protecting effects of the AV-153 salts.
Collapse
Affiliation(s)
- Elina Leonova
- University of Latvia, Jelgavas Street 1, Riga, LV1004, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| | - Kristīne Ošiņa
- University of Latvia, Jelgavas Street 1, Riga, LV1004, Latvia.
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| | - Egils Bisenieks
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| | - Diego Germini
- Nuclear Organization and Pathologies, CNRS UMR-8126, Institut Gustave Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif, France.
| | - Yegor Vassetzky
- Nuclear Organization and Pathologies, CNRS UMR-8126, Institut Gustave Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif, France.
| | - Nikolajs Sjakste
- University of Latvia, Jelgavas Street 1, Riga, LV1004, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| |
Collapse
|
7
|
Leonova E, Rostoka E, Sauvaigo S, Baumane L, Selga T, Sjakste N. Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity. PeerJ 2018; 6:e4609. [PMID: 29713564 PMCID: PMC5923214 DOI: 10.7717/peerj.4609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background 1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage. Methods Peroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging—by EPR spectroscopy. DNA breakage was determined by the “comet method”, activity of DNA repair enzymes—using Glyco-SPOT and ExSy-SPOT assays. Intracellular distribution of the compound was studied by laser confocal scanning fluorescence microscopy. Fluorescence spectroscopy titration and circular dichroism spectroscopy were used to study interactions of the compound with human serum albumin. Results Some ability to scavenge hydroxyl radical by AV-153-Na was detected by the EPR method, but it turned out to be incapable of reacting chemically with peroxynitrite. However, AV-153-Na effectively decreased DNA damage produced by peroxynitrite in cultured HeLa cells. The Glyco-SPOT test essentially revealed an inhibition by AV-153-Na of the enzymes involved thymine glycol repair. Results with ExSy-SPOT chip indicate that AV-153-Na significantly stimulates excision/synthesis repair of 8-oxoguanine (8-oxoG), abasic sites (AP sites) and alkylated bases. Laser confocal scanning fluorescence microscopy demonstrated that within the cells AV-153-Na was found mostly in the cytoplasm; however, a stain in nucleolus was also detected. Binding to cytoplasmic structures might occur due to high affinity of the compound to proteins revealed by spectroscopical methods. Discussion Activation of DNA repair enzymes after binding to DNA appears to be the basis for the antimutagenic effects of AV-153-Na.
Collapse
Affiliation(s)
- Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Evita Rostoka
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Turs Selga
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Riga, Latvia.,Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
8
|
Ošiņa K, Rostoka E, Isajevs S, Sokolovska J, Sjakste T, Sjakste N. Effects of an Antimutagenic 1,4-Dihydropyridine AV-153 on Expression of Nitric Oxide Synthases and DNA Repair-related Enzymes and Genes in Kidneys of Rats with a Streptozotocin Model of Diabetes Mellitus. Basic Clin Pharmacol Toxicol 2016; 119:458-463. [PMID: 27163882 DOI: 10.1111/bcpt.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
Abstract
Development of complications of diabetes mellitus (DM), including diabetic nephropathy, is a complex multi-stage process, dependent on many factors including the modification of nitric oxide (NO) production and an impaired DNA repair. The goal of this work was to study in vivo effects of 1,4-dihydropyridine AV-153, known as antimutagen and DNA binder, on the expression of several genes and proteins involved in NO metabolism and DNA repair in the kidneys of rats with a streptozotocin (STZ)-induced model of DM. Transcription intensity was monitored by means of real-time RT-PCR and the expression of proteins by immunohistochemistry. Development of DM significantly induced PARP1 protein expression, while AV-153 (0.5 mg/kg) administration decreased it. AV-153 increased the expression of Parp1 gene in the kidneys of both intact and diabetic animals. Expression of H2afx mRNA and γH2AX histone protein, a marker of DNA breakage, was not changed in diabetic animals, but AV-153 up-regulated the expression of the gene without any impact on the protein expression. Development of DM was followed by a significant increase in iNOS enzyme expression, while AV-153 down-regulated the enzyme expression up to normal levels. iNos gene expression was also found to be increased in diabetic animals, but unlike the protein, the expression of mRNA was found to be enhanced by AV-153 administration. Expression of both eNOS protein and eNos gene in the kidneys was down-regulated, and the administration of AV-153 normalized the expression level. The effects of the compound in the kidneys of diabetic animals appear to be beneficial, as a trend for the normalization of expression of NO synthases is observed.
