1
|
Eisazaei S, Naderi M, Kordi Tamandani DM. Case Report: A Novel Homozygous Variant in the SLX4 Gene Causes Fanconi Anemia. Genet Test Mol Biomarkers 2025; 29:7-11. [PMID: 39841989 DOI: 10.1089/gtmb.2024.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Background: Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved. Whole exome sequencing (WES) is employed to diagnose rare Mendelian disorders when standard tests fail to provide a definitive pathological diagnosis. However, WES has the potential to reveal pathogenic variants that may complicate the diagnostic process. In this study, the method was chosen to examine SLX4/FANCP. Aims: The goal of our research was to suggest that the new potentially harmful genetic mutation, c.4921dup A>AC (p.Val1641GlyfsTer15), could lead to the development of FA. Methods and Result: This patient was analyzed by performing the WES test, and a homozygous pathogenic variant in the SLX4 gene (c.4921dupA>AC - chr16-3633329-p.Val1641GlyfsTer15) was identified in this patient. The candidate variant was confirmed by Sanger sequencing. The parent of the patient and the fetus of this family were also examined using Sanger sequencing, and they were determined to be carriers and heterozygous. Conclusion: Our research has uncovered a new form of pathogenic genetic variation in the SLX4 gene, providing new insights into the molecular causes of this condition. To date, the c.4921dup A>AC (p.Val1641GlyfsTer15) pathogenic variant has not been observed or reported worldwide. These findings could be valuable for investigating the mechanisms of FA and may offer insights for preventing, diagnosing, and managing the risks associated with this disease.
Collapse
Affiliation(s)
- Sepideh Eisazaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Majid Naderi
- Department of Pediatrics, School of Medicine Genetics of Non-communicable Disease Research Center, Ali Ibne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
2
|
Ananthaswamy D, Funes K, Borges T, Roques S, Fassnacht N, Jamal SE, Checchi PM, Wei-sy Lee T. NuRD chromatin remodeling is required to repair exogenous DSBs in the Caenorhabditis elegans germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613027. [PMID: 39314477 PMCID: PMC11419128 DOI: 10.1101/2024.09.14.613027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Organisms rely on coordinated networks of DNA repair pathways to protect genomes against toxic double-strand breaks (DSBs), particularly in germ cells. All repair mechanisms must successfully negotiate the local chromatin environment in order to access DNA. For example, nucleosomes can be repositioned by the highly conserved Nucleosome Remodeling and Deacetylase (NuRD) complex. In Caenorhabditis elegans, NuRD functions in the germline to repair DSBs - the loss of NuRD's ATPase subunit, LET-418/CHD4, prevents DSB resolution and therefore reduces fertility. In this study, we challenge germlines with exogenous DNA damage to better understand NuRD's role in repairing DSBs. We find that let-418 mutants are hypersensitive to cisplatin and hydroxyurea: exposure to either mutagen impedes DSB repair, generates aneuploid oocytes, and severely reduces fertility and embryonic survival. These defects resemble those seen when the Fanconi anemia (FA) DNA repair pathway is compromised, and we find that LET-418's activity is epistatic to that of the FA component FCD-2/FANCD2. We propose a model in which NuRD is recruited to the site of DNA lesions to remodel chromatin and allow access for FA pathway components. Together, these results implicate NuRD in the repair of both endogenous DSBs and exogenous DNA lesions to preserve genome integrity in developing germ cells.
Collapse
Affiliation(s)
- Deepshikha Ananthaswamy
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Kelin Funes
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Thiago Borges
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Scott Roques
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| | - Nina Fassnacht
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Sereen El Jamal
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Paula M. Checchi
- Department of Biology, Marist College, 3399 North Road, Poughkeepsie, NY 12601
| | - Teresa Wei-sy Lee
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Dr. Lowell MA, 01854
| |
Collapse
|
3
|
Olazabal-Herrero A, He B, Kwon Y, Gupta AK, Dutta A, Huang Y, Boddu P, Liang Z, Liang F, Teng Y, Lan L, Chen X, Pei H, Pillai MM, Sung P, Kupfer GM. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep 2024; 43:113610. [PMID: 38165804 PMCID: PMC10865995 DOI: 10.1016/j.celrep.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abhishek K Gupta
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Prajwal Boddu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fengshan Liang
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Yaqun Teng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xiaoyong Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
4
|
Lee J, Zhang J, Flanagan M, Martinez JA, Cunniff C, Kucine N, Lu AT, Haghani A, Gordevičius J, Horvath S, Chang VY. Bloom syndrome patients and mice display accelerated epigenetic aging. Aging Cell 2023; 22:e13964. [PMID: 37594403 PMCID: PMC10577546 DOI: 10.1111/acel.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the BLM gene, which is involved in genome stability. Patients with BSyn present with poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other signs of premature aging such as early, progressive hair loss and cataracts. We set out to determine epigenetic age in BSyn, which can be a better predictor of health and disease over chronological age. Our results show for the first time that patients with BSyn have evidence of accelerated epigenetic aging across several measures in blood lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit accelerated methylation age in multiple tissues, including brain, blood, kidney, heart, and skin, according to the brain methylation clock. Overall, we find that Bloom syndrome is associated with accelerated epigenetic aging effects in multiple tissues and more generally a strong effect on CpG methylation levels.
Collapse
Affiliation(s)
- Jamie Lee
- Division of Pediatric Hematology and OncologyUCLALos AngelesCaliforniaUSA
| | - Joshua Zhang
- Department of Human GeneticsUCLALos AngelesCaliforniaUSA
| | - Maeve Flanagan
- Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Julian A. Martinez
- Department of Human GeneticsUCLALos AngelesCaliforniaUSA
- Division of Medical GeneticsUCLALos AngelesCaliforniaUSA
- Department of PsychiatryUCLALos AngelesCaliforniaUSA
| | | | - Nicole Kucine
- Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Ake T. Lu
- Department of Human GeneticsUCLALos AngelesCaliforniaUSA
- Altos LabsSan DiegoCaliforniaUSA
| | - Amin Haghani
- Department of Human GeneticsUCLALos AngelesCaliforniaUSA
- Altos LabsSan DiegoCaliforniaUSA
| | | | - Steve Horvath
- Department of Human GeneticsUCLALos AngelesCaliforniaUSA
- Altos LabsSan DiegoCaliforniaUSA
| | - Vivian Y. Chang
- Division of Pediatric Hematology and OncologyUCLALos AngelesCaliforniaUSA
- Children's Discovery and Innovation InstituteUCLALos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterUCLALos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Vijayraghavan S, Saini N. Aldehyde-Associated Mutagenesis─Current State of Knowledge. Chem Res Toxicol 2023. [PMID: 37363863 DOI: 10.1021/acs.chemrestox.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aldehydes are widespread in the environment, with multiple sources such as food and beverages, industrial effluents, cigarette smoke, and additives. The toxic effects of exposure to several aldehydes have been observed in numerous studies. At the molecular level, aldehydes damage DNA, cross-link DNA and proteins, lead to lipid peroxidation, and are associated with increased disease risk including cancer. People genetically predisposed to aldehyde sensitivity exhibit severe health outcomes. In various diseases such as Fanconi's anemia and Cockayne syndrome, loss of aldehyde-metabolizing pathways in conjunction with defects in DNA repair leads to widespread DNA damage. Importantly, aldehyde-associated mutagenicity is being explored in a growing number of studies, which could offer key insights into how they potentially contribute to tumorigenesis. Here, we review the genotoxic effects of various aldehydes, focusing particularly on the DNA adducts underlying the mutagenicity of environmentally derived aldehydes. We summarize the chemical structures of the aldehydes and their predominant DNA adducts, discuss various methodologies, in vitro and in vivo, commonly used in measuring aldehyde-associated mutagenesis, and highlight some recent studies looking at aldehyde-associated mutation signatures and spectra. We conclude the Review with a discussion on the challenges and future perspectives of investigating aldehyde-associated mutagenesis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
6
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
7
|
Repczynska A, Julga K, Skalska-Sadowska J, Kacprzak MM, Bartoszewska-Kubiak A, Lazarczyk E, Loska D, Drozniewska M, Czerska K, Wachowiak J, Haus O. Next-generation sequencing reveals novel variants and large deletion in FANCA gene in Polish family with Fanconi anemia. Orphanet J Rare Dis 2022; 17:282. [PMID: 35854323 PMCID: PMC9295492 DOI: 10.1186/s13023-022-02424-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. However, establishing its molecular diagnosis remains challenging. Chromosomal breakage analysis is the gold standard diagnostic test for this disease. Nevertheless, molecular analysis is always required for the identification of pathogenic alterations in the FA genes. RESULTS We report here on a family with FA diagnosis in two siblings. Mitomycin C (MMC) test revealed high level of chromosome breaks and radial figures. In both children, array-Comparative Genomic Hybridization (aCGH) showed maternally inherited 16q24.3 deletion, including FANCA gene, and next generation sequencing (NGS) disclosed paternally inherited novel variants in the FANCA gene-Asn1113Tyr and Ser890Asn. A third sibling was shown to be a carrier of FANCA deletion only. CONCLUSIONS Although genetic testing in FA patients often requires a multi-method approach including chromosome breakage test, aCGH, and NGS, every effort should be made to make it available for whole FA families. This is not only to confirm the clinical diagnosis of FA in affected individuals, but also to enable identification of carriers of FA gene(s) alterations, as it has implications for diagnostic and genetic counselling process.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Katarzyna Julga
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | | | - Alicja Bartoszewska-Kubiak
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewelina Lazarczyk
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | | | - Malgorzata Drozniewska
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
8
|
Gönenc II, Wolff A, Schmidt J, Zibat A, Müller C, Cyganek L, Argyriou L, Räschle M, Yigit G, Wollnik B. OUP accepted manuscript. Hum Mol Genet 2022; 31:2185-2193. [PMID: 35099000 PMCID: PMC9262399 DOI: 10.1093/hmg/ddab373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Bloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2 and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on an sc level, linking specific genes and pathways to BLM dysfunction.
