1
|
Houlleberghs H, Dekker M, Lusseveld J, Pieters W, van Ravesteyn T, Verhoef S, Hofstra RMW, Te Riele H. Three-step site-directed mutagenesis screen identifies pathogenic MLH1 variants associated with Lynch syndrome. J Med Genet 2019; 57:308-315. [PMID: 31784484 DOI: 10.1136/jmedgenet-2019-106520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inactivating mutations in the MLH1 DNA mismatch repair (MMR) gene underlie 42% of Lynch syndrome (LS) cases. LS is a cancer predisposition causing early onset colorectal and endometrial cancer. Nonsense and frameshift alterations unambiguously cause LS. The phenotype of missense mutations that only alter a single amino acid is often unclear. These variants of uncertain significance (VUS) hinder LS diagnosis and family screening and therefore functional tests are urgently needed. We developed a functional test for MLH1 VUS termed 'oligonucleotide-directed mutation screening' (ODMS). METHODS The MLH1 variant was introduced by oligonucleotide-directed gene modification in mouse embryonic stem cells that were subsequently exposed to the guanine analogue 6-thioguanine to determine whether the variant abrogated MMR. RESUTS In a proof-of-principle analysis, we demonstrate that ODMS can distinguish pathogenic and non-pathogenic MLH1 variants with a sensitivity of >95% and a specificity of >91%. We subsequently applied the screen to 51 MLH1 VUS and identified 31 pathogenic variants. CONCLUSION ODMS is a reliable tool to identify pathogenic MLH1 variants. Implementation in clinical diagnostics will improve clinical care of patients with suspected LS and their relatives.
Collapse
Affiliation(s)
- Hellen Houlleberghs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jarnick Lusseveld
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas van Ravesteyn
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Senno Verhoef
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Josephs EA, Marszalek PE. A 'Semi-Protected Oligonucleotide Recombination' Assay for DNA Mismatch Repair in vivo Suggests Different Modes of Repair for Lagging Strand Mismatches. Nucleic Acids Res 2017; 45:e63. [PMID: 28053122 PMCID: PMC5416779 DOI: 10.1093/nar/gkw1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
In Escherichia coli, a DNA mismatch repair (MMR) pathway corrects errors that occur during DNA replication by coordinating the excision and re-synthesis of a long tract of the newly-replicated DNA between an epigenetic signal (a hemi-methylated d(GATC) site or a single-stranded nick) and the replication error after the error is identified by protein MutS. Recent observations suggest that this 'long-patch repair' between these sites is coordinated in the same direction of replication by the replisome. Here, we have developed a new assay that uniquely allows us to introduce targeted 'mismatches' directly into the replication fork via oligonucleotide recombination, examine the directionality of MMR, and quantify the nucleotide-dependence, sequence context-dependence, and strand-dependence of their repair in vivo-something otherwise nearly impossible to achieve. We find that repair of genomic lagging strand mismatches occurs bi-directionally in E. coli and that, while all MutS-recognized mismatches had been thought to be repaired in a consistent manner, the directional bias of repair and the effects of mutations in MutS are dependent on the molecular species of the mismatch. Because oligonucleotide recombination is routinely performed in both prokaryotic and eukaryotic cells, we expect this assay will be broadly applicable for investigating mechanisms of MMR in vivo.
Collapse
Affiliation(s)
- Eric A Josephs
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC, USA
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Houlleberghs H, Goverde A, Lusseveld J, Dekker M, Bruno MJ, Menko FH, Mensenkamp AR, Spaander MCW, Wagner A, Hofstra RMW, te Riele H. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity. PLoS Genet 2017; 13:e1006765. [PMID: 28531214 PMCID: PMC5460888 DOI: 10.1371/journal.pgen.1006765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/06/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer predisposition caused by inactivating mutations in DNA mismatch repair (MMR) genes. Mutations in the MSH6 DNA MMR gene account for approximately 18% of LS cases. Many LS-associated sequence variants are nonsense and frameshift mutations that clearly abrogate MMR activity. However, missense mutations whose functional implications are unclear are also frequently seen in suspected-LS patients. To conclusively diagnose LS and enroll patients in appropriate surveillance programs to reduce morbidity as well as mortality, the functional consequences of these variants of uncertain clinical significance (VUS) must be defined. We present an oligonucleotide-directed mutagenesis screen for the identification of pathogenic MSH6 VUS. In the screen, the MSH6 variant of interest is introduced into mouse embryonic stem cells by site-directed mutagenesis. Subsequent selection for MMR-deficient cells using the DNA damaging agent 6-thioguanine (6TG) allows the identification of MMR abrogating VUS because solely MMR-deficient cells survive 6TG exposure. We demonstrate the efficacy of the genetic screen, investigate the phenotype of 26 MSH6 VUS and compare our screening results to clinical data from suspected-LS patients carrying these variant alleles. The colorectal and endometrial cancer predisposition Lynch syndrome (LS) is caused by an inherited heterozygous defect in one of four DNA mismatch repair (MMR) genes. Deleterious mutations (e.g., protein-deleting or -truncating) in DNA MMR genes unambiguously allow for the clinical diagnosis LS and hence enable appropriate surveillance measures to be taken to reduce cancer risk and ensure early detection of tumors. However, currently about one-third of detected MMR gene variants are subtle with less clear functional consequences: missense mutations affecting a single amino acid may be innocuous, hence not causing LS, or partially or fully destroy protein function. As long as uncertainty exists about their pathogenicity, such mutations are labeled ‘variants of uncertain (clinical) significance’ (VUS). VUS hamper genetic counseling and therefore the need for functional testing of VUS is widely recognized. To functionally annotate MMR gene VUS, we have developed a high content cellular assay in which the VUS is introduced in a cell culture by oligonucleotide-directed gene modification. Should the VUS be deleterious for MMR, the modified cells survive exposure to the guanine analog 6-thioguanine (6TG) and 6TG-resistant colonies appear. Should the mutation not affect MMR, no colonies appear. Here we present the adaptation and application of this protocol to the functional annotation of variants of the MMR gene MSH6. Implementation of our assay in clinical genetics laboratories will provide clinicians with information for proper counseling of mutation carriers and treatment of their of tumors.