Collapse
Affiliation(s)
- Kristīne Ošiņa
- Latvian Institute of Organic Synthesis, Riga, Latvia. .,Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia.
| | - Evita Rostoka
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Sergejs Isajevs
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Jelizaveta Sokolovska
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Tatjana Sjakste
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Salaspils, Latvia
| | - Nikolajs Sjakste
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
9
|
Buraka E, Chen CYC, Gavare M, Grube M, Makarenkova G, Nikolajeva V, Bisenieks I, Brūvere I, Bisenieks E, Duburs G, Sjakste N. DNA-binding studies of AV-153, an antimutagenic and DNA repair-stimulating derivative of 1,4-dihydropiridine. Chem Biol Interact 2014; 220:200-7. [PMID: 25016077 DOI: 10.1016/j.cbi.2014.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 01/24/2023]
Abstract
UNLABELLED The ability to intercalate between DNA strands determines the cytotoxic activity of numerous anticancer drugs. Strikingly, intercalating activity was also reported for some compounds considered to be antimutagenic. The aim of this study was to determine the mode of interaction of DNA with the antimutagenic and DNA repair-stimulating dihydropyridine (DHP) AV-153. DNA and AV-153 interactions were studied by means of UV/VIS spectroscopy, fluorimetry and infrared spectroscopy. Compound AV-153 is a 1,4 dihydropyridine with ethoxycarbonyl groups in positions 3 and 5. Computer modeling of AV-153 and DNA interactions suggested an ability of the compound to dock between DNA strands at a single strand break site in the vicinity of two pyrimidines, which was confirmed in the present study. AV-153 evidently interacted with DNA, as addition of DNA to AV-153 solutions resulted in pronounced hyperchromic and bathochromic effects on the spectra. Base modification in a plasmid by peroxynitrite only minimally changed binding affinity of the compound; however, induction of single-strand breaks using Fenton's reaction greatly increased binding affinity. The affinity did not change when the ionic strength of the solution was changed from 5 to 150 mM NaCl, although it increased somewhat at 300 mM. Neither was it influenced by temperature changes from 25 to 40°C, however, it decreased when the pH of the solution was changed from 7.4 to 4.7. AV-153 competed with EBr for intercalation sites in DNA: 116 mM of the compound caused a two-fold decrease in fluorescence intensity. FT-IR spectral data analyses indicated formation of complexes between DNA and AV-153. The second derivative spectra analyses indicated interaction of AV-153 with guanine, cytosine and thymine bases, but no interaction with adenine was detected. CONCLUSIONS The antimutagenic substance AV-153 appears to intercalate between the DNA strands at the site of a DNA nick in the vicinity of two pyrimidines.
Collapse
Affiliation(s)
- E Buraka
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - C Yu-Chian Chen
- Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - M Gavare
- Institute of Microbiology and Biotechnology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - M Grube
- Institute of Microbiology and Biotechnology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - G Makarenkova
- Faculty of Biology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - V Nikolajeva
- Faculty of Biology, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia
| | - I Bisenieks
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - I Brūvere
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - E Bisenieks
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - G Duburs
- Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia
| | - N Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, No. 4 Kronvalda Boulevard, Riga LV-1010, Latvia; Latvian Institute of Organic Synthesis, No. 21 Aizkraukles Street, Riga LV-1006, Latvia.