Collapse
Affiliation(s)
| | | | - Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus Räschle
- Department of Molecular Genetics, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Bernd Wollnik
- To whom correspondence should be addressed at: Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany. Tel: +49 5513960606; Fax: +49 5513969303;
| |
Collapse
|
9
|
A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites 2021; 12:metabo12010006. [PMID: 35050128 PMCID: PMC8777953 DOI: 10.3390/metabo12010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.
Collapse
|
10
|
Zhan S, Siu J, Wang Z, Yu H, Bezabeh T, Deng Y, Du W, Fei P. Focal Point of Fanconi Anemia Signaling. Int J Mol Sci 2021; 22:12976. [PMID: 34884777 PMCID: PMC8657418 DOI: 10.3390/ijms222312976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Among human genetic diseases, Fanconi Anemia (FA) tops all with its largest number of health complications in nearly all human organ systems, suggesting the significant roles played by FA genes in the maintenance of human health. With the accumulated research on FA, the encoded protein products by FA genes have been building up to the biggest cell defense signaling network, composed of not only 22+ FA proteins but also ATM, ATR, and many other non-FA proteins. The FA D2 group protein (FANCD2) and its paralog form the focal point of FA signaling to converge the effects of its upstream players in response to a variety of cellular insults and simultaneously with downstream players to protect humans from contracting diseases, including aging and cancer. In this review, we update and discuss how the FA signaling crucially eases cellular stresses through understanding its focal point.
Collapse
Affiliation(s)
- Sudong Zhan
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Jolene Siu
- Student Research Experience Program of University of Hawaii, Honolulu, HI 96822, USA;
| | - Zhanwei Wang
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Herbert Yu
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
| | - Tedros Bezabeh
- Department of Chemistry, University of Guam, Mangilao, GU 96923, USA;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA;
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA; (S.Z.); (Z.W.); (H.Y.)
- Student Research Experience Program of University of Hawaii, Honolulu, HI 96822, USA;
| |
Collapse
|
11
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
12
|
Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19:315. [PMID: 34711249 PMCID: PMC8555221 DOI: 10.1186/s12957-021-02423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell cancer (HNSCC) is the most common cancer associated with chewing tobacco, in the world. As this is divided in to sites and subsites, it does not make it to top 10 cancers. The most common subsite is the oral cancer. At the time of diagnosis, more than 50% of patients with oral squamous cell cancers (OSCC) had advanced disease, indicating the lack of availability of early detection and risk assessment biomarkers. The new protein biomarker development and discovery will aid in early diagnosis and treatment which lead to targeted treatment and ultimately a good prognosis. METHODS This systematic review was performed as per PRISMA guidelines. All relevant studies assessing characteristics of oral cancer and proteomics were considered for analysis. Only human studies published in English were included, and abstracts, incomplete articles, and cell line or animal studies were excluded. RESULTS A total of 308 articles were found, of which 112 were found to be relevant after exclusion. The present review focuses on techniques of cancer proteomics and discovery of biomarkers using these techniques. The signature of protein expression may be used to predict drug response and clinical course of disease and could be used to individualize therapy with such knowledge. CONCLUSIONS Prospective use of these markers in the clinical setting will enable early detection, prediction of response to treatment, improvement in treatment selection, and early detection of tumor recurrence for disease monitoring. However, most of these markers for OSCC are yet to be validated.
Collapse
Affiliation(s)
| | | | - Ruhi Dixit
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
13
|
Moreno OM, Paredes AC, Suarez-Obando F, Rojas A. An update on Fanconi anemia: Clinical, cytogenetic and molecular approaches (Review). Biomed Rep 2021; 15:74. [PMID: 34405046 PMCID: PMC8329995 DOI: 10.3892/br.2021.1450] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Fanconi anemia is a genetic syndrome clinically characterized by congenital malformations that affect several human systems, leads to progressive bone marrow failure and predisposes an individual to cancer, particularly in the urogenital area as well as the head and neck. It is commonly caused by the biallelic compromise of one of 22 genes involved in the FA/BRCA repair pathway in most cases. The diagnosis is based on clinical suspicion and confirmation using genetic analysis, where the chromosomal breakage test is considered the gold standard. Other diagnostic methods used include western blotting, multiplex ligation-dependent probe amplification and next-generation sequencing. This genetic condition has variable expressiveness, which makes early diagnosis difficult in certain cases. Although early diagnosis does not currently allow for improved cure rates for this condition, it does enable healthcare professionals to perform a specific systematic follow-up and, if indicated, a bone marrow transplantation that improves the mobility and mortality of affected individuals. The present review article is a theoretical revision of the pathophysiology, clinical manifestations and diagnosis methods intended for different specialists and general practitioners to improve the diagnosis of this condition.
Collapse
Affiliation(s)
- Olga María Moreno
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Angela Camila Paredes
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.,Genetics Department, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Fernando Suarez-Obando
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.,Genetics Department, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
14
|
Ramírez MJ, Pujol R, Trujillo‐Quintero JP, Minguillón J, Bogliolo M, Río P, Navarro S, Casado JA, Badell I, Carrasco E, Balmaña J, Català A, Sevilla J, Beléndez C, Argilés B, López M, Díaz de Heredia C, Rao G, Nicoletti E, Schwartz JD, Bueren JA, Surrallés J. Natural gene therapy by reverse mosaicism leads to improved hematology in Fanconi anemia patients. Am J Hematol 2021; 96:989-999. [PMID: 33984160 DOI: 10.1002/ajh.26234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is characterized by chromosome fragility, bone marrow failure (BMF) and predisposition to cancer. As reverse genetic mosaicism has been described as "natural gene therapy" in patients with FA, we sought to evaluate the clinical course of a cohort of FA mosaic patients followed at referral centers in Spain over a 30-year period. This cohort includes patients with a majority of T cells without chromosomal aberrations in the DEB-chromosomal breakage test. Relative to non-mosaic FA patients, we observed a higher proportion of adult patients in the cohort of mosaics, with a later age of hematologic onset and a milder evolution of (BMF). Consequently, the requirement for hematopoietic stem cell transplant (HSCT) was also lower. Additional studies allowed us to identify a sub-cohort of mosaic FA patients in whom the reversion was present in bone marrow (BM) progenitor cells leading to multilineage mosaicism. These multilineage mosaic patients are older, have a lower percentage of aberrant cells, have more stable hematology and none of them developed leukemia or myelodysplastic syndrome when compared to non-mosaics. In conclusion, our data indicate that reverse mosaicism is a good prognostic factor in FA and is associated with more favorable long-term clinical outcomes.