Collapse
Affiliation(s)
- Hellen Houlleberghs
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jarnick Lusseveld
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fred H. Menko
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arjen R. Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hein te Riele
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Wielders E, Delzenne-Goette E, Dekker R, van der Valk M, Te Riele H. Truncation of the MSH2 C-terminal 60 amino acids disrupts effective DNA mismatch repair and is causative for Lynch syndrome. Fam Cancer 2016; 16:221-229. [PMID: 27873144 DOI: 10.1007/s10689-016-9945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Missense variants of DNA mismatch repair (MMR) genes pose a problem in clinical genetics as long as they cannot unambiguously be assigned as the cause of Lynch syndrome (LS). To study such variants of uncertain clinical significance, we have developed a functional assay based on direct measurement of MMR activity in mouse embryonic stem cells expressing mutant protein from the endogenous alleles. We have applied this protocol to a specific truncation mutant of MSH2 that removes 60 C-terminal amino acids and has been found in suspected LS families. We show that the stability of the MSH2/MSH6 heterodimer is severely perturbed, causing attenuated MMR in in vitro assays and cancer predisposition in mice. This mutation can therefore unambiguously be considered as deleterious and causative for LS.
Collapse
Affiliation(s)
- Eva Wielders
- Division of Biological Stress Response, The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elly Delzenne-Goette
- Division of Biological Stress Response, The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rob Dekker
- Division of Biological Stress Response, The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Martin van der Valk
- Division of Biological Stress Response, The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Biological Stress Response, The Netherlands Cancer Institute/Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Drost R, Dhillon KK, van der Gulden H, van der Heijden I, Brandsma I, Cruz C, Chondronasiou D, Castroviejo-Bermejo M, Boon U, Schut E, van der Burg E, Wientjens E, Pieterse M, Klijn C, Klarenbeek S, Loayza-Puch F, Elkon R, van Deemter L, Rottenberg S, van de Ven M, Dekkers DHW, Demmers JAA, van Gent DC, Agami R, Balmaña J, Serra V, Taniguchi T, Bouwman P, Jonkers J. BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1. J Clin Invest 2016; 126:2903-18. [PMID: 27454287 DOI: 10.1172/jci70196] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.
Collapse
|
6
|
LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc Natl Acad Sci U S A 2016; 113:4122-7. [PMID: 26951689 DOI: 10.1073/pnas.1513315113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.
Collapse
|
7
|
Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci U S A 2016; 113:4128-33. [PMID: 26951660 DOI: 10.1073/pnas.1520813113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.
Collapse
|
8
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
9
|
Nyerges Á, Csorgő B, Nagy I, Latinovics D, Szamecz B, Pósfai G, Pál C. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res 2014; 42:e62. [PMID: 24500200 PMCID: PMC4005651 DOI: 10.1093/nar/gku105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strategy for mismatch repair evasion using temperature-sensitive DNA repair mutants and temporal inactivation of the mismatch repair protein complex in Escherichia coli. Our method relies on the transient suppression of DNA repair during mismatch carrying oligonucleotide integration. Using temperature-sensitive control of methyl-directed mismatch repair protein activity during multiplex genome engineering, we reduced the number of off-target mutations by 85%, concurrently maintaining highly efficient and unbiased allelic replacement.