| |
Collapse
|
10
|
Batra V, Kislay B. Mitigation of gamma-radiation induced abasic sites in genomic DNA by dietary nicotinamide supplementation: metabolic up-regulation of NAD(+) biosynthesis. Mutat Res 2013; 749:28-38. [PMID: 23891603 DOI: 10.1016/j.mrfmmm.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 01/25/2023]
Abstract
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. The objective of the present study was to investigate dietary nicotinamide enrichment dependent adaptive response to potential cytotoxic effect of (60)Co γ-radiation. To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on control diet (CD) and nicotinamide supplemented diet (NSD). After 6 weeks of CD and NSD dietary regimen, we exposed the animals to γ-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activities of enzymes involved in NAD(+) biosynthesis. Increased activities of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNAT) were observed up to 48h post-irradiation in NSD fed irradiated mice. Concomitant with increase in liver NAMPT and NMNAT activities, NAD(+) levels were replenished in NSD fed and irradiated animals. However, NAMPT and NMNAT-mediated NAD(+) biosynthesis and ATP levels were severely compromised in liver of CD fed irradiated mice. Another major finding of these studies revealed that under γ-radiation stress, dietary nicotinamide supplementation might induce higher and long-lasting poly(ADP)-ribose polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG) activities in NSD fed animals compared to CD fed animals. To investigate liver DNA damage, number of apurinic/apyrimidinic sites (AP sites) and level of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) residues were quantified. A significant increase in liver DNA AP sites and 8-oxo-dG levels with concomitant increase in caspase-3 was observed in CD fed and irradiated animals compared to NSD fed and irradiated mice. In conclusion present studies show that under γ-radiation stress conditions, dietary nicotinamide supplementation restores DNA excision repair activity via prolonged activation of PARP1 and PARG activities. Present results clearly indicated that hepatic NAD(+) replenishment might be a novel and potent approach to reduce radiation injury.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | |
Collapse
|
11
|
The influence of XPD, APE1, XRCC1, and NBS1 polymorphic variants on DNA repair in cells exposed to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:42-8. [DOI: 10.1016/j.mrgentox.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022]
|
12
|
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3448-3459. [PMID: 23770045 DOI: 10.1016/j.bbamcr.2013.06.001] [Citation(s) in RCA: 988] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are the two major modes of cell death, the molecular mechanisms of which have been extensively studied. Although initially thought to constitute mutually exclusive cellular states, recent findings reveal cellular contexts that require a balanced interplay between these two modes of cellular demise. Several death initiator and effector molecules, signaling pathways and subcellular sites have been identified as key mediators in both processes, either by constituting common modules or alternatively by functioning as a switch allowing cells to decide which route to take, depending on the specific situation. Importantly, autophagy, which is a predominantly cytoprotective process, has been linked to both types of cell death, serving either a pro-survival or pro-death function. Here we review the recent literature that highlights the intricate interplay between apoptosis, necrosis and autophagy, focusing on the relevance and impact of this crosstalk in normal development and in pathology. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece.
| |
Collapse
|
13
|
Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz) 2012; 61:43-58. [PMID: 23229678 DOI: 10.1007/s00005-012-0205-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
Cell death is a fundamental ingredient of life. Thus, not surprisingly more than one form of cell death exists. Several excellent reviews on various forms of cell death have already been published but manuscripts describing interconnection and interdependence between such processes are uncommon. Here, what follows is a brief introduction on all three classical forms of cell death, followed by a more detailed insight into the role of p53, the master regulator of apoptosis, and other forms of cell death. While discussing p53 and also the role of caspases in cell death forms, we offer insight into the interplay between autophagy and apoptosis, or necrosis, where autophagy may initially serve pro-survival functions. The review moves further to present some details about less researched forms of programmed cell death, namely necroptosis, necrosis and mitoptosis. These "mixed" forms of cell death allow us to highlight the interconnected nature of cell death forms, particularly apoptosis and necrosis. The interdependence between apoptosis, autophagy and necrosis, and their significance for cancer development and treatment are also analyzed in further parts of the review. In the concluding parts, the afore-mentioned issues will be put in perspective for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Wiem Chaabane
- Division of Cell Biology, Department Clinical and Experimental Medicine (IKE), and Integrative Regenerative Medicine Center (IGEN), Linköping University, Cell Biology Building, Linköping, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Cieślar-Pobuda A, Saenko Y, Rzeszowska-Wolny J. PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Mutat Res 2012; 732:9-15. [PMID: 22321899 DOI: 10.1016/j.mrfmmm.2012.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), an enzyme activated by DNA strand breaks, synthesizes polymers of poly(ADP-ribose) (PAR) that modify chromatin and other proteins and play a role in DNA repair. Inhibition of PARP1 activity is considered a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radio-therapy. Here we examined the influence of inhibition of PARP1 on formation of reactive oxygen species (ROS) and on DNA repair in cells exposed to ionizing radiation (IR). K562 (human myelogenous leukaemia) cells were grown and exposed to 4 or 12 Gy of ionizing radiation in presence or absence of the PARP inhibitor NU1025 (100 μM). Intracellular ROS were assayed using the probe 2,7-dichlorofluorescein with detection by flow cytometry and the rejoining of DNA strand breaks were followed by alkaline single cell gel electrophoresis (comet) assays. In untreated cells a significant increase in PAR formation occurred during the first 5 min after IR, followed by a gradual decrease up to 30 min. Addition of a PARP inhibitor arrested the production of PAR almost completely and decreased the rate of rejoining of DNA strand breaks significantly; however, 3h after irradiation we observed no difference in the amount of DNA strand breaks between PARP inhibitor-treated and untreated cells. Twelve to 48 h after irradiation, an increase of ROS concentration was observed in irradiated cells and ROS levels in PARP inhibitor-treated cells were significantly higher than in cells without inhibitor. Irradiated cells grown in the presence or absence of PARP inhibitor did not differ in the frequencies of apoptotic and necrotic cells or in the activity of caspases at 24, 48 and 72 h after irradiation. Poly(ADP-ribosylation) and inhibition of PARP1 appeared to modulate DNA strand break rejoining and influence the concentration of ROS in irradiated cells.