Collapse
Affiliation(s)
- María José Ramírez
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research Institute (IIB Sant Pau) Institut de Recerca Hospital de la Santa Creu i Sant Pau‐IIB Sant Pau Barcelona Spain
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
| | - Roser Pujol
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research Institute (IIB Sant Pau) Institut de Recerca Hospital de la Santa Creu i Sant Pau‐IIB Sant Pau Barcelona Spain
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
| | - Juan Pablo Trujillo‐Quintero
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Unitat de Genètica Clínica Pediàtrica Parc Taulí Hospital Universitari Barcelona Spain
| | - Jordi Minguillón
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research Institute (IIB Sant Pau) Institut de Recerca Hospital de la Santa Creu i Sant Pau‐IIB Sant Pau Barcelona Spain
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
| | - Massimo Bogliolo
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research Institute (IIB Sant Pau) Institut de Recerca Hospital de la Santa Creu i Sant Pau‐IIB Sant Pau Barcelona Spain
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
| | - Paula Río
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Division of Hematopoietic Innovative Therapies Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Madrid Spain
- Advanced Therapies Unit IIS‐Fundacion Jimenez Diaz (IIS‐FJD, UAM) Madrid Spain
| | - Susana Navarro
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Division of Hematopoietic Innovative Therapies Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Madrid Spain
- Advanced Therapies Unit IIS‐Fundacion Jimenez Diaz (IIS‐FJD, UAM) Madrid Spain
| | - José A. Casado
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Division of Hematopoietic Innovative Therapies Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Madrid Spain
- Advanced Therapies Unit IIS‐Fundacion Jimenez Diaz (IIS‐FJD, UAM) Madrid Spain
| | - Isabel Badell
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Pediatrics Department Hospital de Sant Pau Barcelona Spain
| | | | - Judith Balmaña
- High Risk and Cancer Prevention Unit VHIO Barcelona Spain
- Medical Oncology Department Hospital Vall d'Hebron Barcelona Spain
| | - Albert Català
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Pediatric Hematology Department Institut de Recerca Hospital Sant Joan de Déu Barcelona Barcelona Spain
| | - Julián Sevilla
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Hematología y Hemoterapia Fundación para la Investigación Biomédica Hospital Niño Jesus Madrid Spain
| | | | - Bienvenida Argilés
- Pediatric Hematology Department Hospital Universitario la Fe Valencia Spain
| | - Mónica López
- Hematology Department University Hospital Marqués de Valdecilla (IDIVAL) Santander Spain
| | | | - Gayatri Rao
- Rocket Pharmaceuticals, Inc. Cranbury New Jersey USA
| | | | | | - Juan A. Bueren
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Division of Hematopoietic Innovative Therapies Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Madrid Spain
- Advanced Therapies Unit IIS‐Fundacion Jimenez Diaz (IIS‐FJD, UAM) Madrid Spain
| | - Jordi Surrallés
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research Institute (IIB Sant Pau) Institut de Recerca Hospital de la Santa Creu i Sant Pau‐IIB Sant Pau Barcelona Spain
- Department of Genetics and Microbiology Universitat Autònoma de Barcelona Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Madrid Spain
- Department of Genetics Sant Pau Hospital Barcelona Spain
| |
Collapse
|
15
|
Kalfakakou D, Konstantopoulou I, Yannoukakos D, Fostira F. Pitfalls in variant annotation for hereditary cancer diagnostics: The example of Illumina® VariantStudio®. Genomics 2020; 113:748-754. [PMID: 33053411 DOI: 10.1016/j.ygeno.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022]
Abstract
Next Generation Sequencing (NGS), and specifically targeted panel sequencing is the state-of-the-art in clinical genetic diagnosis of Mendelian diseases. However, the bioinformatics analysis and interpretation of the generated data can be challenging. A spotlight on the default transcript selection of a user-friendly, commercially available software that is widely used by genetics professionals, i.e. Illumina® VariantStudio®, is presented. For the sake of comparison, we employed Ensembl VEP, an open-source command-line tool, as it provides flexibility regarding transcript selection. The analysis of NGS data deriving from sequencing of 857 germline DNA samples of cancer patients indicated a concordance of 82.82% between the two software programs. Significantly, using the default transcript configuration of VariantStudio®, we failed to annotate correctly 11.45% of the identified loss-of-function variants. Our results underline the importance of cautious software and transcript selection and the need for reliable, white-box data analysis, along with bioinformatics expertise in clinical diagnostics.
Collapse
Affiliation(s)
- Despoina Kalfakakou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research "Demokritos", Greece.
| |
Collapse
|
16
|
Cappelli E, Degan P, Bruno S, Pierri F, Miano M, Raggi F, Farruggia P, Mecucci C, Crescenzi B, Naim V, Dufour C, Ravera S. The passage from bone marrow niche to bloodstream triggers the metabolic impairment in Fanconi Anemia mononuclear cells. Redox Biol 2020; 36:101618. [PMID: 32863220 PMCID: PMC7327247 DOI: 10.1016/j.redox.2020.101618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by bone marrow (BM) failure and aplastic anemia. In addition to a defective DNA repair system, other mechanisms are involved in its pathogenesis, such as defective mitochondrial metabolism, accumulation of lipids, and increment of oxidative stress production. To better understand the role of these metabolic alterations in the process of HSC maturation in FA, we evaluated several biochemical and cellular parameters on mononuclear cells isolated from the bone marrow of FA patients or healthy donors. To mimic the cellular residence in the BM niche or their exit from the BM niche to the bloodstream, cells have been grown in hypoxic or normoxic conditions, respectively. The data show that, in normoxic conditions, a switch from anaerobic to aerobic metabolism occurs both in healthy and in pathological samples. However, in FA cells this change is associated with altered oxidative phosphorylation, the increment of oxidative stress production, no activation of the endogenous antioxidant defenses and arrest in the G2M phase of the cell cycle. By contrast, FA cells grown in hypoxic conditions do not show cell cycle and metabolic alterations in comparison to the healthy control, maintaining both an anaerobic flux. The data reported herein suggests that the passage from the BM niche to the bloodstream represents a crucial point in the FA pathogenesis associated with mitochondrial dysfunction. MNCs isolated from the bloodstream of FA patients display a metabolic defect. The metabolic defect is not evident in FA-MNCs isolated from the bone marrow niche. The metabolic defect seems to be linked to the oxygen availability. The passage from the BM niche to the bloodstream is crucial in FA pathogenesis.