Collapse
Affiliation(s)
- Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary and Symbiosis and Functional Genomics Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Inaguma S, Riku M, Hashimoto M, Murakami H, Saga S, Ikeda H, Kasai K. GLI1 interferes with the DNA mismatch repair system in pancreatic cancer through BHLHE41-mediated suppression of MLH1. Cancer Res 2013; 73:7313-23. [PMID: 24165159 DOI: 10.1158/0008-5472.can-13-2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mismatch repair (MMR) system is indispensable for the fidelity of DNA replication, the impairment of which predisposes to the development and progression of many types of cancers. To date, GLI1 transcription factor, a key molecule of the Hedgehog signaling pathway, has been shown to regulate the expression of several genes crucial for a variety of cancer cell properties in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), but whether GLI1 could control the MMR system was not known. Here, we showed that GLI1 and GLI2 indirectly suppressed the expression of MLH1 in PDAC cells. Through GLI1 target gene screening, we found that GLI1 and GLI2 activated the expression of a basic helix-loop-helix type suppressor BHLHE41/DEC2/SHARP1 through a GLI-binding site in the promoter. Consistent with a previous report that BHLHE41 suppresses the MLH1 promoter activity, we found that the activation of GLI1 led to the BHLHE41-dependent suppression of MLH1, and a double knockdown of GLI1 and GLI2 conversely increased the MLH1 protein in PDAC cells. Using TALEN-based modification of the MLH1 gene, we further showed that GLI1 expression was indeed associated with an increased tolerance to a methylating agent, methylnitrosourea cooperatively with a lower copy number status of MLH1. Finally, GLI1 expression was immunohistochemically related positively with BHLHE41 and inversely with MLH1 in PDAC cells and precancerous lesions of the pancreas. On the basis of these results, we propose that GLI1 depresses the MMR activity and might contribute to the development and progression of PDAC.
Collapse
Affiliation(s)
- Shingo Inaguma
- Authors' Affiliation: Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Rodriguez GP, Song JB, Crouse GF. Transformation with oligonucleotides creating clustered changes in the yeast genome. PLoS One 2012; 7:e42905. [PMID: 22916177 PMCID: PMC3422593 DOI: 10.1371/journal.pone.0042905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
We have studied single-strand oligonucleotide (oligo) transformation of yeast by using 40-nt long oligos that create multiple base changes to the yeast genome spread throughout the length of the oligos, making it possible to measure the portions of an oligo that are incorporated during transformation. Although the transformation process is greatly inhibited by DNA mismatch repair (MMR), the pattern of incorporation is essentially the same in the presence or absence of MMR, whether the oligo anneals to the leading or lagging strand of DNA replication, or whether phosphorothioate linkages are used at either end. A central core of approximately 15 nt is incorporated with a frequency of >90%; the ends are incorporated with a lower frequency, and loss of the two ends appears to be by different mechanisms. Bases that are 5–10 nt from the 5′ end are generally lost with a frequency of >95%, likely through a process involving flap excision. On the 3′ end, bases 5–10 nt from the 3′ end are lost about 1/3 of the time. These results indicate that oligos can be used to create multiple simultaneous changes to the yeast genome, even in the presence of MMR.
Collapse
Affiliation(s)
- Gina P. Rodriguez
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph B. Song
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rios X, Briggs AW, Christodoulou D, Gorham JM, Seidman JG, Church GM. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS One 2012; 7:e36697. [PMID: 22615794 PMCID: PMC3351460 DOI: 10.1371/journal.pone.0036697] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs) are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of ~0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells.
Collapse
Affiliation(s)
- Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adrian W. Briggs
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Danos Christodoulou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josh M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Papaioannou I, Simons JP, Owen JS. Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther 2012; 12:329-42. [PMID: 22321001 DOI: 10.1517/14712598.2012.660522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene editing, as defined here, uses short synthetic oligonucleotides to introduce small, site-specific changes into mammalian genomes, including repair of genetic point mutations. Early RNA-DNA oligonucleotides (chimeraplasts) were problematic, but application of single-stranded all-DNA molecules (ssODNs) has matured the technology into a reproducible tool with therapeutic potential. AREAS COVERED The review illustrates how gene-editing mechanisms are linked to DNA repair systems and DNA replication, and explains that while homologous recombination (HR) and nucleotide excision repair (NER) are implicated, the mismatch repair (MMR) system is inhibitory. Although edited cells often arrest in late S-phase or G2-phase, alternative ssODN chemistries can improve editing efficiency and cell viability. The final section focuses on the exciting tandem use of ssODNs with zinc finger nucleases to achieve high frequency genome editing. EXPERT OPINION For a decade, changing the genetic code of cells via ssODNs was largely done in reporter gene systems to optimize methods and as proof-of-principle. Today, editing endogenous genes is advancing, driven by a clearer understanding of mechanisms, by effective ssODN designs and by combination with engineered endonuclease technologies. Success is becoming routine in vitro and ex vivo, which includes editing embryonic stem (ES) and induced pluripotent stem (iPS) cells, suggesting that in vivo organ gene editing is a future option.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- UCL Medical School, Division of Medicine (Upper 3rd Floor), Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|