Collapse
Affiliation(s)
- Artur Cieślar-Pobuda
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | | | | |
Collapse
|
15
|
Augustyniak A, Bartosz G, Čipak A, Duburs G, Horáková L, Łuczaj W, Majekova M, Odysseos AD, Rackova L, Skrzydlewska E, Stefek M, Štrosová M, Tirzitis G, Venskutonis PR, Viskupicova J, Vraka PS, Žarković N. Natural and synthetic antioxidants: An updated overview. Free Radic Res 2010; 44:1216-62. [DOI: 10.3109/10715762.2010.508495] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Furman JL, Mok PW, Shen S, Stains CI, Ghosh I. A turn-on split-luciferase sensor for the direct detection of poly(ADP-ribose) as a marker for DNA repair and cell death. Chem Commun (Camb) 2010; 47:397-9. [PMID: 20830433 DOI: 10.1039/c0cc02229b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Designed sensors comprising split-firefly luciferase conjugated to tandem poly(ADP-ribose) binding domains allow for the direct solution phase detection of picogram quantities of PAR and for monitoring temporal changes in poly(ADP-ribosyl)ation events in mammalian cells.
Collapse
Affiliation(s)
- Jennifer L Furman
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
17
|
Cazzalini O, Donà F, Savio M, Tillhon M, Maccario C, Perucca P, Stivala LA, Scovassi AI, Prosperi E. p21CDKN1A participates in base excision repair by regulating the activity of poly(ADP-ribose) polymerase-1. DNA Repair (Amst) 2010; 9:627-35. [PMID: 20303835 DOI: 10.1016/j.dnarep.2010.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 02/07/2023]
Abstract
The cell cycle inhibitor p21(CDKN1A) has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21(-/-) human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21(-/-) human fibroblasts than in parental p21(+/+) cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21(-/-) than in p21(+/+) fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase beta, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Dipartimento di Medicina Sperimentale, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sabisz M, Wesierska-Gadek J, Skladanowski A. Increased cytotoxicity of an unusual DNA topoisomerase II inhibitor compound C-1305 toward HeLa cells with downregulated PARP-1 activity results from re-activation of the p53 pathway and modulation of mitotic checkpoints. Biochem Pharmacol 2010; 79:1387-97. [PMID: 20067769 DOI: 10.1016/j.bcp.2009.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 11/25/2022]
Abstract
Our previous studies have shown that murine fibroblast cells, in which PARP-1 gene was inactivated by gene disruption, are extremely sensitive to triazoloacridone compound C-1305, an inhibitor of DNA topoisomerase II with unusual properties. Here, we show that pharmacological inhibition of PARP-1 activity by its inhibitor compound NU1025, sensitizes human cervical carcinoma HeLa cells to compound C-1305 compared to treatment with drug alone. Cytotoxic effect of drug/NU1025 of other topoisomerase II inhibitors varied depending on the dose of PARP-1 inhibitor. Increased cytotoxicity of topoisomerase II inhibitor/NU1025 combinations was attributable to the re-activation of the p53 pathway in drug-treated HeLa cells. This lead to a more stringent cell cycle checkpoint control during G2 and M and enhanced cell death by mitotic catastrophe induced by drug/NU1025 combinations. Interestingly, treatment of HeLa cells with NU1025 alone also increased p53 expression. This effect is, at least in part, related to the inhibition of proteasome activity by drug treatments. Together, our results show that concomitant inhibition of topoisomerase II and PARP-1 leads to the synergistic cytotoxic effect toward tumor cells that may be important for combination therapies with NU1025 and topoisomerase II inhibitors. We also confirmed our earlier work and show the important role of PARP-1 activity in the maintenance of the G2 arrest induced by DNA damaging drugs. Finally, based on our studies we propose that NU1025 and possibly other inhibitors of PARP-1 may be used as non-genotoxic agents to activate p53 in tumor cells with non-functional p53 pathways.