Collapse
Affiliation(s)
- Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Degan
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Bruno
- Experimental Medicine Department, University of Genova, Genoa, Italy
| | - Filomena Pierri
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Piero Farruggia
- A.R.N.A.S. Ospedali Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Cristina Mecucci
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Valeria Naim
- CNRS UMR9019, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Vilejuif, France
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genoa, Italy
| |
Collapse
|
17
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190088. [PMID: 31587642 PMCID: PMC6792448 DOI: 10.1098/rstb.2019.0088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Exp Biol Med (Maywood) 2019; 244:1273-1302. [PMID: 31483159 DOI: 10.1177/1535370219867269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We provide a review of Spectrin isoform function in the cytoplasm, the nucleus, the cell surface, and in intracellular signaling. We then discuss the importance of Spectrin’s E2/E3 chimeric ubiquitin conjugating and ligating activity in maintaining cellular homeostasis. Finally we present spectrin isoform subunit specific human diseases. We have created the Spectrinome, from the Human Proteome, Human Reactome and Human Atlas data and demonstrated how it can be a useful tool in visualizing and understanding spectrins myriad of cellular functions.Impact statementSpectrin was for the first 12 years after its discovery thought to be found only in erythrocytes. In 1981, Goodman and colleagues1found that spectrin-like molecules were ubiquitously found in non-erythroid cells leading to a great multitude of publications over the next thirty eight years. The discovery of multiple spectrin isoforms found associated with every cellular compartment, and representing 2-3% of cellular protein, has brought us to today’s understanding that spectrin is a scaffolding protein, with its own E2/E3 chimeric ubiquitin conjugating ligating activity that is involved in virtually every cellular function. We cover the history, localized functions of spectrin isoforms, human diseases caused by mutations, and provide the spectrinome: a useful tool for understanding the myriad of functions for one of the most important proteins in all eukaryotic cells.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Daniel Johnson
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - David Kakhniashvili
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
20
|
Zareifar S, Dastsooz H, Shahriari M, Faghihi MA, Shekarkhar G, Bordbar M, Zekavat OR, Shakibazad N. A novel frame-shift deletion in FANCF gene causing autosomal recessive Fanconi anemia: a case report. BMC MEDICAL GENETICS 2019; 20:122. [PMID: 31288759 PMCID: PMC6617641 DOI: 10.1186/s12881-019-0855-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by congenital anomalies, early-onset bone marrow failure, and a high predisposition to cancers. Up to know, different genes involved in the DNA repair pathway, mainly FANCA genes, have been identified to be affected in patients with FA. CASE PRESENTATION Here, we report clinical, laboratory and genetic findings in a 3.5-year-old Iranian female patient, a product of a consanguineous marriage, who was suspicious of FA, observed with short stature, microcephaly, skin hyperpigmentation, anemia, thrombocytopenia and hypo cellular bone marrow. Therefore, Next Generation Sequencing was performed to identify the genetic cause of the disease in this patient. Results revealed a novel, private, homozygous frameshift mutation in the FANCF gene (NM_022725: c. 534delG, p. G178 fs) which was confirmed by Sanger sequencing in the proband. CONCLUSION Such studies may help uncover the exact pathomechanisms of this disorder and establish the genotype-phenotype correlations by identification of more mutations in this gene. It is the first report of a mutation in the FANCF gene in Iranian patients with Fanconi anemia. This new mutation correlates with a hematological problem (pancytopenia), short stature, and microcephaly and skin hyperpigmentation. Until now, no evidence of malignancy was detected.
Collapse
Affiliation(s)
- Soheila Zareifar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Italian Institute for Genomic Medicine (IIGM), University of Turin, Turin, Italy
| | - Mahdi Shahriari
- Division of Pediatric Hematology and Oncology, Department of Pediatric, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Golsa Shekarkhar
- Molecular Pathology Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Omid Reza Zekavat
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Shakibazad
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pediatric Hematology and Oncology, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
21
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 2018; 284:91-101. [DOI: 10.1016/j.jbiotec.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
|
23
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
24
|
Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 2018; 34:337-350. [DOI: 10.1007/s10565-018-9429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
|
25
|
Feben C, Spencer C, Lochan A, Laing N, Fieggen K, Honey E, Wainstein T, Krause A. Biallelic BRCA2 mutations in two black South African children with Fanconi anaemia. Fam Cancer 2018; 16:441-446. [PMID: 28185119 DOI: 10.1007/s10689-017-9968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fanconi anaemia (FA) is a genotypically and phenotypically heterogeneous genetic condition, characterized cytogenetically by chromosomal instability and breakage secondary to impaired DNA repair mechanisms. Affected individuals typically manifest growth restriction and congenital physical abnormalities and most progress to hematological disease including bone marrow aplasia. A rare genetic subtype of FA (FA-D1) is caused by biallelic mutations in the BRCA2 gene. Affected individuals manifest severe congenital anomalies and significant pigmentary changes and are additionally at risk for early onset leukemia and certain solid organ malignancies, including Wilms tumors and brain tumors. Parents of affected individuals are obligate carriers for heterozygous BRCA2 mutations and are thus potentially at risk for adult onset cancers which fall within the hereditary breast and ovarian cancer spectrum. We present two cases of black South African patients with FA diagnosed with biallelic BRCA2 mutations and discuss the phenotypic consequences and implications for them and their families. Recognition of this severe end of the phenotypic spectrum of FA is critical in allowing for confirmation of the diagnosis as well as cascade screening and appropriate care of family members.
Collapse
Affiliation(s)
- Candice Feben
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Cnr Hospital & De Korte Street, Braamfontein, Johannesburg, 2000, South Africa.
| | - Careni Spencer
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Cnr Hospital & De Korte Street, Braamfontein, Johannesburg, 2000, South Africa
| | - Anneline Lochan
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Cnr Hospital & De Korte Street, Braamfontein, Johannesburg, 2000, South Africa
| | - Nakita Laing
- Division of Human Genetics & The Department of Medicine, The University of Cape Town, Cape Town, South Africa
| | - Karen Fieggen
- Division of Human Genetics & The Department of Medicine, The University of Cape Town, Cape Town, South Africa
| | - Engela Honey
- Department of Human Genetics, Steve Biko Pretoria Academic Hospital & The University of Pretoria, Pretoria, South Africa
| | - Tasha Wainstein
- Faculty of Health Sciences, The University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Cnr Hospital & De Korte Street, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
26
|
Drummond BE, Wingert RA. Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. CANCER CELL & MICROENVIRONMENT 2018; 5:e1630. [PMID: 29707605 PMCID: PMC5922780 DOI: 10.14800/ccm.1630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specialized renal epithelial cells known as podocytes are essential components of the filtering structures within the kidney that coordinate the process of removing waste from the bloodstream. Podocyte loss initiates many human kidney diseases as it triggers subsequent damage to the kidney, leading to progressive loss of function that culminates with end stage renal failure. Podocyte morphology, function and gene expression profiles are well conserved between zebrafish and humans, making the former a relevant model to study podocyte development and model kidney diseases. Recently, we reported that whole genome sequencing of the zeppelin (zep) zebrafish mutant, which exhibits podocyte abrogation, revealed that the causative lesion for this defect was a splicing mutation in the breast cancer 2, early onset (brca2) gene. This was a surprising and novel discovery, as previous research on brca2/BRCA2 in a number of vertebrate animal models had not implicated an explicit role for this gene in kidney mesoderm development. Interestingly, the abrogation of the podocyte lineage in zep mutants was also accompanied by the formation of a larger interrenal (IR) gland, which is analogous to the adrenal gland in mammals, and suggested a fate switch between the renal and inter renal mesodermal derivatives. Mirroring these findings, knockdown of brca2 also recapitulated the loss of podocytes and increased IR population. In addition, brca2 overexpression was sufficient to partially rescue podocytes in zep mutants, and induced ectopic podocyte formation in wild-type embryos. Interestingly, immunofluorescence studies indicated that zep mutants had elevated P-h2A.X levels, suggesting that DNA repair is dysfunctional in these animals and contributes to the zep phenotype. Moving forward, this unique zebrafish mutant provides a new model to further explore how brca2 contributes to the development of tissues including the kidney mesoderm-roles which may have implications for renal diseases as well.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
27
|
DNA damage responses and p53 in the aging process. Blood 2017; 131:488-495. [PMID: 29141944 DOI: 10.1182/blood-2017-07-746396] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
The genome is constantly attacked by genotoxic insults. DNA damage has long been established as a cause of cancer development through its mutagenic consequences. Conversely, radiation therapy and chemotherapy induce DNA damage to drive cells into apoptosis or senescence as outcomes of the DNA damage response (DDR). More recently, DNA damage has been recognized as a causal factor for the aging process. The role of DNA damage in aging and age-related diseases is illustrated by numerous congenital progeroid syndromes that are caused by mutations in genome maintenance pathways. During the past 2 decades, understanding how DDR drives cancer development and contributes to the aging process has progressed rapidly. It turns out that the DDR factor p53 takes center stage during tumor development and also plays an important role in the aging process. Studies in metazoan models ranging from Caenorhabditis elegans to mammals have revealed cell-autonomous and systemic DDR mechanisms that orchestrate adaptive responses that augment maintenance of the aging organism amid gradually accumulating DNA damage.
Collapse
|
28
|
Gu S, Nguyen BN, Rao S, Li S, Shetty K, Rashid A, Shukla V, Deng CX, Mishra L, Mishra B. Alcohol, stem cells and cancer. Genes Cancer 2017; 8:695-700. [PMID: 29234487 PMCID: PMC5724803 DOI: 10.18632/genesandcancer.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dosage, gender, and genetic susceptibility to the effects of alcohol remained only partially elucidated. In this review, we summarize the current knowledge of the mechanisms underlying the role of alcohol in liver and gastrointestinal cancers. In addition, two recent pathways- DNA repair and TGF-β signaling which provide new insights into alcohol in the regulation of cancers and stem cells are also discussed here.
Collapse
Affiliation(s)
- Shoujun Gu
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Bao-Ngoc Nguyen
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shuyun Rao
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| | - Shulin Li
- Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asif Rashid
- Departments of Gastroenterology and Liver Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Shukla
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Chu-Xia Deng
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lopa Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA.,Surgical Service, Veterans Affairs Medicale Center, Washington DC, USA
| | - Bibhuti Mishra
- Department of Surgery, Center for Translational Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
29
|
Diagnosis of Fanconi Anaemia by ionising radiation- or mitomycin C-induced micronuclei. DNA Repair (Amst) 2017; 61:17-24. [PMID: 29154021 DOI: 10.1016/j.dnarep.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Fanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity. FA patients have shown increased clinical radiosensitivity by exhibiting adverse normal tissue side-effects. The study aimed to investigate chromosomal radiosensitivity of homozygous and heterozygous carriers of FA mutations using three micronucleus (MN) assays. The G0 and S/G2MN assays are cytogenetic assays to evaluate DNA damage induced by ionising radiation in different phases of the cell cycle. The MMC MN assay detects DNA damage induced by a crosslinking agent in the G0 phase. Patients with a clinical diagnosis of FA and their parents were screened for the complete coding region of 20 FA genes. Blood samples of all FA patients and parents were exposed to ionising radiation of 2 and 4Gy. Chromosomal radiosensitivity was evaluated in the G0 and S/G2 phase. Most of our patients were homozygous for the founder mutation FANCG c.637_643delTACCGCC; p.(Tyr213Lysfs*6) while one patient was compound heterozygous for FANCG c.637_643delTACCGCC and FANCG c.1379G > A, p.(Gly460Asp), a novel missense mutation. Another patient was compound heterozygous for two deleterious FANCA mutations. In FA patients, the G0- and S/G2-MN assays show significantly increased chromosomal radiosensitivity and genomic instability. Moreover, chromosomal damage was significantly elevated in MMC treated FA cells. We also observed an increase in chromosomal radiosensitivity and genomic instability in the parents using 3 assays. The effect was significant using the MMC MN assay. The MMC MN assay is advantageous as it is less labour intense, time effective and has potential as a reliable alternative method for detecting FA patients from parents and controls.
Collapse
|
30
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
31
|
Pilonetto DV, Pereira NF, Bonfim CMS, Ribeiro LL, Bitencourt MA, Kerkhoven L, Floor K, Ameziane N, Joenje H, Gille JJP, Pasquini R. A strategy for molecular diagnostics of Fanconi anemia in Brazilian patients. Mol Genet Genomic Med 2017; 5:360-372. [PMID: 28717661 PMCID: PMC5511800 DOI: 10.1002/mgg3.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a predominantly autosomal recessive disease with wide genetic heterogeneity resulting from mutations in several DNA repair pathway genes. To date, 21 genetic subtypes have been identified. We aimed to identify the FA genetic subtypes in the Brazilian population and to develop a strategy for molecular diagnosis applicable to routine clinical use. METHODS We screened 255 patients from Hospital de Clínicas, Universidade Federal do Paraná for 11 common FA gene mutations. Further analysis by multiplex ligation-dependent probe amplification (MLPA) for FANCA and Sanger sequencing of all coding exons of FANCA, -C, and -G was performed in cases who harbored a single gene mutation. RESULTS We identified biallelic mutations in 128/255 patients (50.2%): 89, 11, and 28 carried FANCA,FANCC, and FANCG mutations, respectively. Of these, 71 harbored homozygous mutations, whereas 57 had compound heterozygous mutations. In 4/57 heterozygous patients, both mutations were identified by the initial screening, in 51/57 additional analyses was required for classification, and in 2/57 the second mutation remained unidentified. We found 52 different mutations of which 22 were novel. CONCLUSION The proposed method allowed genetic subtyping of 126/255 (49.4%) patients at a significantly reduced time and cost, which makes molecular diagnosis of FA Brazilian patients feasible.
Collapse
Affiliation(s)
- Daniela V. Pilonetto
- Immunogenetics LaboratoryHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| | - Noemi F. Pereira
- Immunogenetics LaboratoryHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| | - Carmem M. S. Bonfim
- Bone Marrow Transplantation ServiceHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| | - Lisandro L. Ribeiro
- Bone Marrow Transplantation ServiceHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| | - Marco A. Bitencourt
- Bone Marrow Transplantation ServiceHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| | - Lianne Kerkhoven
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Karijn Floor
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Najim Ameziane
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Hans Joenje
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Johan J. P. Gille
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Ricardo Pasquini
- Bone Marrow Transplantation ServiceHospital de ClínicasUniversidade Federal do ParanáCuritibaPRBrazil
| |
Collapse
|
32
|
Waespe N, Dhanraj S, Wahala M, Tsangaris E, Enbar T, Zlateska B, Li H, Klaassen RJ, Fernandez CV, Cuvelier GDE, Wu JK, Pastore YD, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti MJ, Breakey VR, Jardine L, Goodyear L, Kofler L, Cada M, Sung L, Shago M, Scherer SW, Dror Y. The clinical impact of copy number variants in inherited bone marrow failure syndromes. NPJ Genom Med 2017; 2. [PMID: 28690869 PMCID: PMC5498150 DOI: 10.1038/s41525-017-0019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited bone marrow failure syndromes comprise a genetically heterogeneous group of diseases with hematopoietic failure and a wide array of physical malformations. Copy number variants were reported in some inherited bone marrow failure syndromes. It is unclear what impact copy number variants play in patients evaluated for a suspected diagnosis of inherited bone marrow failure syndromes. Clinical and genetic data of 323 patients from the Canadian Inherited Marrow Failure Registry from 2001 to 2014, who had a documented genetic work-up, were analyzed. Cases with pathogenic copy number variants (at least 1 kilobasepairs) were compared to cases with other mutations. Genotype-phenotype correlations were performed to assess the impact of copy number variants. Pathogenic nucleotide-level mutations were found in 157 of 303 tested patients (51.8%). Genome-wide copy number variant analysis by single-nucleotide polymorphism arrays or comparative genomic hybridization arrays revealed pathogenic copy number variants in 11 of 67 patients tested (16.4%). In four of these patients, identification of copy number variant was crucial for establishing the correct diagnosis as their clinical presentation was ambiguous. Eight additional patients were identified to harbor pathogenic copy number variants by other methods. Of the 19 patients with pathogenic copy number variants, four had compound-heterozygosity of a copy number variant with a nucleotide-level mutation. Pathogenic copy number variants were associated with more extensive non-hematological organ system involvement (p = 0.0006), developmental delay (p = 0.006) and short stature (p = 0.04) compared to nucleotide-level mutations. In conclusion, a significant proportion of patients with inherited bone marrow failure syndromes harbor pathogenic copy number variants which were associated with a more extensive non-hematological phenotype in this cohort. Patients with a phenotype suggestive of inherited bone marrow failure syndromes but without identification of pathogenic nucleotide-level mutations should undergo specific testing for copy number variants. Copy number variation in patients with inherited bone marrow failure syndromes (IBMFSs) is associated with more severe clinical symptoms. In addition to persistently low levels of red blood cells, white blood cells and/ or platelets, patients with IBMFSs also present varying degrees of physical malformations. Most cases are associated with single base-pair mutations in the DNA sequence, but Canadian researchers led by Yigal Dror at The Hospital for Sick Children in Toronto, have found that whole sections of the genome are deleted or repeated in an important proportion of patients. Those carrying copy number variants (CNV) presented more commonly with developmental delay, short stature and defects in more organ systems, than patients with point mutations. CNV analysis of patients with suspected IBMFSs could aid early disease evaluation and management.