Collapse
Affiliation(s)
- Michal Sabisz
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Poland
| | | | | |
Collapse
|
19
|
Wojewódzka M, Gradzka I, Buraczewska I, Brzóska K, Sochanowicz B, Goncharova R, Kuzhir T, Szumiel I. Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells. Mutat Res 2009; 671:45-51. [PMID: 19737572 DOI: 10.1016/j.mrfmmm.2009.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/23/2009] [Accepted: 08/26/2009] [Indexed: 05/28/2023]
Abstract
Compounds with the structural motif of 1,4-dihydropyridine display a broad spectrum of biological activities, often defined as bioprotective. Among them are L-type calcium channel blockers, however, also derivatives which do not block calcium channels exert various effects at the cellular and organismal levels. We examined the effect of sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (denoted here as DHP and previously also as AV-153) on X-ray-induced DNA damage and mutation frequency at the HGPRT (hypoxanthine-guanine phosphoribosyl transferase) locus in Chinese hamster ovary CHO-K1 cells. Using formamido-pyrimidine glycosylase (FPG) comet assay, we found that 1-h DHP (10nM) treatment before X-irradiation considerably reduced the initial level of FPG-recognized DNA base damage, which was consistent with decreased 8-oxo-7,8-dihydro-2'-deoxyguanosine content and mutation frequency lowered by about 40%. No effect on single strand break rejoining or on cell survival was observed. Similar base damage-protective effect was observed for two calcium channel blockers: nifedipine (structurally similar to DHP) or verapamil (structurally unrelated). So far, the specificity of the DHP-caused reduction in DNA damage - practically limited to base damage - has no satisfactory explanation.
Collapse
Affiliation(s)
- M Wojewódzka
- Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schultheisz HL, Szymczyna BR, Williamson JR. Enzymatic synthesis and structural characterization of 13C, 15N-poly(ADP-ribose). J Am Chem Soc 2009; 131:14571-8. [PMID: 19757771 DOI: 10.1021/ja903155s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) is a significant nucleic acid polymer involved with diverse functions in eukaryotic cells, yet no structural information is available. A method for the synthesis of (13)C, (15)N-poly(ADP-ribose) (PAR) has been developed to allow characterization of the polymer using multidimensional nuclear magnetic resonance (NMR) spectroscopy. Successful integration of pentose phosphate, nicotinamide adenine dinucleotide biosynthesis, and cofactor recycling pathways with poly(ADP-ribose) polymerase-1 permitted labeling of PAR from (13)C-glucose and (13)C, (15)N-ATP in a single pot reaction. The scheme is efficient, yielding approximately 400 nmoles of purified PAR from 5 mumoles ATP, and the behavior of the synthetic PAR is similar to data from PAR synthesized by cell extracts. The resonances for (13)C, (15)N-PAR were unambiguously assigned, but the polymer appears to be devoid of inherent regular structure. PAR may form an ordered macromolecular structure when interacting with proteins, and due to the extensive involvement of PAR in cell function and disease, further studies of PAR structure will be required. The labeled PAR synthesis reported here will provide an essential tool for the future study of PAR-protein complexes.
Collapse
Affiliation(s)
- Heather L Schultheisz
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, MB33, La Jolla, California 92037, USA
| | | | | |
Collapse
|
21
|
Modulation of cellular defense processes in human lymphocytes in vitro by a 1,4-dihydropyridine derivative. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 679:33-8. [DOI: 10.1016/j.mrgentox.2009.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/18/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
|
22
|
Anniversaries and dates. Chem Heterocycl Compd (N Y) 2009. [DOI: 10.1007/s10593-009-0307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|