Collapse
Affiliation(s)
- Nicolas Waespe
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santhosh Dhanraj
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Manju Wahala
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elena Tsangaris
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tom Enbar
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bozana Zlateska
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongbing Li
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Geoff D E Cuvelier
- Pediatric Hematology/Oncology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John K Wu
- Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC, Canada
| | | | | | - Jeffrey H Lipton
- Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Joseé Brossard
- Centre Hospitalier Universitaire, Sherbrooke, QC, Canada
| | - Bruno Michon
- Centre Hospitalier Universitaire, Québec, QC, Canada
| | - Sharon Abish
- Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | | | - Roona Sinha
- Royal University Hospital, Saskatoon, SK, Canada
| | | | - Vicky R Breakey
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Lawrence Jardine
- Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Lisa Goodyear
- Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF, Canada
| | - Liat Kofler
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michaela Cada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Shago
- Cytogenetics Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yigal Dror
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Mahato D, Samanta D, Mukhopadhyay SS, Krishnaraj RN. A systems biology approach for elucidating the interaction of curcumin with Fanconi anemia FANC G protein and the key disease targets of leukemia. J Recept Signal Transduct Res 2016; 37:276-282. [PMID: 27608133 DOI: 10.1080/10799893.2016.1225309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder with a high risk of malignancies including acute myeloid leukemia and squamous cell carcinoma. There is a constant search out of new potential therapeutic molecule to combat this disorder. In most cases, patients with FA develop haematological malignancies with acute myeloid leukemia and acute lymphoblastic leukemia. Identifying drugs which can efficiently block the pathways of both these disorders can be an ideal and novel strategy to treat FA. The curcumin, a natural compound obtained from turmeric is an interesting therapeutic molecule as it has been reported in the literature to combat both FA as well as leukemia. However, its complete mechanism is not elucidated. Herein, a systems biology approach for elucidating the therapeutic potential of curcumin against FA and leukemia is investigated by analyzing the computational molecular interactions of curcumin ligand with FANC G of FA and seven other key disease targets of leukemia. The proteins namely DOT1L, farnesyl transferase (FDPS), histone decetylase (EP3000), Polo-like kinase (PLK-2), aurora-like kinase (AUKRB), tyrosine kinase (ABL1), and retinoic acid receptor alpha (RARA) were chosen as disease targets for leukemia and modeled structure of FANC G protein as the disease target for FA. The docking investigations showed that curcumin had a very high binding affinity of -8.1 kcal/mol with FANC G protein. The key disease targets of leukemia namely tyrosine kinase (ABL1), aurora-like kinase (AUKRB), and polo-like kinase (PLK-2) showed that they had the comparable binding affinities of -9.7 k cal/mol, -8.7 k cal/mol, and -8.6 k cal/mol, respectively with curcumin. Further, the percentage similarity scores obtained from PAM50 using EMBOSS MATCHER was shown to provide a clue to understand the structural relationships to an extent and to predict the binding affinity. This investigation shows that curcumin effectively interacts with the disease targets of both FA and leukemia.
Collapse
Affiliation(s)
- David Mahato
- a Department of Biotechnology , National Institute of Technology , Durgapur , West Bengal , India
| | - Dipayan Samanta
- a Department of Biotechnology , National Institute of Technology , Durgapur , West Bengal , India
| | - Sudit S Mukhopadhyay
- a Department of Biotechnology , National Institute of Technology , Durgapur , West Bengal , India
| | - R Navanietha Krishnaraj
- a Department of Biotechnology , National Institute of Technology , Durgapur , West Bengal , India
| |
Collapse
|
34
|
Lambert MW. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 2016; 241:1621-38. [PMID: 27480253 PMCID: PMC4999628 DOI: 10.1177/1535370216662714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Root H, Larsen A, Komosa M, Al-Azri F, Li R, Bazett-Jones DP, Stephen Meyn M. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway. Hum Mol Genet 2016; 25:3255-3268. [DOI: 10.1093/hmg/ddw175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
|
36
|
Dubois ÉL, Béliveau M, Masson JY. [Fanconi anemia animal models - How differences can teach us as much as similarities…]. Med Sci (Paris) 2016; 32:598-605. [PMID: 27406770 DOI: 10.1051/medsci/20163206023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fanconi Anemia is a rare autosomal recessive genetic disease with heterogenous phenotypes including myelosuppression, congenital malformations and heightened cancer predisposition. FA cells are highly sensitive to cross-linking agents. Since the 90's, at least 19 FANC proteins (FANCA to FANCT) have been identified as working together in a unique pathway detecting and triggering the repair of DNA crosslinks. Since then, the creation of animal models in various species (nematode, fruit fly, zebrafish and mouse) contributed to a better understanding of the physiopathology of the disease. This review aims to summarize the main discoveries made in these in vivo models, as well as to discuss some controversies that arose from these studies.
Collapse
Affiliation(s)
- Émilie L Dubois
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| | - Mariline Béliveau
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| | - Jean-Yves Masson
- Département de biologie moléculaire, biochimie médicale, et pathologie et Centre de Recherche sur le Cancer, Université Laval, Canada - CRCHU de Québec, axe oncologie, 9 McMahon, Québec, QC, G1R 3S3, Canada
| |
Collapse
|
37
|
Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice. mBio 2016; 7:mBio.00628-16. [PMID: 27190216 PMCID: PMC4895109 DOI: 10.1128/mbio.00628-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA damage. We hypothesize, therefore, that DNA damage induced by HPV leads to an accumulation of mutations in patients with FA deficiency and that such mutations allow HPV-driven cancers to become independent of the viral oncogenes. Consistent with this hypothesis, we found that cervical cancers arising in HPV16 transgenic mice with FA deficiency frequently escape from dependency on the HPV16 oncogene that drove its development. Our report provides further support for vaccination of FA patients against HPVs and argues for the need to define mutational profiles of SCCs arising in FA patients in order to inform precision medicine-based approaches to treating these patients.
Collapse
|
38
|
Lambert MW. Functional Significance of Nuclear α Spectrin. J Cell Biochem 2016; 116:1816-30. [PMID: 25757157 DOI: 10.1002/jcb.25123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Nonerythroid alpha spectrin (αIISp) interacts in the nucleus with an array of different proteins indicating its involvement in a number of diverse functions. However, the significance of these interactions and their functional importance has been a relatively unexplored area. The best documented role of nuclear αIISp is in DNA repair where it is critical for repair of DNA interstrand cross-links (ICLs), acting as a scaffold recruiting proteins to sites of damage in genomic and telomeric DNA. A deficiency in αIISp can importantly impact DNA ICL repair as is seen in cells from patients with the genetic disorder, Fanconi anemia (FA), where loss of αIISp leads to not only defects in repair of both genomic and telomeric DNA but also to telomere dysfunction and chromosome instability. This previously unexplored link between αIISp and telomere function is important in developing an understanding of maintenance of genomic stability after ICL damage. In FA cells, these defects in chromosome instability after ICL damage can be corrected when levels of αIISp are returned to normal by knocking down μ-calpain, a protease which cleaves αIISp. These studies suggest a new direction for correcting a number of the phenotypic defects in FA and could serve as a basis for therapeutic intervention. More in depth, examination of the interactions of αIISp with other proteins in the nucleus is of major importance in development of insights into the interacting key elements involved in the diverse processes occurring in the nucleus and the consequences loss of αIISp has on them.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey, 07103
| |
Collapse
|
39
|
Abstract
As defined initially, chromosome instability syndromes (CIS) are a group of inherited conditions transmitted in autosomal recessive pattern characterised with both mental and physical development delay generally. They are also with other medical complications in individuals with CIS commonly including different degree of dysmorphics, organs/systems dys-function and high risk of cancer predisposition. Chromosomal breakage from CIS can be seen either in spontaneous breakage around 10-15% observed in Fanconi anemia or induced by clastogenic agents such as mitomycin (MMC), diepoxybutane (DEB). The spontaneous chromosome breakage is less common but it correlates with patient clinical severity. Relative high rates of some types of CIS can occur in certain ethnic groups. Individuals with CIS are commonly in childhood and these disorders are often lethal. Diagnosis is complicated usually because the symptoms presented from individuals with CIS may be varied and complex. Advances in molecular level have identified genes responsible for such group diseases/disorders demonstrated that CIS are characterized by the genome instability, defect in DNA repair mechanisms. Latest advances in high-throughput technologies have been increasing sequencing capabilities to facilitate more accurate data for such syndrome researches. CIS are the typical rare diseases and becoming more challenges in pediatrics clinic. In the last two decades, there were no many articles to review and analysis CIS together to comparing their phenotypes and genotypes. In this article, the similarity and differences of the phenotypes and genotypes of CIS were reviewed to understanding the whole profiles of CIS to assist laboratory genetic diagnostic services in CIS and for the confirmation from the clinical referrals.
Collapse
Affiliation(s)
- Zhan-He Wu
- Western Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia
| |
Collapse
|
40
|
Garbati MR, Hays LE, Rathbun RK, Jillette N, Chin K, Al-Dhalimy M, Agarwal A, Newell AEH, Olson SB, Bagby GC. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages. J Leukoc Biol 2015; 99:455-65. [PMID: 26432900 DOI: 10.1189/jlb.3a0515-201r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/15/2015] [Indexed: 01/13/2023] Open
Abstract
The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia.
Collapse
Affiliation(s)
- Michael R Garbati
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura E Hays
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - R Keaney Rathbun
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Nathaniel Jillette
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Kathy Chin
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Muhsen Al-Dhalimy
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amy E Hanlon Newell
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Susan B Olson
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grover C Bagby
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
41
|
Fanconi anemia cells with unrepaired DNA damage activate components of the checkpoint recovery process. Theor Biol Med Model 2015; 12:19. [PMID: 26385365 PMCID: PMC4575447 DOI: 10.1186/s12976-015-0011-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Background The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage. Methods We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot. Results Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA. Conclusions Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.
Collapse
|
42
|
Zhang P, Sridharan D, Lambert MW. Nuclear α Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage. J Cell Biochem 2015; 117:671-83. [PMID: 26297932 DOI: 10.1002/jcb.25352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Abstract
Nonerythroid α spectrin (αIISp) and the Fanconi anemia (FA) protein, FANCD2, play critical roles in DNA interstrand cross-link (ICL) repair during S phase. Both are needed for recruitment of repair proteins, such as XPF, to sites of damage and repair of ICLs. However, the relationship between them in ICL repair and whether αIISp is involved in FANCD2's function in repair is unclear. The present studies show that, after ICL formation, FANCD2 disassociates from αIISp and localizes, before αIISp, at sites of damage in nuclear foci. αIISp and FANCD2 foci do not co-localize, in contrast to our previous finding that αIISp and the ICL repair protein, XPF, co-localize and follow a similar time course for formation. Knock-down of αIISp has no effect on monoubiquitination of FANCD2 (FANCD2-Ub) or its localization to chromatin or foci, though it leads to decreased ICL repair. Studies using cells from FA patients, defective in ICL repair and αIISp, have elucidated an important role for αIISp in the function of non-Ub FANCD2. In FA complementation group A (FA-A) cells, in which FANCD2 is not monoubiquitinated and does not form damage-induced foci, we demonstrate that restoration of αIISp levels to normal, by knocking down the protease μ-calpain, leads to formation of non-Ub FANCD2 foci after ICL damage. Since restoration of αIISp levels in FA-A cells restores DNA repair and cell survival, we propose that αIISp is critical for recruitment of non-Ub FANCD2 to sites of damage, which has an important role in the repair response and ICL repair.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Deepa Sridharan
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| |
Collapse
|
43
|
Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front Med 2015; 9:288-303. [DOI: 10.1007/s11684-015-0412-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
44
|
Molina B, Marchetti F, Gómez L, Ramos S, Torres L, Ortiz R, Altamirano-Lozano M, Carnevale A, Frias S. Hydroxyurea induces chromosomal damage in G2 and enhances the clastogenic effect of mitomycin C in Fanconi anemia cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:457-467. [PMID: 25663157 DOI: 10.1002/em.21938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Fanconi's anemia (FA) is a recessive disease; 16 genes are currently recognized in FA. FA proteins participate in the FA/BRCA pathway that plays a crucial role in the repair of DNA damage induced by crosslinking compounds. Hydroxyurea (HU) is an agent that induces replicative stress by inhibiting ribonucleotide reductase (RNR), which synthesizes deoxyribonucleotide triphosphates (dNTPs) necessary for DNA replication and repair. HU is known to activate the FA pathway; however, its clastogenic effects are not well characterized. We have investigated the effects of HU treatment alone or in sequential combination with mitomycin-C (MMC) on FA patient-derived lymphoblastoid cell lines from groups FA-A, B, C, D1/BRCA2, and E and on lymphocytes from two unclassified FA patients. All FA cells showed a significant increase (P < 0.05) in chromosomal aberrations following treatment with HU during the last 3 h before mitosis. Furthermore, when FA cells previously exposed to MMC were treated with HU, we observed an increase of MMC-induced DNA damage that was characterized by high occurrence of DNA breaks and a reduction in rejoined chromosomal aberrations. These findings show that exposure to HU during G2 induces chromosomal aberrations by a mechanism that is independent of its well-known role in replication fork stalling during S-phase and that HU interfered mainly with the rejoining process of DNA damage. We suggest that impaired oxidative stress response, lack of an adequate amount of dNTPs for DNA repair due to RNR inhibition, and interference with cell cycle control checkpoints underlie the clastogenic activity of HU in FA cells. Environ. Mol. Mutagen. 56:457-467, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | | | - Laura Gómez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Rocio Ortiz
- Laboratorio de Citometría de Flujo, Universidad Autónoma Metropolitana, Iztapalapa, Mexico
| | | | - Alessandra Carnevale
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genómica, México
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
- Departamento de Medicina, Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, México
| |
Collapse
|
45
|
Solomon PJ, Margaret P, Rajendran R, Ramalingam R, Menezes GA, Shirley AS, Lee SJ, Seong MW, Park SS, Seol D, Seo SH. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Ital J Pediatr 2015; 41:38. [PMID: 25953249 PMCID: PMC4438458 DOI: 10.1186/s13052-015-0142-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt’s son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.
Collapse
Affiliation(s)
- Ponnumony John Solomon
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Priya Margaret
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Ramya Rajendran
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Revathy Ramalingam
- Department of Physiology/Central research laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Godfred A Menezes
- College of Applied Medical Sciences and Molecular Diagnostics and Personalised Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia (KSA). .,Worked previously as in-charge and scientist in Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Alph S Shirley
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dodam Seol
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
46
|
Zhang J, Barbaro P, Guo Y, Alodaib A, Li J, Gold W, Adès L, Keating BJ, Xu X, Teo J, Hakonarson H, Christodoulou J. Utility of next-generation sequencing technologies for the efficient genetic resolution of haematological disorders. Clin Genet 2015; 89:163-72. [PMID: 25703294 DOI: 10.1111/cge.12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/01/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing (NGS) has now evolved to be a relatively affordable and efficient means of detecting genetic mutations. Whole genome sequencing (WGS) or whole exome sequencing (WES) offers the opportunity for rapid diagnosis in many paediatric haematological conditions, where phenotypes are variable and either a large number of genes are involved, or the genes are large making sanger sequencing expensive and labour-intensive. NGS offers the potential for gene discovery in patients who do not have mutations in currently known genes. This report shows how WES was used in the diagnosis of six paediatric haematology cases. In four cases (Diamond-Blackfan anaemia, congenital neutropenia (n = 2), and Fanconi anaemia), the diagnosis was suspected based on classical phenotype, and NGS confirmed those suspicions. Mutations in RPS19, ELANE and FANCD2 were found. The final two cases (MYH9 associated macrothrombocytopenia associated with multiple congenital anomalies; atypical juvenile myelomonocytic leukaemia associated with a KRAS mutation) highlight the utility of NGS where the diagnosis is less certain, or where there is an unusual phenotype. We discuss the advantages and limitations of NGS in the setting of these cases, and in haematological conditions more broadly, and discuss where NGS is most efficiently used.
Collapse
Affiliation(s)
- J Zhang
- T-Life Research Center, Fudan University, Shanghai, 200433, China.,Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - P Barbaro
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia.,Cancer Research Unit, Children's Medical Research Institute, Westmead, Australia
| | - Y Guo
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Alodaib
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - J Li
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - W Gold
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - L Adès
- Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Clinical Genetics Department, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - B J Keating
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Xu
- Department of BioMedical Research, BGI-Shenzhen, Shenzhen, 518083, China.,Shenzhen Key Laboratory of Genomics, Shenzhen, China.,The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, China
| | - J Teo
- Haematology Department, The Children's Hospital at Westmead, Sydney, Australia
| | - H Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Human Genetics Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
47
|
Park J, Kim M, Jang W, Chae H, Kim Y, Chung NG, Lee JW, Cho B, Jeong DC, Park IY, Park MS. Founder haplotype analysis of Fanconi anemia in the Korean population finds common ancestral haplotypes for a FANCG variant. Ann Hum Genet 2015; 79:153-61. [PMID: 25703136 DOI: 10.1111/ahg.12097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
A common ancestral haplotype is strongly suggested in the Korean and Japanese patients with Fanconi anemia (FA), because common mutations have been frequently found: c.2546delC and c.3720_3724delAAACA of FANCA; c.307+1G>C, c.1066C>T, and c.1589_1591delATA of FANCG. Our aim in this study was to investigate the origin of these common mutations of FANCA and FANCG. We genotyped 13 FA patients consisting of five FA-A patients and eight FA-G patients from the Korean FA population. Microsatellite markers used for haplotype analysis included four CA repeat markers which are closely linked with FANCA and eight CA repeat markers which are contiguous with FANCG. As a result, Korean FA-A patients carrying c.2546delC or c.3720_3724delAAACA did not share the same haplotypes. However, three unique haplotypes carrying c.307+1G>C, c.1066C > T, or c.1589_1591delATA, that consisted of eight polymorphic loci covering a flanking region were strongly associated with Korean FA-G, consistent with founder haplotypes reported previously in the Japanese FA-G population. Our finding confirmed the common ancestral haplotypes on the origins of the East Asian FA-G patients, which will improve our understanding of the molecular population genetics of FA-G. To the best of our knowledge, this is the first report on the association between disease-linked mutations and common ancestral haplotypes in the Korean FA population.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Arai MA, Uemura K, Hamahiga N, Ishikawa N, Koyano T, Kowithayakorn T, Kaddar T, Carreau M, Ishibashi M. Naturally occurring FANCF–Hes1 complex inhibitors from Wrightia religiosa. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00495g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first naturally occurring inhibitors of FANCF–Hes1 complex were isolated by a newly constructed protein-based high-throughput screening assay.
Collapse
Affiliation(s)
- Midori A. Arai
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Kenji Uemura
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Nozomi Hamahiga
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| | | | | | - Tagrid Kaddar
- Department of Pediatrics Université Laval
- Cité Universitaire, Québec, Canada, G1K 7P4
- and the Centre de Recherche du CHU de Québec-CHUL
- Québec
- Canada G1V 4G2
| | - Madeleine Carreau
- Department of Pediatrics Université Laval
- Cité Universitaire, Québec, Canada, G1K 7P4
- and the Centre de Recherche du CHU de Québec-CHUL
- Québec
- Canada G1V 4G2
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences
- Chiba University
- Chuo-ku
- Japan
| |
Collapse
|
49
|
Feben C, Kromberg J, Wainwright R, Stones D, Poole J, Haw T, Krause A. Hematological consequences of a FANCG founder mutation in Black South African patients with Fanconi anemia. Blood Cells Mol Dis 2014; 54:270-4. [PMID: 25477267 DOI: 10.1016/j.bcmd.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Fanconi anemia (FA) is a rare disorder of DNA repair, associated with various somatic abnormalities but characterized by hematological disease that manifests as bone marrow aplasia and malignancy. The mainstay of treatment, in developed nations, is hematopoietic stem cell transplantation (HSCT) with subsequent surveillance for solid organ and non-hematological malignancies. In South Africa, FA in the Black population is caused by a homozygous deletion mutation in the FANCG gene in more than 80% of cases. Many affected patients are not diagnosed until late in the disease course when severe cytopenia and bone marrow aplasia are already present. Most patients are not eligible for HSCT at this late stage of the disease, even when it is available in the state health care system. In this study, the hematological presentation and disease progression in 30 Black South African patients with FA, confirmed to have the FANCG founder mutation, were evaluated and compared to those described in other FA cohorts. Our results showed that patients, homozygous for the FANCG founder mutation, present with severe cytopenia but progress to bone marrow failure at similar ages to other individuals affected with FA of heterogeneous genotype. Further, the incidence of myelodysplastic syndrome is similar to that which has been previously described in other FA cohorts. Although severe cytopenia at presentation may be predicted by a higher number of somatic anomalies, the recognition of the physical FA phenotype in Black South African patients is challenging and may not be useful in expediting referral of suspected FA patients for tertiary level investigations and care. Given the late but severe hematological presentation of FA in Black South African patients, an investigative strategy is needed for earlier recognition of affected individuals to allow for possible HSCT and management of bone marrow disease.
Collapse
Affiliation(s)
- Candice Feben
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa.
| | - Jennifer Kromberg
- Division of Human Genetics, The University of the Witwatersrand, Johannesburg, South Africa
| | - Rosalind Wainwright
- Department of Pediatrics, Chris Hani Baragwanath Hospital, The University of the Witwatersrand, Johannesburg, South Africa
| | - David Stones
- Department of Pediatrics, Universitas Hospital, The University of the Free State, Johannesburg, South Africa
| | - Janet Poole
- Department of Pediatrics, Charlotte Maxeke Johannesburg Academic Hospital, The University of the Witwatersrand, Johannesburg, South Africa
| | - Tabitha Haw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
An in silico target identification using Boolean network attractors: Avoiding pathological phenotypes. C R Biol 2014; 337:661-78. [PMID: 25433558 DOI: 10.1016/j.crvi.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 01/05/2023]
Abstract
Target identification aims at identifying biomolecules whose function should be therapeutically altered to cure the considered pathology. An algorithm for in silico target identification using Boolean network attractors is proposed. It assumes that attractors correspond to phenotypes produced by the modeled biological network. It identifies target combinations which allow disturbed networks to avoid attractors associated with pathological phenotypes. The algorithm is tested on a Boolean model of the mammalian cell cycle and its applications are illustrated on a Boolean model of Fanconi anemia. Results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice. Nevertheless, it is expected that the algorithm is of interest for target identification.
Collapse
|